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ABSTRACT. In this paper we study embeddings of contact manifolds using braid-
ings of one manifold about another. In particular we show how to embed many
contact 3–manifolds into the standard contact 5–sphere. We also show how to
obstruct braidings of one manifold about another using contact geometry.

1. INTRODUCTION

It is a classical result of Hirsch [34] that any closed oriented 3–manifold can
be embedded in S5. An alternate proof of this fact due to Hilden, Lozano and
Montesinos [32]. We call their technique braided embedding. In this paper we study
general braided embeddings and see how they interact with contact embeddings.
In particular we can use contact geometry to obstruct certain braided embeddings
and we can use braided embeddings to partially generalized Hirsch’s theorem to
the contact category and study contact embeddings in general.

1.1. Braided embeddings. Given n–manifolds Y and M we say that M is braided
about Y if there is an embedding e : M → Y × D2 such that π ◦ e : M → Y is a
branched covering map, where π : Y ×D2 → Y is projection. IfM is braided about
Y and Y is embedded in some (n + 2)–manifold W with neighborhood Y × D2

then notice that there is an embedding of M into W too. Such an embedding of M
into W will be called a braided embedding and if an embedding of M into W can be
isotoped to be such an embedding then we will say the embedding can be braided
about Y . The most common setting for such problems will be when Y = Sn and
W = Sn+2. We have the following obvious questions.

Question 1.1. Which M can be braided about which Y ?

Question 1.2. Can a given branched covering p : M → Y be realized via a braiding
of M about Y ?

Question 1.3. Can a given embedding of M into Sn+2 be isotoped to be a braided
embedding?

Below we will discuss various answers to theses questions and how they are
related to, and can be studied by, contact geometry.

Since a branched cover in dimension 1 is simply a cover, one sees the notion
of a braided embedding S1 in S3 simply recovers the classical notion of a closed
braid. And thus Question 1.3 was answered affirmatively by Alexander [1]. Viro
discussed an affirmative answer to Question 1.3 in lectures in 1990 where the no-
tion of braided embeddings in the context we are using here seem to have first
been discussed (though there were precursors in [49] and [32]). Viro’s proof never
appeared in the literature but an alternate proof was given by Kamada in [36].
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Prompted by discussions with the first author, Questions 1.1 and 1.2 were first
extensively addressed by Carter and Kamada in [6, 7, 8]. Concerning Qustion 1.2
below we prove in Theorem 3.1 that cyclic branched covers (with certain condi-
tions on the branched set) can always be realized as braidings. This generalizes
the result for 2–fold covers in dimension 2, 3, and 4 from [7]. We also show in The-
orem 3.7 that any branched cover (whose branch set admits a Seifert hypersurface)
can be braided by using an immersion instead of an embedding. This generalizes
the result for simple 3–fold branched covers in dimension 1, 2 and 3 from [7].

An example of a simple branched covering of S3 that could not be braided
about S3 (that is an example showing the answer to Question 1.2 is not always
yes) was given in [7]. In Example 4.2 we give an infinite family (and indicate how
to make many more) of such examples using contact geometry.

It is known that any n–manifold is a cover of Sn branched over the (n − 2)–
skeleton of a standardly embedded n–simplex [2] and there has been much study
of how simple the branched set can be made. This is discussed more in Sec-
tion 2.6 and in Example 3.9 we show how to use Theorem 3.7 to restrict the pos-
sible branched loci for the realization of some manifolds as branched covers over
spheres.

Concerning Question 1.1 we note that Theorem 3.1, or [7], and the well-known
fact any oriented 2–manifold is a 2–fold branched cover over S2 says any oriented
surface can be braided about S2. The only other result along these lines seems to
be the following result.

Theorem 1.4 (Hilden, Lozano and Montesinos 1983, [32]). Any closed oriented 3–
manifold can be braided about S3 and hence has a braided embedding in S5.

1.2. Contact Embeddings. A contact embedding of one contact manifold (M, ξ)
into another (W, ξ′) is simply an embedding e : M →W that that is transverse to ξ′

such that de(ξ) ⊂ ξ′. We notice that this is a generalization of the notion of a trans-
verse knot in a contact 3–manifold (since the contact structure on S1 is simply the
trivial vector space in each TxS

1). While transverse knots have been extensively
studied in contact 3–manifolds — in fact, it has been shown that understanding
transverse knots in a contact structure determines the contact structure [24] —
there seems to be little known in higher dimensions.

The most basic questions that can be asked are

Question 1.5. Given a contact (2n + 1)–manifold (M, ξ) for what m does (M, ξ)
contact embed in the standard contact sphere (S2m+1, ξstd)?

Question 1.6. Given an embeddingM of an odd dimensional manifold in (S2n+1, ξstd)
when can it be isotoped to be transverse to ξstd such that TM ∩ ξstd is a contact
structure on M? We will call such an embedding a transverse contact embedding.

Question 1.7. Given two transverse contact embeddings of M into (S2n+1, ξstd)
when are they isotopic?

Towards Question 1.5 the following results is the analog of the Whitney embed-
ding theorem in the contact category.

Theorem 1.8 (Gromov 1986, [31]). Any contact (2n + 1)–manifold contact embeds in
the standard contact structure on R4n+3 (and hence into the standard contact structure
on S4n+3).
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Remark 1.9. A more explicit embedding of contact 3–manifolds in (S7, ξstd) was
given by Mori [45] using open books and this proof was generalized by Torres in
[41].

Though some of our results hold in all dimensions, we now primarily focus
on the case of embedding contact 3–manifolds. Given Hirsch’s result mentioned
above that any closed oriented 3-manifold embeds in S5 one might ask if the above
theorem can be improved. In general the answer is no.

Theorem 1.10 (Kasuya 2013, [39]). If (M, ξ) is a co-dimension 2 contact embedding
into a co-oriented contact manifold (W, ξ′) and H2(W ;Z) = 0, then c1(ξ) = 0.

Since it is well known there are many contact 3–manifolds with non-vanishing
Chern class it is clear they cannot embed into the standard contact structure on S5.
This brings up two natural questions.

Question 1.11. Given a 3–manifold M , does a contact structure ξ on M contact
embed in (S5, ξstd) if and only if c1(ξ) = 0?

Question 1.12. Is there any contact 5–manifold into which all contact 3–manifolds
contact embed?

Below we will give many partial results pointing to a positive answer to Ques-
tion 1.11 but we notice a slight modification of the questions dose have a posi-
tive answer. Recall in [5] Borman, Eliashberg and Murphy gave a definition of
overtwisted contact structures in all dimensions and showed there was a unique
overtwisted contact structure ξot on S5.

Theorem 1.13. A contact 3–manifold (M, ξ) contact embeds in (S5, ξot) if and only if
c1(ξ) = 0.

Remark 1.14. In [39], Kasuya showed that if (M, ξ) is a contact 3–manifold with
vanishing Chern class then it embeds in some contact structure on R5, but the con-
tact structure could depend on ξ. It was essential in Kasuya’s argument that the
target space was open (since he relied on an existence result of Gromov for open
manifolds). Using [5] one can easily extend Kasuya’s argument to obtain the above
result, see Section 2.4.

Remark 1.15. Question 1.11 is still relevant as one would like to embed contact
manifolds in the “simplest” and “nicest” contact structures possible.

In regards to Question 1.12 and looking for the “simplest” embeddings one
might ask if all contact 3–manifolds can be contact embedded in some contact
structure on the product of a surface and a 3–manifold. In [21] the first author and
Lekili show that there is an overtwisted contact structure on S2 × S3 into which
every contact 3–manifold contact embeds and there is also a Stein fillable contact
structure (and hence not overtwisted) on the twisted S3 bundle over S2 with the
same property.

Returning to Question 1.11 we have several results. The first concerns contact
structures on S3.

Theorem 1.16. Any contact structure on S3 can be embedded in (S5, ξstd) so that it is
isotopic to the standard embedding. Moreover there are infinitely many isotopy classes of
embeddings of S3 into S5 so that any contact structure on S3 can be realized by a contact
embedding in each of these isotopy classes.
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Remark 1.17. It is obvious that the standard tight contact structure on S3 embeds.
In [46], Mori showed that the overtwisted contact structure ξ1 (see Section 2.2 for
notation) embeds so that it is smoothly isotopic to the standard embedding and
hence, using connected sums as in Lemma 2.2, it is clear one can embed ξn for all
n ≥ 1. So the real content of the theorem is to embed the ξn for n ≤ 0 and to control
the isotopy class of the embeddings.

Using the relative contact connect sum lemma, Lemma 2.2, we have the imme-
diate corollary.

Corollary 1.18. In every smooth isotopy class of contact embedding of (S3, ξstd) into
(S5, ξstd) there is also an embedding of every overtwisted contact structure on S3. �

Question 1.19. Is there a smooth isotopy class of embedding of S3 in S5 that does
not contain an embedding of (S3, ξstd) into (S5, ξstd)?

We note that a positive answer to Question 1.3 for n = 3 would imply an answer
of “no” to this question by Theorem 1.26.

Theorem 1.16 also allows us to show the following result.

Theorem 1.20. Let M be a 3–manifold with no 2–torsion in its first homology group.
Then an overtwisted contact structure ξ on M embeds in (S5, ξstd) if and only if c1(ξ) =
0.

For some 3–manifolds we can do better and answer Question 1.11 positively.

Theorem 1.21. Let M be one of the following manifolds
(1) a lens space L(p, q) (this includes S3) with p odd or with p even and q = 1 or

q = p− 1,
(2) S1 × S2, or
(3) T 3.

A contact structure ξ on M can be embedded in (S5, ξstd) if and only if its first Chern
class is zero, c1(ξ) = 0.

Remark 1.22. The above theorem can be extended to all L(p, q) with p < 10, but
as the proofs in the cases not mentioned in the theorem are ad hoc but similar to
the ones used in the theorem we do not include them here. We expect the same
techniques to extend to all L(p, q).

Remark 1.23. There exists a family of universally tight contact structures on T 2-
bundles over S1 which just twist in the base S1-direction. The second author,
using a generalization of Mori’s method in [46] or in his unpublished work for
tight T 3’s, embedded all such tight contact structures for elliptic and parabolic
T 2-bundles and some of them for some hyperbolic T 2-bundles. Work of Kasuya
in [38] shows that some of these embeddings are contactomorphic to the link of
singularities in C3.

We now turn to Question 1.7 concerning the uniqueness of transverse contact
embeddings. We note that two invariants of a transverse contact embedding ofM3

into (S5, ξstd) are (1) the smooth isotopy class and (2) the induced contact struc-
ture. Thus Theorem 1.16 shows there are infinitely many non-transversely isotopic
contact embeddings of S3 (we will abbreviate the phrase “transverse contact iso-
topy” to “transverse isotopy”).
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Question 1.24. Are there embeddings of (S3, ξstd) into (S5, ξstd) that are smoothly
isotopic but not isotopic through contact embeddings?

We do not answer this question here, but think that it is likely there are. We also
point out that there are likely no simple algebraic invariants (like the self-linking
number in dimension 3) by observing the following result.

Theorem 1.25. Let ei : (S3, ξ) → (S5, ξot), i = 1, 2, be two contact embeddings of
contact structure on S3 into the overtwisted contact structure on S5 such that the contact
structure on the complements of their images are overtwisted. If e1 is smoothly isotopic to
e2, then there is a contactomorphism φ : (S5, ξot)→ (S5, ξot) such that e2 = φ ◦ e1.

