
Contact Topology and Riemannian Geometry

I
.
Introduction

for quite some time it has been clear that there aredeep

connections between the topology of 3-manifolds and
Riemannianmetrics (i

.e

. Thurston's geometrization program

more recentlythere have also been deep connections
between the topology of 3-manifolds and contact

geometry
but there seems to be few results relating

properties of contact structures (like rightness) and
Riemannian geometry

in these talks we will explore such connections

among other things we will prove

Th1 (E-Komendarczyk-Massot) :

let this
,g) be a co metric 3-manifold

- define later

If
g is a complete metric and70 St.

the sectional curvature ofg
satisfies

YgK < sec (g) K recatureene
then the universal cover of(M,l) is

IS3
, ista) where Isid is the unique right

contact structure on $

· Ge-Huang improved "lg to 14



· the classicalSphere theorem said "curvature can

controle topology" here we see it can also controle

contact topology !

Th* 2 (EKM) :

let (M.
3) be a contact 3-manifold-eaklycompatible

with a complete Riemannian metr itg

if
2 define

sec(g) 1 - my Later
then (M

,
3) is universally fight it is componentof v

here C

mg
= Sup(/8(t-yl

Deepto

where
P is the length of a Reeb verfor field

E'is the instantaniousrotation of

· one might hope this might be useful in finding
tight contact structures on hyperbolic 3-manifolds

another theorem that might help with this is

Th 3 (EKM) :

let (M
.

3) be a closed contact manifold

suppose M admits a complete metric g such that the
sectional curvature ofg is

bounded above by-k
for some K > 0

andJ a Reeb Vector field R for 3 such that

N= R/IRD satisfies C
covariant desivative (recall later)

I

then the universal cover of (M. 3) is right

There are several other results and conjectures we will

discuss later but first wegive some Riemannion



and contact background
I Riemanniangeometry
recall the curvature of a curve :

given U : R+ IR3 unit speed
U(0) = p

then the curvature is how fast 2 bending
(p = 12"/os) from a line

given a surface ICR a point pet and

a unit vector o E TpI
I normal
restor

let W be the curve In Span SN) toI

=
parameterize U so it is unit speed
the curvature of I in direction or is

(p(0) = 2 "(0) ·N

note :
p

:S'
circle in p

so p has a max andmin: min . max

the Gauss curvature of Eat p is K = minkman

examples :

1) If K20 then atp [ "locally curves to one
/

side of Tp I "

1
.
e. If you tried to flatten it. on table it would wip



2) If KIO then at p ,
I is "locally on both sides

of TpI

C e.
If you try to fatten it

-E
fi would wrinkle

Ingeneral, you can define 1 for any surface with a Riemannian

metric (i
.e.
inner product on tangent rectors)

does not have to be in I but this give intuition

the "curving in on itself" can be made rigorus by saying
If I a compact oriented surface and

Ko

on I then Is

more generally : Man n-manifold

3 Is a surface in M
g a metric on M =>

made ofgeodesias
o a plane in TPM tangent too recall

these are

C L "Straight
T- To lines"

ST S "locally
&L Gr shortest

- paths"

--

To gets metric from M

define
110) = Gauss curvature of If at p

this is the sectional curvature of (M
,g) along o

a vastgeneralization of above observation is

Sphere Th * (Rauch
, Klingenberg, Bergel

If M is a compact, simply connected, Riemannia

n-manifold st
.
- a constant OSE.



Yp( < k(0) = C

for all o
,
then M is homeomorphic to S

· Brendle-Schoen 2007 differ !

· if< changed to > then not true ! eg up

Th (Carton-Hadamard) :

a simply connected manifold with a complete non positively
curved metric is diffeomorphic to I

These are two prototypical examples of the interplay
between geometry and topology !

more types of curvature :

Ricci currature is a "average"of sectional
curvature :

given unit rector atTPM
let 51 ..., th+

E TpM St.

5
,
0
, ... is an orthonormal

basis

Rip (2)
= (spande,~3)
↑c

= 1

some puti here

Scalar curvature is an "average"of Ricci curvature
if ....., in an outhonormal basis for ToM

then

Sp =Ek(span3e.es



recall a geodesic in a Riemannian manifold (Mg)
is a path U that is locally length minimizing

fact : givenwt ToM there is a unique geodesic
r : (- 3

,
2) ->M St

.
Ulol = P

v v

U'10 =0

N

we say g is complete it each geodesic can be extended to

a geodesic defined onI 1.