A contact submanifold of an overtwisted contact manifold is called loose if the
contact structure on the complement of the submanifold is overtwisted. The above
theorem basically says that up to contactomorphism the only invariants of a loose
transverse contact embedding are the two discussed above.

In regards to Question 1.6 about when an embedding can be isotoped to be
a transverse contact embedding we note that outside of dimension 3, where the
answer is known to be yes, it is not expected that there is a local h-principle that
could give a positive answer to this question, but there might be a large isotopy
providing a positive answer. We have the following result, which follows easily
from Theorem 4.1, in dimension 5 relating this to braiding.

Theorem 1.26. If an embedding M → S5 can be isotoped to be a braided embedding
about the standard S3 in S5 then it can be isotoped to be transverse contact embedding.

Thus in dimension 5, Question 1.6 reduces to Question 1.3 for n = 3.
Acknowledgments: The authors thank James Conway and Emmy Murphy for
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2. BACKGROUND AND PRELIMINARY RESULTS

In this section we begin by recalling basic definitions and results about contact
embeddings. In the following two subsection we review a few facts about, homo-
topy classes of plane fields, contact 3–manifolds, and transverse and Legendrian
knots. In Subsection 2.4 we discuss overtwisted contact structures in higher di-
mensions and prove Theorems 1.13 and 1.25. Then is Subsections 2.5 and 2.6 we
recall a few definitions and facts about open book decompositions and branched
covers, respectively, and we end this section by discussing specific branched cov-
ers in dimension 2 and 3.

2.1. Contact structures and contact embeddings. Recall a (co-orietned) contact
structure on an oriented (2n+ 1)–dimensional manifold M is a hyperplane distri-
bution ξ ⊂ TM that is defined as the kernel of a 1–form α, ξ = kerα, for which
α ∧ (dα)n is a volume form on M defining the given orientation.
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Given ξ = kerα one may easily see that dα gives ξ the structure of a symplec-
tic bundle. It is well-known, see for example [43], that such a bundle also has
a complex structure J : ξ → ξ that is compatible with dα and that J is unique
up to homotopy. Thus to a contact structure ξ we can associate its Chern classes
c1(ξ), . . . , cn(ξ) which become invariants of ξ.

One of the simplest examples of a contact structure is on the unit sphere S2n−1

in Cn and is defined as the set of complex tangences

ξstd = TS2n−1 ∩ J(TS2n−1)

where J : TCn → TCn is the almost complex structure on the tangent space
of Cn induced from its complex structure. We will call this the standard contact
structure on S2n−1 and denote it ξstd without reference to the dimension of the
sphere, which should always be clear from context.

Given two contact manifolds (M, ξ) and (W, ξ′) we will call an embedding e :
M → W a contact embedding if e is transverse to ξ′ and a contatomorphism from
(M, ξ) to (e(M), T e(M)∩ξ′). This can equivalently be expressed by saying there is
a contact form α′ defining ξ′ such that e∗α′ is a contact form defining ξ. A simple
and well-known application of a Moser type argument, see for example [23], yields
the following result.

Proposition 2.1. Suppose that e : (M2n+1, ξ) → (W 2(n+k)+1, ξ′) is a contact embed-
ding for which e(M) has trivial normal bundle (as a symplectic bundle with symplectic
structure induced from a contact form). Then there is a neighborhood of e(M) in W that
is contactomorphic to M ×D2k with the contact structure ker(α+

∑k
j=1 r

2
j dθj), where

(ri, θi) are polar coordinates on the ith copy of D2 in D2k and α is a contact form for ξ.

We also make the simple observation that the connect sum operation, which is
well-known in the contact category, can be done in a relative setting.

Lemma 2.2. If (Mi, ξi) is a contact submanifold of (Wi, ξ
′
i) for i = 1, 2, then (M1#M2, ξ1#ξ2)

is a contact submanifold of (W1#W2, ξ
′
1#ξ′2).

2.2. Homotopy classes of plane fields on 3–manifolds. The most basic invariant
of a contact structure on a 3–manifold is the homotopy type of the underlying
plane field. We now review part of the classification of homotopy classes of plane
fields on a closed 3–manifold as described in [29].

Let ξ be an oriented 2–plane field on a closed oriented 3-manifold M . Any two
such plane fields are homotopic over the 1–skeleton of M . The homotopy type of
ξ over the 2–skeleton is completely determined by a refinement of c1(ξ). Namely
let S be the set of spin structures on M and H be the subset of H1(M) consisting
of classes c such that 2c is Poincaré dual to c1(ξ). In [29], Gompf defines a map

Γξ : S → H

that completely determines ξ, up to homotopy, over the 2–skeleton of M . Notice
that if H2(M) (or equivalently H1(M)) has no 2–torsion then H has a unique ele-
ment in it and Γξ is completely determined by c1(ξ).

If ξ has torsion c1(ξ) inH2(M) then the homotopy class of ξ over the 3–skeleton
(and hence over M ) is determined a “3–dimensional obstruction” d3(ξ) (and of
course Γξ), see [29, Definition 4.15]. To define d3(ξ) ∈ Q choose an almost complex
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4-manifold (X, J) whose almost complex boundary is (M, ξ) and set

d3(ξ) =
1

4
(c21(X, J)− 3σ(X)− 2(χ(X)− 1)),

where σ(X) and χ(X) are the signature of X and the Euler characteristic of X ,
respectively. Notice that we have subtracted 1 from χ(X) unlike the definition
in [29]. This has become standard and is done so that on S3 the invariant d3 takes
values in Z instead of the half-integers. One may easily check that for the standard
contact structure on S3 we have d3(ξstd) = 0.

Proposition 2.3 (Gompf 1998, [29, Theorem 4.16]). Let ξ1 and ξ2 be 2-plane fields on a
closed oriented 3-manifoldM and suppose that c1(ξ1) and c1(ξ2) are torsion classes. Then
ξ1 and ξ2 are homotopic if and only if Γξ1(s) = Γξ2(s) for a (and hence any) spin structure
s on M and d3(ξ1) = d3(ξ2).

From the formula above for the d3 invariant it is clear that if ξ and ξ′ are two
contact structures with torsion first Chern classes then the d3 invariant of the con-
nect sum of the contact manifolds is

d3(ξ#ξ′) = d3(ξ) + d3(ξ′).

2.3. Contact structures on 3–manifolds and transverse and Legendrian knots.
Recall that contact structures on 3–manifolds fall into one of two types: tight or
overtwisted. A contact structure ξ on a 3–manifold M is overtwisted if there is an
embedded disk D ⊂ M such that D is tangent to ξ along its entire boundary:
TxD = ξx for all x ∈ ∂D. Such a disk is called an overtwisted disk. If no such disk
exists then we call ξ tight. It is well known that ξstd on S3 is tight, [3] and the
unique tight contact structure on S3, [15].

In [13], Eliashberg classified overtwisted contact structures.

Theorem 2.4 (Eliashberg 1989, [13]). The set of overtwisted (co-oriented) contact struc-
tures, up to isotopy, on a closed oriented 3–manifold is in one-to-one correspondence with
the set of oriented plane fields on the manifold up to homotopy.

From Proposition 2.3 and this theorem we know for each integer n ∈ Z there is
an overtwisted contact structure ξn on S3 with d3(ξn) = n.

Given a null-homologous transverse knot K in a contact 3–manifold (M, ξ) it
has a simple topological invariant called the self-linking number. Since K is null-
homologous it bounds an embedded surface Σ and the restriction of ξ to Σ is trivial
so we can choose a non-zero section v of ξ restricted to Σ. Let K ′ be a copy of K
pushed slightly in the direction of v. Then the self-linking number of K, sl(K), is
simply the linking of K and K ′ (or equivalently the singed intersection of K ′ and
Σ). One may also see sl(K) as (the negative of) the obstruction to extending the
outward pointing vector field along K to a non-zero vector field in ξ|Σ. From this
description it is clear that sl(K) is independent of choices if c1(ξ) = 0.

Bennequin showed [3] that any transverse knot in (S3, ξstd) (which we think of
as R3 = S3−{p} and ξstd = ker(dz+r2 dθ)) can be written as the closure of a braid.
If a transverse knot K is written as the closure of an n–braid σ then

(1) sl(K) = writhe(σ)− n,
where writhe(σ) is the writhe of the obvious projection of the braid.

One may stabilize a transverse knot. This is a local operation that reduces the
self-linking number by 2. If K is represented by an n-braid then the transverse
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stabilization can be seen as a negative braid stabilization, that is add a strand to
the braid and multiply the braid word by the inverse of the standard generator σn.
For more details on this and transverse knots in general see [18, 26].

Recall that a knot K in a contact 3–manifold (M, ξ) is Legendrian if it is every-
where tangent to ξ. We assume that K is null-homologous and so has a canonical
(Seifert) framing. The contact structure also gives K a framing and the difference
between this and the Seifert framing is an integer called the Thurston-Bennequin
invariant of K and denoted tb(K). Orienting K we can discuss the Euler class of ξ
relative to an oriented vector field along K. Evaluating this on the Seifert surface
results in an integer that is the negative of the rotation class of K, which is denoted
by r(K). It is well known that Legendrian knots in the standard contact structure
on R3 (or S3) can be represented by their front projection, see [18, 26]. Moreover,
a Legendrian knot K can be stablized in a positive and a negative way which we
denote S+(K) and S−(K), respectively. In the front projection this just amounts to
“adding zigzags” and we know tb(S±(K)) = tb(K)− 1 and r(S±(K)) = r(K)± 1.

Given K in (M, ξ) one can perform tb(K) ± 1 surgery on M to get a manifold
MK(tb(K) ± 1) and there is a unique contact structure ξ′ on it that agrees with ξ
on the complement of the surgery torus and is tight on the surgery torus. We say
(MK(tb(K)± 1), ξ′) is obtained from (M, ξ) by (±1)-contact surgery on K. We also
call (−1)-contact surgery Legendrian surgery. The main result we will need below
is the following.

Theorem 2.5 (Eliashberg 1990, [14]; Gompf 1998, [29]). Given a Legendrian linkK1∪
. . . ∪Kn in (S3, ξstd), then manifold X obtained from B4 by attaching 2–handles to the
link with framings tb(Ki)− 1 has the structure of a Stein domain with first Chern class

c1(X) =

n∑
i=1

r(Ki)hi,

where hi is Poincaré dual to the co-core of the handle attached toKi. Moreover, the complex
tangencies to the boundary give a contact structure obtained from (S3, ξstd) by Legendrian
surgery on the link.

Recall a Stein manifold is a complex manifold with an proper embedding in CN
for some large N . The sub-level set of the regular value of the restriction of the
radial function on CN to the Stein manifold will be called a Stein domain. It is well
known that the contact structure induced on the boundary of a Stein domain is
tight.

It is also shown in [29] how to compute the Γ invariant of contact structures
obtained through Legendrian surgery. To state this recall, see [29], that if M is ob-
tained from S3 by surgery on some link L = K1∪, . . . ,∪Kn, with surgery farming
ai on link component Ki, then spin structures on M are in one-to-one correspon-
dence with characteristic sub-links of L. A sub-link L′ of L is called characteristic
if for each Ki in L we have ai ≡ linking(Ki, L

′) mod 2. Moreover, if γ1, . . . , γk
represent a basis for the homology of M then a spin structure is characterized by
specifying the framings (modulo 2) on the γi with which we can attach a 2–handle
and extend the spin structure over the handle. If a spin structure is given by a
characteristic sub-link L′ then this framing is given by linking(γi, L

′) mod 2.
Now suppose L = K1 ∪ . . . ∪ Kn is a Legendrian link in (S3, ξstd) and (M, ξ)

the contact manifold obtained by Legendrian surgery on this link. Let L′ be a
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characteristic sub-link of L corresponding to the spin structure s. Then

(2) Γξ(s) =
1

2

n∑
i=1

(r(Ki) + linking(Ki, L
′))µi,

where µi is the homology class determined by the meridian of Ki.

2.4. Overtwisted contact structures in higher dimensions. In [5], Borman, Eliash-
berg, and Murphy introduced the notion of an overtwisted contact structure in all
dimensions. There definition of overtwisted is a bit difficult to state but in [9],
Casals, Murphy, and Presas gave alternate characterizations of overtwistedness
and we present one of those here.

Consider P = Z × D2 in T ∗Sn−1 × R3 where Z is the zero section of T ∗Sn−1

and D2 is the disk of radius π in the z = 0 plane in R3. Let ξ′ = ker(λ + cos r dz +
r sin r dθ), where λ is the Liouville 1–form on T ∗Sn−1 and (r, θ, z) are cylindrical
coordinates on R3. We call a contact structure ξ on a (2n+1)–dimensional manifold
M overtwisted if there is an embedding of the germ of the contact structure ξ′ along
P in T ∗Sn−1 × R3 such that the image of P is contained in an open ball in M and
the image of an open Legendrian submanifold Z ×Λ0, where Λ0 is an open leaf of
the characteristic foliation of D2 ⊂ (R3 ∩ {r < π, z = 0}, ker(cos r dz + r sin r dθ)),
has relative rotation number zero with respect to a punctured Legendrian disk.
The image of P is typically called a small plastikstufe with spherical core and rotation
0. See [9] for more details on the definition.

We also recall that an almost contact structure on a (2n+1)–dimensional manifold
M is a reduction of the structure group of the tangent bundle ofM to U(n)×1 and
so correspond to sections of the SO(2n+1)/U(n)-bundle associated to the tangent
bundle of M . From this one can see that in dimension 5 the only obstruction to
the existence of an almost contact structure on a manifold M is in H3(M ;Z) and
the only obstruction to homotoping one almost contact structure to another is in
H2(M,Z), see for example [26].

The main theorems from [5] that we will need are the following.

Theorem 2.6 (Borman, Eliashberg and Murphy 2014, [5]). Let M be a (2n + 1)–
dimensional manifold and A a closed subset of M . If η is an almost contact structure on
M that is an actual contact structure on some neighborhood of A then η is homotopic rel
A to an actual (overtwisted) contact structure on M .

Theorem 2.7 (Borman, Eliashberg and Murphy 2014, [5]). Let M be a (2n + 1)–
dimensional manifold and A a closed subset of M . If ξ and ξ′ are two contact structure on
M that agree on an open neighborhood of A and are overtwisted and homotopic through
almost contact structures when restricted to M − A, then they are isotopic as contact
structure by an isotopy fixed on A. In particular, there is a contactomorphism from ξ to ξ′

that is the identity map on A.

The first theorem says there is an overtwisted contact structure on S5 and com-
putations of the set of almost contact structures on S5, see [5], together with the
second theorem says this contact structure is unique, we denote it ξot.

We now turn to the proofs of Theorems 1.13 and 1.25. Recall Theorems 1.13 says
a contact structure on a 3–manifold embeds in (S5, ξot) if and only if its first Chern
class vanishes.
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Proof of Theorems 1.13. Given a contact structure ξ = kerα on a 3–manifoldM with
c1(ξ) = 0 and an embedding of M into the 5–ball B5, Kasuya in [39] shows how to
extend the contact structure ker(α + r2 dθ) on the neighborhood M ×D2 of M in
B5 to an almost contact structure onB5. Since S5 is obtained fromB5 by attaching
a 5–handle and π4(SO(5)/U(2)) = 0, the almost contact structure extends over S5.
Thus Theorem 2.6 allows us to homotope this almost contact structure relative to
a neighborhood of M to an actual overtwisted contact structure, that is ξot. Thus
creating a contact embedding of (M, ξ) into (S5, ξot). �

Recall that Theorem 1.25 says that up to contactomorphism the only invariants
of a loose transverse contact embedding are the smooth isotopy class and induced
contact structure.

Proof of Theorem 1.25. Let ei : (S3, ξ) → (S5, ξot), i = 1, 2, be two (smoothly) iso-
topic embeddings whose images have overtwisted complements. Since they are
isotopic we can use Proposition 2.1 to find an smooth isotopy φt : S5 → S5 such
that φ1 is a contactomorphism from a neighborhood N1 of the image of e1 to a
neighborhood N2 of the image of e2 and so that φ1 ◦ e1 = e2. Since S5 −Ni is a
homology S1 ×D4 we know that H2(S5 −Ni, ∂(S5 −Ni);Z) = 0. Thus from the
discussion of homotoping almost contact structures above we see that (φ1)∗ξot is
homotopic to ξot on S5−N2. By Theorem 2.7 we see that they are isotopic relative
to N2. Now Gray’s theorem gives an isotopy ψt, rel N2, such that φ = (ψ1 ◦ φ1) is
a contactomorphism of ξot and satisfies φ ◦ e1 = e2. �

2.5. Open book decompositions. LetM be a closed n–dimensional manifold. An
open book decomposition ofM is a pair (B, π) whereB is a closed (n−2)–dimensional
submanifold of M and π : (M − B) → S1 is a locally trivial fibration such that
π−1(θ), θ ∈ S1, is the interior of a compact hypersurface Σθ in M and ∂Σθ = B.
We call B the binding and each π−1(θ) a page of the open book decomposition
(B, π).

Following Giroux [28] we say a contact structure ξ on M is compatible with,
or supported by, the open book decomposition (B, π) if ξ is isotopic to a contact
structure defined by the kernel of a 1-form α such that α is a contact form on B
and dα is a symplectic form on each page of the open book. (We notice that α will
orient B and dα will orient the pages of the open book, we require that, with these
orientations, B is the oriented boundary of the pages.)

Example 2.8. The standardly embedded Sn−2 in Sn is the binding of an open book
and when n is odd this open book supports the standard contact structure ξstd.

Theorem 2.9 (Thurston-Winkelnkemper 1975, [50] and Giroux 2002, [28]). An open
book decomposition of a closed 3–manifold supports a unique contact structure.

The analogous theorem is not true in higher dimensions, but in [28] Giroux
gives conditions which guarantee that a high dimensional open book supports a
contact structure. He also has poven the following result.

Theorem 2.10 (Giroux 2002, [28]). Every (co-oriented) contact structure on a closed
oriented (2n+ 1)–manifold is supported by some open book decomposition.

Restricting to dimension 3 we consider the “extrinsic view” of open book de-
compositions. Given a pair (Σ, φ) where Σ is a surface with boundary and φ : Σ→
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Σ is a diffeomorphism of Σ that is equal to the identity near ∂Σ then we can build
a 3–manifold M(Σ,φ) by gluing copies of S1 ×D2 to the boundary components of

Tφ = (Σ× [0, 1])/(x, 1) ∼ (φ(x), 0)

by a diffeomorphisms that sends S1 × {p} to a component of ∂Σ× {p′} and {q} ×
∂D2 to {q′}×[0, 1]/ ∼. One may easily check that the cores of the glued in tori form
a link B that is the binding of some open book (B, π) for M(Σ,φ) whose pages are
diffeomorphic to Σ. So according to the above theorems there is a unique contact
structure ξ(Σ,φ) on M(Σ,φ) associated to (Σ, φ). We say (Σ, φ) supports a contact
structure ξ on a 3–manifoldM if there is a contactomorphism from (M(Σ,φ), ξ(Σ,φ))
to (M, ξ). See [19] for more details.

Given an open book (Σ, φ) supporting some contact structure ξ on M we can
form a new open book by stabilizing. Specifically given a properly embedded
arc γ in Σ let Σ′ be the result of attaching a 1-handle to Σ along ∂γ. Let c be the
embedded curve in Σ′ obtained by taking the union of γ and the core of the added
1–handle. The open book (Σ′, τc ◦φ) is said to be obtained from (Σ, φ) by a (postive)
stabilization, where τc is a right handed Dehn twist about c. We say (Σ′, τ−1

c ◦ φ) is
the result of a negative stabilization of (Σ, φ).

One may check, or see [19, 28], that the manifold described by any stabilization
of (Σ, φ) is still M . If one does a positive stabilization then the contact structure is
also unchanged, but if one does a negative stabilization the the supported contact
structure is overtwisted and homotopic to the result of connect summing (M, ξ)
with (S3, ξ1), where ξ1 is the overtwisted contact structure on S3 with d3(ξ1) = 1.

2.6. Branched covers. A map p : M → Y is called a branched covering with branch
locus B ⊂ Y if the set of points B̃′ at which p is not locally injective is precisely the
singular locus of p and B = p(B̃′) is a co-dimension 2 sub-complex of Y such that
p restricted to M − B̃ is a covering map (M − B̃)→ (Y − B), where B̃ = p−1(B).
Along the top dimensional strata of B̃′ it is well known that a local model for p is
given by

Dn−2 ×D2 → Dn−2 ×D2 : (x, z) 7→ (x, zk)

where we think ofD2 as the unit disk in C and k is an integer larger than 1. We call
k the degree, or order, of ramification. Any point outside of B̃′ is called unramified.
We call the branched cover n–fold if the covering map p restricted to M − B̃ is an
n–fold covering map. We similarly apply adjectives for covering maps to branched
coverings too (e.g. regular, irregular, cyclic, etc.). An n–fold branched covering is
called simple the pre-image of any point in Y has either n or n− 1 points.

In this paper we will restrict ourselves to branched covers where the branch
locusB is a smooth submanifolds, which implies that B̃ is too and that p restricted
to B̃ is a covering map. This is a common restriction, but we give the general
definition to recall the famous theorem of Alexander [2] that says a closed oriented
n–manifold is (PL equivalent to) a covering of Sn branched over the (n − 2)–
skeleton of a standardly embedded n–simplex. And there has been much study as
to whether the branch locus can be taken to be a smooth submanifolds and if so
whether it can be assumed to be orientable. In [4] it was shown that the branch
locus does not always have to be a smooth submanifold. It is well known that that
in dimensions 2, 3 and 4, the branched set can be made smooth, but in dimension 4
one must allow non-orientable surfaces for the branch locus [48, 51]. We will see in
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Subsection 3.2 that one can use the techniques of braided embeddings/immersion
to also get restrictions on properties of the branch locus necessary to realize certain
manifolds.

There is a well known construction of contact structures via branched cover-
ings, [25, 30]. We recall the construction here.

Theorem 2.11 (Geiges 1997, [25], Öztürk and Niederkrüger 2007, [47]). Suppose
that p : M → Y is a cover branched over a smooth submanifold B ⊂ Y . Further assume
that Y has a contact structure ξ = kerα such that B intersects ξ transversely and ξ∩TB
is a contact structure on B. Then there is a unique (up to isotopy) contact structure ξB
on M that is given by a contact form β1 that can be connected to β0 = p∗α by a path βt,
t ∈ [0, 1], such that βt is a contact form for t > 0 and d

(
∂βt
∂t |t=0

)
restricts to a positive

form on each (naturally oriented) fiber of the normal bundle of the branch locus in M .

Proof. Let α be a contact form for ξ. It is clear that p∗α is a contact form in the
complement of B̃′ (recall this is the set of point in M where p is ramified). Let
N be a tubular neighborhood of B̃′ in M . This is a D2-bundle over B̃′. Let β be
the pull back of a connection 1-form on the circle bundle ∂N to N minus the zero
section. Also denote by r : N → R the radial function on N . One may easily check
that r2β defines a 1-form on N . Now let η be any 1-form on M for which dη agrees
with a positive multiple of d(r2β) along B̃′. We claim that αR = p∗α + Rη is a
contact from for all sufficiently small R > 0. Indeed if M is 2n + 1 dimensional
then αR ∧ (dαR)n is

p∗(α ∧ (dα)n) +R
[
(p∗((dα)n) ∧ η) + np∗(α ∧ (dα)n−1) ∧ dη + η′(R)

]
,

for some form η′(R) each summand of which contains positive powers ofR. Clearly
the first term is a positive multiple of the volume form on M away from B̃′, so for
R sufficiently small this is a contact form on the complement of any sufficiently
small neighborhood of B̃′. On B̃′ we know p has rank 2n − 1. Thus along B̃′

the first two terms vanish. Since p restricted to B̃′ is a covering map we know
p∗(α ∧ (dα)n−1) is a volume form on B̃′. On each fiber of the normal bundle dη
agrees with a positive multiple of d(r2β) = 2r dr ∧ β + r2dβ and so is an area
form on the fiber at r = 0. Thus the third term in αR ∧ (dαR)n is positive on B̃′.
Hence (p∗((dα)n) ∧ η) + n

(
p∗(α ∧ (dα)n−1) ∧ dη

)
+ η′(R) is a volume form on a

sufficiently small neighborhood of B̃′ and so is rescaling by any sufficiently small
R > 0. Thus for all small R > 0 we have established that αR is a contact form.

The uniqueness is proved similarly and a detailed proof can be found in [47], we
also note that Patrick Massot has shown the authors a proof of a stronger result that
the space of contact structures induced on a branched cover is contractible. �

2.7. Branched covers in dimensions 2 and 3. We first consider branched covers
of D2, thought of as the unit disk in R2. Fix n-points x1, . . . , xn in D2 along the
y-axis (so their y-coordinates are increasing with the index). A k-fold cover of D2

branched over the xi’s is determined by the ordinary cover of D2 − {x1, . . . , xn}
which in turn is determined by the monodromy representation of the cover

m : π1(D2 − {x1, . . . , xn})→ Sk,

where Sk is the symmetric group on k elements. Specifically given a cover p : Σ→
(D2−{x1, . . . , xn}), then label the points q1, . . . qk lying above the base point x0 of
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D2−{x1, . . . , xn} and for each [γ] ∈ π1(D2−{x1, . . . , xn}) lift γ to a path γ̃ : [0, 1]→
Σ starting at qi and define m([γ])(i) to be the index of γ̃(1). Since there is a one-to-
one correspondence between generators of the free group π1(D2 − {x1, . . . , xn})
and the points x1, . . . , xn, we can describe a cover by labeling the marked points
with an element of Sk.

Example 2.12. We show the 2–fold branched cover ofD2 branched over two points
on the left hand side of Figure 1. On the right hand side we give the 3–fold simple
cover of D2 branched over 4 points which results in a planar surface Σ with three
boundary components.

(1 2)

(1 2)

(1 2)

(1 2)

(2 3)

(2 3)

FIGURE 1. The 2–fold branched cover of the annulus over the disk
on the left. The permutations labeling the points on the bottom
left describe which “sheets” are connected as one goes around the
branched point. So called “branched cuts” are also draw to aid in
visualizing the cover. On the right hand side one sees the 3–fold
simple branched cover of a planar surface with three boundary
components Σ over the disk.

We now turn to the 3 dimensional case. As for surfaces a k–fold branched cov-
ering p : M → Y will be determined by an ordinary covering of the complement
of the branch locus B ⊂ Y which in turn is determined by a monodromy rep-
resentation m : π1(Y − B) → Sk. If we are branching over S3 then π1(S3 − B)
is generated by meridians. So the monodromy just assigns an element of Sk to
each strand in a diagram of B so that they respect the “Wirtinger relations” at the
crossings. Moreover such an assignment will define a monodromy and hence a
branched cover.

Now recall that any transverse link K in (S3, ξstd) can be realized as a closed
braid. In terms of open books this just means that K is transverse to all the pages
of the “standard open book” from Example 2.8. Notice that given a branched cover
p : M → S3 branched along K there is an induced branched cover of each page
of the open book. So the open book of S3 with D2 pages lifts to an open book of
M . Conversely, recall a braid can be described by a diffeomorphism b : D2 → D2
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with n marked points. Now given a cover p : Σ → D2 branched over the marked
points and a diffeomorphism b̃ : Σ→ Σ such that p ◦ b̃ = b ◦ p, the open book (Σ, b̃)
describes a manifold M that is a cover of S3 branched along the braid described
by b. With a little more thought one sees that the contact structure induced on the
cover from Theorem 2.11 is supported by (Σ, b̃), see [10, 28].

Example 2.13. Consider the 2–fold cover in Example 2.12. The diffeomorphism
b : D2 → D2 that exchanges the two marked points by a right handed half twist is
covered by a right handed Dehn twist b̃ about the core of the annulus. The closure
of the braid corresponding to the diffeomorphism b is shown on the left hand side
of Figure 2. Moreover the monodromy describing the corresponding cover is also

(1 2) (1 2)

(1 2)

(1 2)

(2 3)

(2 3)

FIGURE 2. Upper left is the 2–fold cover branched over the trans-
verse unknot with self-lining −1. The upper right is the 2–fold
cover branched over the transverse unknot with self-lining −3.
The bottom figure describes a 3–fold simple branched cover of S3

yielding L(3, 1). The colors on the strands represent elements of
S3. Blue represents (2 3), brown represents (1 2) and red repre-
sents (1 3).

shown. We thus see that the 2–fold branched cover over the unknot shown in the
figure simply yields S3 with the standard contact structure (the given open book
is simply a stabilization of the standard disk open book for ξstd). If we take b−1

then the branched cover will be S3 with the overtwisted contact structure ξ1 since
the open book will be a negative stabilization of the standard open book for S3

(see the end of Subsection 2.5).

We record an observation from this example for future use.

Lemma 2.14. The cover of (S3, ξstd) branched over the transverse unknot with self-
linking −3 is the overtwisted contact structure ξ1 on S3 with d3(ξ1) = 1.
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Proof. From Equation (1) we know the transverse knot on the upper right of Fig-
ure 2 has self-linking −3. Moreover from [16] it is known there is a unique such
transverse knot. Now the computation in the above example yields the result. �

Example 2.15. Consider now the 3–fold simple cover in Example 2.12. The dif-
feomorphism b : D2 → D2 given by a Dehn twist about a curve parallel to the
boundary of D2 lifts to the diffeomorphism b̂ : Σ → Σ that is simply the com-
position of Dehn twists about curves parallel to each boundary component. It is
well known, see [19], that this open book describes the lens space L(3, 1) with tight
contact structure ξ having c1(ξ) = ±1 ∈ H2(L(3, 1)) = Z/3Z.

It is sometimes convenient to make the branch locus of a branched cover con-
nected. We have the following contact version of the well-known result for topo-
logical branched covers.

Lemma 2.16 (Casey 2013, [10]). Let B be a transverse knot in a contact 3–manifold
(Y, ξ) and p : M → Y be a simple cover branched over B inducing the contact structure
ξ′ on M . If part of a diagram for B is as shown one side of Figure 3 then replacing that
portion of B with the other diagram shown in the figure will result in a new branched
covering of Y that still yields the same contact manifold (M, ξ′). �

(i j)

(j k)

(i j)

(j k)
(i k)

(i j)

(j k)

FIGURE 3. Replacing the one diagram in the branch locus of a
simple cover with the other does not change the manifold or con-
tact structure described by the branched cover.

The proof of the lemma follows easily by observing that the branched cover of
the ball containing either branched loci is simply a ball and the contact structure
on it is tight. See [10] for details.

We now make a useful observation about branched covers of contact 3–manifolds
and stabilizations of transverse knots.

Proposition 2.17. Let p : M → Y be a simple branched covering between closed oriented
3–manifolds with branch locus B ⊂ Y . Let ξ be a contact structure on Y and T be a
transverse realization ofB in (Y, ξ) and T ′ the stabilization of T . The contact structure ξT ′
on M is obtained from the contact structure ξT by connect summing with the overtwisted
contact structure (S3, ξ1).

In particular, ξT ′ is overtwisted, homotopic to ξT over the 2–skeleton, and has d3 in-
variant (when it is defined)

d3(ξT ′) = d3(ξT ) + 1.

Proof. The stabilization of T can be done in a small neighborhood N of a point
on T that only intersects T in one arc and we can assume the contact structure on
N = D2× [−1, 1] is given by ker(dz+ r2 dθ) and T ∩N is {(0, 0)}× [−1, 1]. Since p :
M → Y is a simple cover, say an n–fold cover, the inverse image p−1(B) consists
of n− 1 balls B1, . . . Bn−1 and p restricted to B2, . . . Bn−1 is a diffeomorphism. So
the contact structure on each Bi, i = 2, . . . , n− 1 is standard. The restriction of p to
B1 is a 2–fold branched cover branched over the arc T ∩N = {0, 0} × [−1, 1]. This
is easily seen to be the standard contact structure on the ball too. When branching
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over T ′ instead of T there is no change in the contact structure onM outside of the
Bi and on Bi for i = 2, . . . n− 1.

We are left to determine the contact structure on B1. To this end let B be the
3–ball with its standard contact structure. We can glue N and B together to obtain
S3 with its standard contact structure. Moreover there is an arc c in B such that
T ∩ N can be completed by c to be the unknot with self-linking −1 and T ′ ∩ N
can be completed by c to the unknot with self-linking number −3. Now the 2–fold
cover of (S3, ξstd) branched over the unknot with self-linking number −3 is the
overtwisted contact structure ξ1 by Lemma 2.14, and can be written as the union
of the 2–fold cover ofN over T ′∩N and the 2–fold cover ofB over c. Of course the
contact structure on the first ball is the contact structure on B1 induced from the
covering map p when branched over T ′ and the contact structure on the second
ball is standard. Thus we see that ξT ′ is obtained from ξT by connect summing
with (S3, ξ1). �

3. TOPOLOGICAL BRAIDING IN DIMENSIONS HIGH AND LOW

In this section we explore braided embeddings and braided immersion in the
first two subsections and prove the existence of certain braidings and give obstruc-
tions to others. We also see how to use braided embeddings to obstruct the branch
locus of certain coverings of Sn from being too simple. In the last subsection we
generalize the notion of braiding and put it in a larger context.

3.1. Braided embeddings. Given an n–manifold Y , a braid about Y is an embed-
ding of an n–manifold M into Y ×D2

e : M → Y ×D2

such that π ◦ e : M → Y is a branched covering map, where π : Y × D2 → Y is
projection onto the first factor. Moreover we say a branched covering p : M → Y
can be braided about Y if there is a function f : M → D2 such that

e : M → Y ×D2 : x 7→ (p(x), f(x))

is an embedding (and hence exhibits M as a braid about Y ). If Y is embedded
in a (n + 2)–manifold W with trivial normal bundle and M is braided about Y
then clearly M also embeds in W and this is called a braided embedding of M into W
(braided about Y ). We will sometimes abuse terminology and refer to a braided
embedding ofM as a realization ofM as a braid about Y or as the embedding into
some other ambient space W as above.

Of course a given manifold M can, potentially, be braided about Y in many
different ways. Notice that when n = 1 then the branched cover of a 1–manifold
is an actual covering map (since the branch locus must be co-dimension 2). Thus
a braid about S1 is an embedding of S1 into S1×D2 that is transverse to {p}×D2

for all p ∈ D2. That is our notion of braiding coincides with the ordinary notion of
a closed braid in dimension 3.

When the branched cover corresponding to a braiding ofM about Y has a prop-
erty, such as being simple or cyclic, we will use the same adjective to describe the
braiding, for example we will refer to a “simple braiding” when M is braided
about Y so that the corresponding branched covering is simple.

It is interesting to consider when a given branched covering map p : M → Y
can be realized by a braiding of M about Y . This question has been addressed in
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[6, 7, 8] and in particular in [7] an example was given showing that not all branched
covers can be so realized. In Example 4.2 below we use contact geometry to give
an infinite family (and a recipe for constructing more infinite families) of examples
of branched covers that cannot realized as a braid about S3. But for now we start
by observing there are branched covers that can always be realized as braidings.

Theorem 3.1. Let p : M → Y be a cyclic branched cover between closed oriented n–
manifolds with null-homologous branch set B ⊂ Y having trivial normal bundle. Then
there is a function f : M → D2 so that

e : M → Y ×D2 : x 7→ (p(x), f(x))

exhibits M as a braid about Y .

For 2–fold branched covers in dimension 2, 3 and 4, this theorem was previ-
ously proven in [7].

For many Y and null-homologous submanifold B there can be more than one
branched cover that is a cyclic cover in the complement of B. But when we say
“cyclic branched cover” we mean the branched cover of Y that unwinds each
meridian to B according to the fold of the cover. (More precisely consider the map
π1(Y −B)→ Z obtained by abelianizing followed by the map H1(Y −B;Z)→ Z
induced by intersecting with some chosen connected oriented Seifert hypersurface
for B. Then the inverse image of nZ gives the subgroup defining the cyclic cover.)

Remark 3.2. The hypothesis thatB has trivial normal bundle is essential as demon-
strated in Example 3.9 below. In particular, this example shows that not all branched
covers can be braided (or even immersed braided) about Sn.

Proof. We will define a smooth function h : Y → C such that 0 is a regular value,
and h−1(0) = B. Given the function h let

X = {(x, z) ∈ Y × C : zn = h(x)}.
It is clear that the map p : X → Y : (x, z) → (x, zn) is the n–fold cyclic cover of Y
branched along B (indeed it is clearly an n–fold covering map in the complement
of the branch locus and unwraps each meridian as desired). Thus X is diffeomor-
phic to M and restricting the projection Y × C→ C to X will give us the function
f claimed in the theorem.

We are left to construct h. Let S be a Seifert surface, that is a co-dimension 1
connected submanifold S of Y such that B = ∂S, corresponding to a given cyclic
branched covering. Use S to provide a framing for the normal bundle ofB and use
this framing to identify a tubular neighborhood of B with N = B ×D2 where we
are thinking of D2 as the unit disk in C and S ∩N agrees with B times the positive
real axis. Define h : B×D2 → D2 by projection and extend it to all of Y as follows.
Identify a neighborhood of S ∩ (Y − N) with N ′ = S × (−ε, ε) for some small
ε > 0 and define h on S × (−ε, ε) by h(x, t) = eit. Notice that we have h defined
on ∂(Y −N ∪N ′) so that the image is contained in ∂D2 minus a neighborhood of
1. That is the image is contained in an interval and hence we can extend h over
Y − (N ∪N ′). We can now approximate h by a smooth function relative to N . As
this approximation can be made arbitrarily small we can guarantee that 0 is still a
regular value and B = h−1(0). �

While it is not true that all branched covers of a 3–manifold over S3 can be
realized by a braiding, see Example 4.2, Hilden, Lozano and Montesinos [32], see
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also [44, Section 5.3], proved that all 3–manifolds can be braided even if not via a
specific branched covering.

Theorem 3.3 (Hilden, Lozano and Montesinos 1983, [32]). Every closed oriented 3–
manifold M can be braided about S3 where the corresponding branched cover is a simple
3-fold branched cover.

If Y is embedded in an (n+ 2)–manifold X with trivial normal bundle, then we
denote a tubular neighborhood of Y in X by N = Y ×D2. We say an embedding
of M in X can be braided about Y if the embedding can be isotoped to lie in N such
that it is a braid about Y . We recall the following known results.

Theorem 3.4 (Alexander 1923, [1] for n = 1 and Kamada 1994, [36] for n = 2).
Let Sn ⊂ Sn+2 be the standard embedding of Sn in Sn+2. If n = 1 or n = 2 then any
embedding of an n–manifold in Sn+2 can be braided about Sn. If n = 2 then we can take
the associated branched covering to be simple.

It is not currently known if all embeddings of a 3–manifold into S5 can be
braided about the standardly embedded S3. While it is conjectured that such
braidings do exist, we demonstrate that there is at least an infinite family of iso-
topy classes of embeddings of S3 into S5 that can be so realized.

Example 3.5. To construct our embeddings we begin by considering the trivial
open book for S5 = (S1 ×D4)∪ (D2 × S3), where we think of D4 as D2

1 ×D2
2 , and

the trivial open book for S3 = (S1 × D2) ∪ (D2 × S1). (In both cases the second
factor is the neighborhood of the binding and all disks are unit disks in C.) Notice
that we can embed a S3 ×D2 as a neighborhood of the standardly embedded S3

in S5 as follows:

(S1 ×D2 ×D2)→ (S1 ×D2
1 ×D2

2) : (θ, z, w) 7→ (θ, z,
1

2
w)

and
(D2 × S1 ×D2)→ D2 × (∂D2

1 ×D2
2) : (z′, θ′, w) 7→ (z′, θ′,

1

2
w)

where we are thinking of S3 = ∂D4 as (∂D2
1 × D2

2) ∪ (D2
1 × ∂D2

2). Denote this
embedding by e.

We recall that a quasi-positive braid is simply a braid that is written as a product
of conjugates of the standard generators of the braid group. We refer the reader to
[17, 49] for details on quasi-positive braids. In particular, given an n braid written
as a product of k conjugates of generators one can construct a ribbon immersion
of a surface Σ into S3 whose boundary is the closure of the braid and has Euler
characteristic n−k. In [49, Section 2] it was shown that there is also an embedding
of Σ intoD2

1×D2
2 so that the projection toD2

1 restricted to Σ is a branched covering
map.

Now consider the quasi-positive braid σ1(σ2n+1
2 σ1σ

−(2n+1)
2 ). The correspond-

ing surface Σn is a disk with a “braided embedding” fn into D2
1×D2

2 , and one can
assume that fn has image inD2

1× 1
2D

2
2 . We are now ready to construct our braided

embeddings of S3 into S5. Thinking of S3 as (S1 ×D2) ∪ (D2 × S1) we define the
embedding en as follows:

(S1 ×D2)→ (S1 ×D2
1 ×D2

2) : (θ, z) 7→ (θ, fn(z))

and
(D2 × S1)→ D2 × (∂D2

1 ×D2
2) : (z′, θ′) 7→ (z′, fn|∂Σn(θ′)).
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Notice that en is clearly a braided embedding about e(S3 × {0}). It is also easy to
see that the branched locus is a trivial link with two components and the branched
cover is 3-fold and simple.

To show our embeddings are non-isotopic we compute the fundamental groups
of their complements. To this end we note it is not too hard to compute π1((D2

1 ×
D2

2) − fn(D2)), for example an algorithm (similar to the Wirtinger presentation
of the fundamental group of a knot complement) is given in [49, Section 4] from
which one easy sees that the group has presentation〈

x1, x2, x3|x1x
−1
2 , x−1

1

(
(x2x3)n+1x3(x−1

3 x−1
2 )n+1

)〉
and hence also has presentation

〈x2, x3|x−1
2 ((x2x3)n+1x3(x−1

3 x−1
2 )n+1)〉.

Notice that the complement of en(S3) in S5 can be written as the union of two
parts just as the embedding was defined in two parts. The first part is the com-
plement of the image of fn times S1 and the second part is the complement of the
closure of the braid in S3 times D2. A simple application of van-Kampen’s The-
orem thus gives that π1(S5 − en(S3)) is isomorphic to π1((D2

1 × D2
2) − fn(D2)).

One may check that these groups are isomorphic to the fundamental group of the
complements of the (2, 2n + 1) torus knots. As it is well known that these groups
are non-isomorphic it is clear that all the braided embeddings en are non-isotopic.

Remark 3.6. Notice that in the last example we could have used any quasi-positive
sliced knot to construct a braided embedding of S3 into S5. This would lead to
many other non-isotopic braided embeddings.

3.2. Braided immersions. We can easily define an immersed version of braid-
ing. Given an n–manifold Y , an immersed braid about Y is an immersion of an
n–manifold M into Y ×D2

i : M → Y ×D2

such that π ◦ i : M → Y is a branched covering map, where π : Y × D2 → Y is
projection onto the first factor. Moreover we say a branched covering p : M → Y
can be realized by an immersed braid about Y if there is a function f : M → D2

such that
i : M → Y ×D2 : x 7→ (p(x), f(x))

is an immersion (and hence exhibits M as an immersed braid about Y ).

Theorem 3.7. Let p : M → Y be any branched cover between closed oriented n–
manifolds with branch locus B̃ ⊂ M having trivial normal bundle. Then there is a
function f : M → D2 so that

i : M → Y ×D2 : x 7→ (p(x), f(x))

exhibits M as a immersed braid about Y .

We note that in [7] this theorem was also proven for the case of simple 3–fold
covers in dimension 1, 2 and 3.

Remark 3.8. The hypothesis on the normal bundle of B̃ could be replaced by the
stronger hypothesis that the normal bundle to branch locus B in Y is trivial.
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Proof. Given the branched cover p : M → Y with branch locus B̃ ⊂ M having
trivial normal bundle, let N = B̃×D2 be a small tubular neighborhood of B̃ in M .
Define f : M → D2 on N by projection to the second factor and then extend it to
the rest of M arbitrarily.

Clearly di = dp⊕ df : TM → TY ⊕ TD2. At all points x ∈M − B̃ we know dpx
has rank n and so dix does too. Moreover, at points x ∈ B̃ we know dpx has rank
n− 2 and dfx has rank 2 on the kernel of dpx. Thus dix has rank n on all of M and
hence i : M → Y ×D2 is an immersion. �

The example below shows that we can use Theorem 3.7 to give obstructions to
the possible branch locus for a branched cover M → Y . It also shows the neces-
sity of the hypothesis on the triviality of the normal bundle in both Theorems 3.1
and 3.7.

Example 3.9. Recall that CP 2 does not immerse in R6, [33]. (In general a closed
oriented 4–manifold M immerses in R6 if and only if there is a 2–dimensional
bundle L over M such that TM ⊕ L is the trivial bundle if and only if there is a
class c ∈ H2(M ;Z) that reduces mod 2 to w2(TM) and such that c2 = −p1(TM).)

If CP 2 could be realized as a branched cover over S4 with smooth branch
set having trivial normal bundle then the above theorem would immerse it into
S4×D2 and hence it could be immersed in R6. Also notice that if the branched set
was orientable then it would bound a compact 3–manifold that could be used to
trivialize the normal bundle. Thus we see that the branch locus for any branched
cover of CP 2 over S4 must either be non-embedded or non-orientable. The results
was already known using an Euler characteristic argument [48], but it demon-
strates how to use braided embeddings/immersions to obtain information about
the possible branched loci.

It is well-known that CP 2 is a 2-fold (cyclic) branched cover over an RP 2 em-
bedded in S4 with normal Euler number 2, [42]. This shows the hypothesis on the
triviality of the normal bundle in Theorems 3.1 and 3.7 is essential.

3.3. Higher co-dimension braids. Once can consider braids, and immersed braids
in higher co-dimension. We set this up as part of a more general interesting ques-
tion. Given two (possibly singular) bundles p : M → Y and π : E → Y one can
the following question.

Question 3.10. When does there exist an embedding (or immersion) e : M → E
such that p = π ◦ e?

Said more colloquially, “When can one embed one bundle in another?” By “pos-
sibly singular” bundles we mean for example that one of the bundles could be, say,
a branched cover and the other could be a Lefschetz fibration or other such object.
Notice when π : E → Y is an honest bundle or Lefschetz fibration then the exis-
tence of a bundle embedding of a covering space is the same as the much studied
question concerning the existence of a multi-section.

Similarly if p : M → Y is a branched covering and π : Y ×Dk → Y is projection
onto the first factor, then the an embedding e : M → Y ×Dk for which π ◦ e = p,
will be called a co-dimension k braiding of M about Y and similarly for immersions.

We note that if p : M → Y can be realized as a co-dimension k braid about
Y then it can be realized as a co-dimension l braid about Y for all l ≥ k. So



CONTACT EMBEDDINGS 21

Theorems 3.1 and 3.7 give conditions guaranteeing braiding in all co-dimension
above 2.

We do not have much to say about the general braiding problem, but do ask a
couple of questions.

Question 3.11. Can you use higher co-dimensional braiding to give restrictions
on the branched set for any branched cover of a given n–manifold over Sn? For
example as was done in Example 3.9.

Question 3.12. What can generalized braiding say about the smallest dimensional
Euclidean space into which you can embed a given manifold? Can such an optimal
embedding always be obtained through braiding?

4. CONTACT EMBEDDINGS VIA BRAIDS

In this section we show how to use braided embeddings to produce contact
structures on the “braid” manifold. We will also use this connection to contact
geometry to construct branched covers over S3 that cannot be realized as braids.

Theorem 4.1. Let M and Y be a closed oriented (2n+1)–manifolds and

e : M → Y ×D2 : x 7→ (p(x), f(x))

a braiding of M about Y such that the branched covering p : M → Y whose branch locus
B ⊂ Y is not multiply ramified (that is at most one point in the pre-image of any point in
Y is ramified). There is an orientation on B such that given a contact structure ξ = kerα
on Y and any contact structure ξ′ induced on M by the covering p branched along any
realization of B as a (positive) transverse contact sub-manifold, then e may be isotoped so
that it is a contact embedding of (M, ξ) into (Y ×D2, ker(α + r2 dθ)) and moreover the
image of e can be assumed to lie in an arbitrarily small neighborhood of Y × {(0, 0)}.

This theorem gives a way to try and isotope embeddings of 3–manifolds in S5 to
be transverse contact embeddings. In particular we can now prove Theorem 1.26
which says that if an embedding M → S5 can be isotoped to be a braided embed-
ding about the standard S3 in S5 then it can be isotoped to be transverse contact
embedding.

Proof of Theorem 1.26. The standard embedding of S3 in S5 gives a contact embed-
ding of the standard contact structures. Thus by Proposition 2.1, S3 has a neigh-
borhood S3 ×D2 with contact structure given by ker(αstd + r2 dθ), where αstd is a
contact form for the standard contact structure on S3.

Below we show how one can isotope the embedding so that branched covering
corresponding to the embedding has a branch locus which is not multiply rami-
fied so that we can apply Theorem 4.1. Let B̃1, B̃2 be distinct components of the
ramified set in M lying above a component B of the branch locus of p. There exist
neighborhoods Ñ of B̃1 and N of B such that Ñ does not contain ramified points
other than B̃1, N ∼= S1 ×D2 does not contain branch points other than B, and B
is identified with S1 × {0}. Let ψt, t ∈ [0, 1], be an isotopy generated by a vector
field supported in N , tangent to the D2-factors of N , and non-zero along B. We
now define the map pt : M → Y to be p on M \ Ñ and ψt ◦ p on Ñ . This is clearly
an isotopy of p and and hence induces an isotopy of et = (pt, f) : M → S3×D2 of
e through braided embeddings and for t > 0 the number of ramified components
above B is reduced by one. By repeating this process finitely many times, we can
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isotope the given e to a braided embedding whose branch locus is not multiply
ramified. Since any link in S3 can be isotoped to be transverse to the standard
contact structure on S3 we can clearly isotopy the given embedding to satisfy the
hypothesis of Theorem 4.1 and thus the theorem gives the desired isotopy. �

Example 4.2. In this example we construct infinitely many branched covers of S3

that cannot be realized as a braid about S3.
In Example 2.15 we saw that L(3, 1) is the simple 3–fold cover of S3 branched

over the lower diagram in Figure 2. Moreover the contact structure ξ induced on
L(3, 1) from this cover has c1(ξ) = 1. Using Lemma 2.16 three times we can change
the branch locus of this cover to B shown in Figure 4. Notice that B is a knot and

(1 2)

(1 2)

(2 3)

(2 3)

FIGURE 4. The closer of this braid represents a 3–fold simple
branched cover of S3 yielding L(3, 1). The colors on the strands
represent elements of S3. Blue represents (1 2), brown represents
(2 3) and red represents (1 3).

that either orientation on B defines the same knot. Let p : L(3, 1) → S3 be the
branched with branch locus B described by the branching data in Figure 4. If this
branched cover could be braided about S3 then (L(3, 1), ξ) contact embeds in S3×
D2 with contact structure given by ker(αstd + r2 dθ), where αstd is a contact form
for the standard contact structure on S3, and thus in (S5, ξstd). But this contradicts
Theorem 1.10. (Note we needed to have a connected branch locus so we only had
to be concerned with the orientation on a knot and we constructed a knot which is
isotopic to its reverse.) Thus there is no such embedding.

We note that one may easily write down an infinite family of branched covers
that do not embed as follows. Arguing as in Example 2.15 one takes the 2n braid,
with n > 1, with one full twist and labels the first two strands on the left by (1 2),
the next two by (2 3) and so on until the last two are labeled by (nn + 1). Taking
the closure of this braid and extending the labeling by the “Wirtinger relations” at
the crossings will describe an (n + 1)–fold simple branched cover of S3 branched
over the given link. The cover will be L(n+1, 1) with induced contact structure ξn
having c1(ξn) = (n − 1)g where g is a generator of H2(L(n + 1, 1)) = Z/(n + 1)Z.
Thus turning the branch locus into a reversible knot as above gives a branched
cover that cannot be braided about S3.

There are many other infinite families that can similarly be constructed. These
examples should be compared with the example found in [7].

To prove Theorem 4.1 we need the following technical lemma.

Lemma 4.3. Let M and Y be closed oriented (2n+1)–manifolds and

e : M → Y ×D2 : x 7→ (p(x), f(x))

a braiding of M about Y . Denote the branch locus of p by B ⊂ Y . Given a contact
structure ξ = kerα on Y in which B is a transverse contact submanifold, then let ξ′ be
the contact structure on M induced by the branched cover p.
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If for all x ∈ B̃ = p−1(B) the map dfx : TxM → Tf(x)D
2 is orientation preserving

when restricted to the fiber of the normal bundle νx(B̃), where νx(B̃) is oriented by the
orientation on B̃ and M , then for all small R > 0 the embedding

eR : M → Y ×D2 : x 7→ (p(x), Rf(x))

is a contact embedding from (M, ξ′) to (Y ×D2, ker(α+ r2 dθ)).

We note that an immediate corollary of this lemma and the proof of Theorem 3.1
is the following results that will be used below.

Corollary 4.4. Let (Y, ξ) be a contact (2n+ 1)–manifold and B a co-dimension 2 contact
submanifold that is null-homologous and has trivial normal bundle. Let (M, ξ′) be the
contact structure obtained from (Y, ξ) by an n-fold cyclic branched cover branched over
B. Then there is a braided contact embedding of (M, ξ′) into (Y ×D2, ker(α + r2 dθ)),
where α is a contact form for ξ. �

We first establish Theorem 4.1 given Lemma 4.3 and then prove the lemma.

Proof of Theorem 4.1. Given the embedding e : M → Y ×D2 as in the statement of
the theorem, let B̃ = p−1(B) and B̃′ be the subset of B̃ on which p is actually ram-
ified. Recall by hypothesis p maps each component of B̃′ to a different component
of B.

At any point x ∈ B̃′ notice that dfx gives an isomorphism from the fiber of the
normal bundle νx(B̃′) to Tf(x)D

2 since the map dex : TxM → Te(x)(Y × D2) has
rank (2n+1), but dpx : TxM → Tp(x)Y has only rank 2n − 1. Thus at each point
of B̃′ there is an induced orientation on the fibers of ν(B̃′) and this orients each
component of B̃′, which in turn induce an orientation on B via p.

Now if B can be isotoped to a positive transverse contact submanifold then
there is an ambient isotopy φt : Y → Y, t ∈ [0, 1] that realizes this isotopy. Thus
there is a diffeomorphism of Y × D2 that takes e to e′ : M → Y × D2 : x →
(φ1 ◦ p(x), f(x)). And e′ realizes M as braided about Y and the corresponding
branched set is the transverse realization of B. The theorem now follows from
Lemma 4.3. �

Proof of Lemma 4.3. Let βR = e∗R(α+ r2 dθ) = p∗α+Rf∗(r2 dθ). The contact condi-
tion concerns the form βR ∧ (dβR)n which is equal to

p∗(α∧(dα)n)+R
(
p∗((dα)n) ∧ f∗(r2 dθ)

)
+2nR

(
p∗(α ∧ (dα)n−1) ∧ f∗(r dr ∧ dθ)

)
.

Let B̃ = p−1(B) and B̃′ be the subset of B̃ on which p is actually ramified. Away
from B̃′, p is a covering map so the first term is a positive multiple of the volume
form. Thus for R sufficiently small βR is a contact form on the complement of a
neighborhood of B̃′. On the branch set B̃′ recall that p has rank 2n − 1 and more
specifically is a covering map when restricted to B̃′ and has 0 derivative in the
normal directions to B̃′. Thus the first two terms in the expression for βR ∧ (dβR)n

above are zero and the last term is a positive multiple of the volume form for M .
This is clear by the hypothesis on f in the lemma and the fact that p∗(α∧ (dα)n−1)

is positive volume form on B̃′ and f∗(r dr ∧ dθ) is an area from on the fiber to the
normal bundle ν(B̃′). Moreover it is clear from the form of βR that it gives the
contact structure ξ′ coming from the cover p : M → Y branched over B. �
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5. CONTACT EMBEDDINGS OF 3–MANIFOLDS IN (S5, ξstd)

We begin with a simple observation.

Proposition 5.1. Any closed oriented 3–manifold has some contact structure that embeds
in (S5, ξstd).

Remark 5.2. Given a contact embedding of a 3–manifoldM constructed as a braid
about the standardly embedded S3 as in the proof of Proposition 5.1, by applying
Alexander theorem for (transverse) links to its branch locus in the standardly em-
bedded S3, we can isotope it (transversely) to a contact embedding which is com-
patible with some supporting open book for the embedded contact 3–manifold
and the standard open book which is a supporting open book for (S5, ξstd). From
this it is easy to see that the embedding sends pages of an open book for M3 to
the pages of the standard open book for S5 and the open book on M3 supports the
contact structure induced from the embedding.

Proof. Given a closed oriented 3–manifold M , Theorem 3.3 tells us that there is a
braided embedding

e : M → S3 ×D2

such that the corresponding branched covering is a simple 3–fold branched cover.
Thus e satisfies the hypothesis of Theorem 4.1 and since the branch locus can be
isotoped to be a transverse link in (S3, ξstd) the contact structure ξ′ induced on M
by this branched cover contact embeds in (S3 × D2, ker(α + r2 dθ)), where α is a
contact form for the standard contact structure on S3.

Now of course the standard embedding of S3 into S5 is also an embedding of
the standard contact structures. Hence, by Proposition 2.1, S3 has a neighborhood
S3 × D2 in S5 on which the contact structure is given by ker(α + r2 dθ). Since
the contact embedding from Theorem 4.1 can be arranged to be arbitrarily close to
S3×{(0, 0)}we see thatM has a contact embedding into (S5, ξstd) that is arbitrarily
close to the embedding of S3. �

We are now ready to prove Theorem 1.16 concerning the embedding of all con-
tact structures on S3 into (S5, ξstd).

Proof of Theorem 1.16. For n ≥ 0 let Tn be the transverse unknot in (S3, ξstd) with
self-linking number −1 − 2n. Recall from [16] there is a unique such transverse
knot and as n ranges over the positive integers this a complete list of transverse
unknots in the standard contact structure on S3. Moreover Tn+1 is the stabilization
of Tn. It is easy to check that the contact structure on S3 obtained from the 2–fold
cover of (S3, ξstd) branched over T0 is ξstd. Thus from Proposition 2.17 we see that
the overtwisted contact structure ξn on S3, for n > 0, is obtained as the 2–fold
cover of (S3, ξstd) branched over Tn.

The standardly embedded (S3, ξstd) in (S5, ξstd) has a neighborhood S3 × D2

contactomorphic to (S3 ×D2, ker(αstd + r2 dθ)), where ξstd = kerαstd. Now The-
orem 4.1 gives a contact embedding (S3, ξn), n ≥ 1, into (S5, ξstd) and Lemma 5.3
below shows this embedding is smoothly isotopic to the standard embedding.

Arguing similarly if we can show that a (S3, ξn) for any n is a 2–fold cover of
(S3, ξ1) branched over some transverse unknot, then we will have contact embed-
dings of these contact manifolds into (S5, ξstd). To this end recall [11, 20] that in
ξ1 there are transverse knots T ′n with self-linking number −1 − 2n for all n ∈ Z
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whose complements are overtwisted and T ′n+1 is a stabilization of T ′n. Because the
complements are overtwisted it is clear that all the 2–fold cyclic covers of (S3, ξ1)
branched over T ′n are overtwisted contact structures on S3, which we will denote
ηn. Proposition 2.17 tells us that d3(ηn) = d3(η0) + n. And so the ηn realize all
homotopy classes of plane field, and hence overtwisted contact structure, on S3.

Now consider the braided embeddings from Example 3.5. Recall there are infin-
itely many distinct isotopy classes of embeddings and the embeddings respect the
standard open books on S3 and S5 (that is, they sends pages to pages and bind-
ing to binding). So the induced contact structures on S3 from these embeddings
are all supported by the standard open book and hence are all ξstd. Now connect
summing with the embeddings constructed above give embeddings of all contact
structures on S3 into these isotopy classes of smooth embeddings. �

Lemma 5.3. If p : S3 → S3 is the 2-fold cyclic branched covering map with branch locus
the unknot U then there is a map h : S3 → C such that

e : S3 → S3 × C : x 7→ (p(x), h(x))

is a braided embedding for which the embedding of S3 → S5 coming from e is isotopic to
the standard embedding.

Proof. We begin by observing that a braided embedding does not changes, up to
isotopy, as the branch locus is changed by smooth isotopy. Indeed given a braided
embedding e : M → Y × C : x → (p(x), f(x)), notice that if the branch locus B
is changes by an isotopy then there is an ambient isotopy of Y that induces this
isotopy and composing with p gives a family of functions pt : M → Y that will
induce an isotopy of the embedding M → Y × C.

Remark 5.4. The braided embedding could depend on h. It would be interesting
to find explicit non-isotopic braided embeddings realizing a fixed branched cover
p : M → Y . Is this possible when considering 2–fold cyclic covers? It certainly is
in dimension 3. What about higher dimensions?

We are thus left to check the lemma is true for a specific choice of unknot and a
specific choice of h : S3 → C. To this end we think of S5 as the unit sphere in C3

and give C3 coordinates (z1, z2, z3). We then consider the standard embedding of
S3 in S5 to be given by S3 = {z3 = 0} ∩ S5 and the unknot in S3 as being given
by U = {z2 = z3 = 0} ∩ S5. Denote by U ′ = {z1 = z2 = 0} the S1 in S5 that is
complementary to S3 (that is one can see S5 as the join of S3 and U ′). Notice that
C = S5 − U ′ is diffeomorphic to S3 × C by the diffeomrophism

S3 × C→ C : ((z1, z2), z3) 7→

(
z1√

1 + |z3|2
,

z2√
1 + |z3|2

,
z3√

1 + |z3|2

)
.

and the map

π : C → S3 : (z1, z2, z3) 7→ 1√
|z1|2 + |z2|2

(z1, z2)

is simply the projection map to S3.
Consider the complex polynomial p(a,b)(z1, z2, z3) = az2−bz2

3 , where (a, b) ∈ R2.
Notice that the zero set intersected with S5, which we denote by S(a,b), is a trans-
versely cut out sphere in S5 for all (a, b) with a 6= 0. For b′ 6= 0, consider the map
p : S(1,b′) → S3 obtained by restricting π to S(1,b′). We claim this is a 2-fold covering
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map branched over U . To see this we first note that for each point (z1, z2) ∈ S3−U
we have z2 6= 0 so there are precisely 2 square roots of z2 and denoting one these
sheets by

√
z2 we see that the map (z1, z2) 7→ 1√

|z1|2+|z2|2+|z2/b′|
(z1, z2,

√
z2/b′) is a

local section of p : S(1,b′) → S3. Thus we see that p is a 2–ford covering map from
S(1,b′) − p−1(U) to S3 − U . Moreover for any (z1, z2) ∈ U we see that z2 = 0 so
there is a unique square root and the only point in S(1,b′) lying above it is (z1, 0, 0).

Thus we see that S(1,b′) is a sphere that is braided about the standardly embed-
ded S3 in S5 and realizing a 2–fold cyclic branched cover over the unknot U . Now
we see that the spheres S(1,t) for t ∈ [0, b′] provide an isotopy from our braided
sphere S(1,b′) to the sphere S(1,0) = {z2 = 0}which is clearly further isotopic to the
standardly embedded sphere. �

We now turn to the proof of Theorem 1.20 concerning the embeddings of over-
twisted contact structure on 3–manifolds M with no 2–torsion in their second co-
homology.

Proof of Theorem 1.20. From Proposition 5.1 we know that every 3-manifold M has
some contact structure ξ that embeds in (S5, ξstd). Now using Lemma 2.2 we know
that ξ#ξn embeds for all overtwisted contact structures ξn on S3. From the fact
that there is no 2–torsion in the second cohomology of M all overtwisted contact
structures with trivial first Chern class on M is of the form ξ#ξn for some n and
thus they all embed. �

Proof of Theorem 1.21. There is a unique tight contact structure ξt on S1×S2 that is
supported by the open book with annulus page and identity monodromy. Thus it
is easy to see it is obtained as the double cover of (S3, ξstd) branched over the un-
link with both components being transverse knots of self-linking −1. Now Corol-
lary 4.4 allows us to embed ξt into (S5, ξstd). Since there is no 2–torsion in the
homology of S1 × S2 we see from Theorem 1.20 that all overtwisted contact struc-
tures with c1 = 0 also embed.

Similarly for T 3 we see that all overtwisted contact structures with c1 = 0 em-
bed in (S5, ξstd). A complete list of tight contact structures on T 3 is give by

ξT
3

n = ker(cos 2πnz dx+ sin 2πnz dy)

where T 3 is thought of as [0, 1]3 with opposite sides identified by translation and
n is a positive integer, see [37]. It is easy to see that ξT

3

n is an n–fold (ordinary)
cyclic cover of ξT

3

1 where it is the z-coordinate that is unwrapped n times. We
notice that if h : T 3 → S1 is projection onto the z-coordinate thought of as the
unit circle in C then the proof of Theorem 3.1 gives a braided embedding of the
n–fold (ordinary) cover of T 3 into T 3 × D2 and since there is no branch locus
to worry about Theorem 4.1 clearly gives a contact embedding of (T 3, ξT

3

n ) into
(T 3 × D2, ker(α1 + r2 dθ)), where α1 is the contact form for ξT

3

1 . Thus if we can
embed (T 3, ξT

3

1 ) into (S5, ξstd) then we will have an embedding of all tight contact
structures on T 3.

Recall there are many embeddings of a Legendrian T 2 into (S5, ξstd). They can
be constructed in various ways, for example using front projections, see [12]. It is
well known that a Legendrian T 2 has a neighborhood contactomoprhic a neigh-
borhood of the zero section in T ∗T 2 × R with the contact structure ker(dz − λ),
where λ is the Liouville 1–form on T ∗T 2 and z is the coordinate on R. Let Sε be
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the ε-sphere bundle in T ∗T 2. It is easy to see that λ restricted to Sε is a contact
1–form defining ξT

3

1 and thus (T 3, ξT
3

1 ) contact embeds in (S5, ξstd).
Turning to contact structures on lens spaces L(p, q), the theorem follows when

p is odd from Corollary 1.18 and the following lemma.

Lemma 5.5. A tight contact structure ξ on a lens spaceL(p, q) contact embeds in (S5, ξstd)
if and only if c1(ξ) = 0.

We first prove this lemma and then return to the case when p is even.

Proof. We begin by recalling the classification of tight contact structures on L(p, q).
Given p > q > 1 consider the continued fractions expansion of −p/q:

−p/q = a1 −
1

a2 − 1
...− 1

an

,

which we denote by [a1, . . . , an] where each ai ≤ −2. It is well known that L(p, q)
is obtained from surgery on the link on the left in Figure 5. Honda [35] and Giroux

a
1
+

1

a
2
+

2

a
3
+

2an−1 + 2

b1

b2
b3

bn−1

bn

a1 a2 an

FIGURE 5. On the left is a surgery picture for L(p, q) in terms of
a continued fractions expansion for −p/q. On the right is another
surgery picture for L(p, q).

[27] proved that there is a one-to-one correspondence between tight contact struc-
tures on L(p, q) and the contact structures obtained from Legendrian surgery on
all possible Legendrian realizations of the link on the left hand side of Figure 5.

We claim that on each L(p, q) there is exactly 0 or 1 tight contact structure with
c1 = 0, and if it exists, it comes from Legendrian surgery on a Legendrian realiza-
tion of the link in Figure 5 with all components having rotation number 0. This
will follow if we can see that the only contact structure obtained from Legendrian
surgery with c1 = 0 is the one on a link that has all rotation numbers 0. This state-
ment is almost contained in [27, Proposition 1.7], but to establish it we argue as
follows.

Arguing by contradiction we assume that there is a Legendrian realization of
the link in Figure 5 with some rotation numbers non-zero and the contact structure
ξ on L(p, q) obtained by surgery on this link has c1(ξ) = 0. By Theorem 2.5 we
have a Stein domain X with boundary L(p, q) and inducing the contact structure
ξ. Moreover c1(X) =

∑k
i=1 r(Li)hi which is non-zero. Now [29, Corollary 4.10]

says that an oriented plane field is homotopic to itself with reversed orientation
if and only if its first Chern class is 0. So ξ is homotopic, as a plane field, to −ξ.
Notice if J is the complex structure on X then ξ is the set of J-complex tangencies
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to ∂X and−ξ is the set of J-complex tangencies (where J is the conjugate complex
structure on X). Notice that c1(J) = −c1(J) and thus ξ and −ξ are not isotopic
as contact structures due to a result of Lisca and Matic [40, Theorem1.2]. So we
have found two contact structures in the same homotopy class of plane field, but
this contradicts [27, Theorem 1.1] and [35, Proposition 4.24] which says that the
tight contact structures on lens spaces are all in distinct homotopy classes of plane
fields. Thus our assumption must have been false.

We now note that the surgery diagram on the left of Figure 5 can be transformed
by simple handle slides to the “rolled up” diagram on the right. In the figure the
surgery coefficients are

bk = 2(k − 1) +

k∑
i=1

ai.

Notice that the surgery coefficients are decreasing moving from the inside circle
out. One may choose a Legendrian realization of the innermost circle with tb =
b1 + 1, then take a push-off of it and stabilize it enough times to get a Legendrian
with tb = b2+1 and continue until we have a Legendrian link on which Legendrian
surgery will yield L(p, q). One may check that all the tight contact structures on
L(p, q) may be obtained this way (see for example [22]). Thus the contact structures
with c1 = 0 exist only on lens spaces where all the ai are even and a Legendrian
surgery picture of them only have r = 0 Legendrian unknots and so is of the form
shown in Figure 6.

FIGURE 6. Legendrian surgery diagrams for the c1 = 0 tight con-
tact structures on L(6, 1), L(10, 7), and L(24, 7).

It is well known how to put these Legendrian knots on the page of an open book
supporting the standard tight contact structure on S3, see [19]. Figure 7 shows a
planar surface Σ with 8 boundary components. If φ is the composition of posi-
tive Dehn twists about the red curves then (Σ, φ) supports the ξstd on S3 (note
it is clear that this open book is a stabilization of the annular open book for S3).
The curves γi can each be realized by Legendrian knots on the page of the open
book and when they are they are unknots with tb = −2i + 1 and r = 0. More-
over γi is a push-off of γi−1 followed by a positive and negative stabilization. For
any positive integer k there are clearly analogous pictures on which we can real-
ize all Legendrian unknots with rotation 0 and Thurston-Bennequin invariant odd
integers between −1 and −2k + 1. Performing Legendrian surgeries on the γi is
equivalent to adding right handed Dehn twists to the monodromy along the corre-
sponding curve. Thus it is clear all the tight contact structures on lens spaces with
c1 = 0 can be realized on an open book analogous to the one shown in Figure 7.
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γ4
γ3 γ2

γ1

FIGURE 7. Open book for S3 and Legendrian unknots with rota-
tion 0.

We can stabilize the open book (Σ, φ) to get the open book shown in Figure 8 on
which we still see the Legendrian knots γi and can still add Dehn twists to them in
order to realize all tight contact structures on L(p, q) with trivial first Chern class.
We call this surface Σ′ and the new monodromy, which is a right handed Dehn
twist about each red curve, φ′. The top picture in Figure 9 is a symmetric version

γ1
γ2γ3

γ4

FIGURE 8. Stabilization of (Σ, φ).

of Σ′ from Figure 8 (notice that we have put a half twist about the “waist” of the
surface). There is an involution of the surface on the top of the figure given by
rotation by π around a vertical line piercing the center of the surface. Quotienting
by this action yields the surface F shown on the bottom of Figure 9. Clearly Σ′

is the 2-fold branched cover of F branched over the two brown points {p1, p2}
shown in the figure. Let ψ be the composition of a right handed Dehn twist about
each red simple closed curve in the figure. It is clear that (F,ψ) is an open books
for the standard tight contact structure on S3. The two branch points trace out
a two component transverse link T in the open book (that is {p1, p2} × [0, 1]/ ∼
in the mapping torus part of the open book). The two fold branched cover of
(S3, ξstd) over this link will result in the contact structure supported by the open
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γ4

γ3

γ2 γ1

c4

c3c2c1

p2

p1

FIGURE 9. On the top is an open book for S3 on which one can see
Legendrian unknots with rotation 0. On the bottom is the quotient
of the top surface by the obvious involution.

book (Σ, φ′′) where φ′′ is φ′ except the Dehn twist about γ1 is not used. If the
link T is changed by adding a half twist about one of the arcs ci in F shown in
Figure 9, then the monodromy of the branched cover changes by adding a right
handed Dehn twist about the corresponding γi. Thus we see there is a transverse
link in (S3, ξstd) for which we can take the two fold cover of S3 branched over
this link to obtain any tight contact structure on a lens space with c1 = 0. Now
by Corollary 4.4 we see that all these tight contact structures contact embed in
(S5, ξstd). �

We now return to the proof of Theorem 1.21 and in particular the case of contact
structures on L(p, q) when p is even and q = 1. From Lemma 5.5 we know the tight
contact structure on L(p, 1) with c1 = 0 embeds and by connect summing with the
overtwisted contact structures on S3 we see that all overtwisted contact structures
with the same Γ invariant (see Section 2.2) will also embed. So we are left to see
that we can embed one overtwisted contact structure with c1 = 0 and different
Γ invariant (recall there are only two possible Γ invariants on L(p, q) for a given
Chern class). Then by connect summing with the overtwisted contact structures
on S3 we will have embedded all contact structures on L(p, 1) with c1 = 0.

To this end consider the surgery pictures for L(p, 1) given in Figure 10. The
left hand surgery diagram can be written as Legendrian surgery on a Legendrian
unknot of the type shown on the left in Figure 6. We have seen that we can em-
bed this tight contact structure ξ in (S5, ξstd). The surgery diagram describes a
4–manifold with a unique spin structure on it and this spin structure induces the
spin structure s on L(p, 1) that extends over a 2–handle attached to γ with even
framing. Thus it corresponds to the empty characteristic sub-link L′. From this
Equation (2) tells us that Γξ(s) = 0.

Now consider the surgery picture on the right in Figure 10. This can be realized
as (+1)-contact surgery on p + 1 copies of the Legendrian unknot with tb = −1
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−p

γ, f

1

1

1

γ, f
0

0

−1

γ, f − 1

FIGURE 10. On the left is the standard surgery picture for L(p, 1)
with the generator for homology γ and framing f on γ shown. In
the middle the same figure after blowing up p+ 1 curves. On the
right the same figure after blowing down the horizontal 1-framed
unknot.

and gives a contact structure ξ′ on L(p, 1) that can be embedded in (S5, ξstd). (This
is clear since ξ′ is supported by the open book with annular page and monodromy
the pth power of the left handed Dehn twist about the core of the annulus. And
this open book can clearly be realized as a 2-fold branched cyclic cover.) The spin
structure s′ corresponding to the trivial characteristic sub-link of this surgery dia-
gram will extend over a 2–handle attached to γ with even framing. If Equation (2)
held for general contact surgeries then we could conclude that Γξ′(s

′) = 0. We
believe that Equation (2) does indeed hold for general contact surgeries, but as a
proof does not exist in the literature we provide a different argument for the com-
putation of Γξ′ below, but first notice that the computation shows ξ′ and ξ have
different Γ invariant. By tracking the framings on γ through the surgery pictures
in Figure 10 we see that s and s′ are distinct spin structures on L(p, 1) and thus
Γξ′(s) = p

2 [γ] where [γ] is the homology class of γ. In particular ξ′ has different Γ
invariant than the tight contact structure ξ.

We now rigorously establish that Γξ′(s
′) = 0. To this end recall that for any

open book (Σ, φ) there is an orientation reversing diffeomorphism Ψ : M(Σ,φ) →
M(Σ,φ−1) given on the mapping cylinder Tφ by (p, t) 7→ (p, 1 − t) and extended
to the neighborhoods of the binding in the obvious way. For simplicity we now
homotop ξ(Σ,φ) to ξ̂φ that is given by the tangents to the pages on Tφ and by the
usual formula on the neighborhoods of the binding. We similarly have ξ̂φ−1 . One
may easily see that as oriented plane fields Ψ∗(ξ̂φ) and ξ̂φ−1 agree outside a neigh-
borhood of the binding and differ from one another by a half-Lutz twist along
the binding. Since the binding is null-homologous the 2-dimensional difference
class between Ψ∗(ξ̂φ) and φ̂φ−1 is 0, in other words they are homotopic over the 2-
skeleton and thus have the same Γ invariant. Returning to our situation let (Σ, φ)
be the open book for ξ′ described above. Now (Σ, φ−1) supports the contact struc-
ture obtained from Legendrian surgery on p − 1 parallel copies of the maximum
Thurston-Bennequin invariant unknot. Thus Γξ̂φ−1

can be computed from Equa-

tion (2) to be Γξ̂φ−1
(s′) = 0 where s′ is as above (that is the spin structure that

extends over a 2–handle attached along γ with even framing). According to [29,
Corollary 4.9] Γ changes sign when the orientation on the ambient manifold is re-
versed and is preserved under orientation preserving diffeomorphisms. Thus if Ψ
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is the diffeomorphisms above then Γξ′(Ψ
−1
∗ (s′)) = Γξ̂φ(Ψ−1

∗ (s′)) = Γξ̂φ−1
(s′) = 0.

More over notice that γ sits on a page of the open book and is taken to a curve on
a page of the open book by Ψ and the framing given by the pages is clearly pre-
served. Thus Ψ−1

∗ (s′) is the spin structure called s′ from the previous paragraph
and our computation is complete.

Now turning to L(p, p − 1). Notice that L(p, p − 1) is simply L(p, 1) with the
reversed orientation. So taking the open books (Σ, φ) and (Σ′, ψ) for ξ and ξ′,
respectively, on L(p, 1) above we can consider (Σ, φ−1) and (Σ′, ψ−1). These are
open books for L(p, p − 1) = −L(p, 1). Because the contact structures supported
by (Σ, φ) and (Σ′, ψ) are not homotopic on the 2-skeleton of L(p, 1) (since their Γ
invariants are distinct) neither will the contact structures supported by (Σ, φ−1)
and (Σ′, ψ−1) on L(p, p − 1). (This should be clear from our discussion in the
previous paragraph.) Thus we can embed into (S5, ξstd) two contact structures on
L(p, p − 1) with different Γ invariants and as discussed above this is enough to
embed all overtwisted contact structures. So combine with Lemma 5.5 we have
completed the proof of the theorem in the case of L(p, p− 1). �
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