U : R ->M
J

eq: -303 with standard "flat" metric is not complete

-
> not defined forall of IRI

we can define a map

expp ! TpM + M

by sending et TPM (WO) to (1)
(and 0 to pl

it is known expp is a differmorphism from

a nbld of OfTpM to a nbhd of p M

we define the injectivity radius at p to be
ball of radius, about

= supdr St expliis a differ . Oftom

onto its image)



example :

one
so in
jn

= π

if reinjp then Bplu = im expp(B)

is called the geodesic ball of radius r

and its boundary Spir the geodesia sphere

one last thing we will need (for now) is the Hodge star

operator

letX be a vector space with inner product

and 2
, ..., en an oriented or thonormal basis

and e , ..., e the dual basis for
*

A : 1RV*

- 11
-ky *

is defined by sending the basis element
".....

to e 1 ...
neduk

Where e
.... Ep -Jak is an oriented basis for

Exercise : is 1 = e'
...
net

so : 10V- 1"V : +re .. ne



2) xei = (1) en --
n 1 ...

121

3) : PV *
->1

*

is multiplication

by (1)
PSn -p)

4) (r,
w) = + (v1 +2) = + (w + +2)

inen
product

now if g is a metric on M then it gives an innerproduct on

TpM for allpEM so we can apply the Hodge star to

each TpM to get a Hodge star openator

*: R(M) + 2n
-k(M)

exercise :

given a metrico we get an isomorphism

&
g

: TM -> T
*

(M) : v+g()

If we let (M) = vector fields on M

and CP(M = functions on M

then for a 3-manifold we have

Di D3
(P(m) -> (M)+ x(M)-> (P(M)

Lad ↓ g ↓ odg ↓ id
d d

(1) -> t (M) => 224m -> 2"(m)

the vertical arrows are isomorphisms

define Di using isomorphisms anda

show for R3 with standard metric

Di = gradient



Dz = curt

D = divergence

Ill Contact Geometry

a contact structure on a 3-manifold M is a plane

field 3 c TM

↓
M

that ismon-integrable
(e

. not tangent to a surface along an open

set in the surface)

one can show 3 is contact = (locally) a 1-form & St.

3 = kerd

21dx > 0

I we always assume ↓ can be definedglobally

examples :

I R
ta

her (dz-rudo) = Span,

EIL-90° tristi
2) S3 = unit Sphere in C2



3
sta

= complex tangencies to S3
= her (x,dy

,
-

y,
dx

,
+ x dyn- y,&x2)

= orthogonal planes to Hopf fibration

3)I
+= ker(cosdzsinde

#
note D = <(. 0,z) /z = 0

,
~ = +)

has GD tangent to 7of

such a dish is called an oretwisted disk

if a contact structure has such a disk

It is called overtwisted

otherwise called tight

Facts :

1) (Durboux 1882) every contact structure is locally
equivalent to (IR3, 3 std)

2) /Lutz
,
Martinet 1970) every closed oriented

3-manifold admits a contact structure



3) (Bennequin 1982)
(S? std) and ( ? Esta are right

(Birth of contact topology !)

4) /Eliashberg 1992)

classified oratwisted contact structures

of structures up to > Splane fields uptoS is otopy homotopy
S

->

can understand via

Algebraic topology

5) /Eliashberg 1992)

there is a unique tight contact
structure on S3

6) (Ethyre-Honda 2001)

not all closed orientable 3-manifolds
have right contact structures

J
+ doesn't

O Poincare homology
Sphere with opposite
orientation)

later Lisca-Stipsicz : all Seifent

Fibered spaces have rightcontact

structures except--
-

2n+/



7) tight contact structures are important
in CR-geometry
as boundaries of symplectic manifolds
in fluid mechanics
in knot theory
in 3-manifold topology

and they have a rich and subtle structure

Major open question
Do hyperbolic manifolds admit

tight contact structures

IV Metrics and Contact Structures

letI be a plane field on a 3-manifold M

exercise : the Frobenius theorem says 3 is integrable
if the flow of a non-zero rector field tangent

to > preserves

so it? contact then it must trist as you flow

along a vector field tangent to
let's see how to measure this with a Riemannian metric

let g be a metric on M and

3 be a plane field

fix an orthonormal basis ur for 7 and

let n = oriented unit normal to 3



we want to measure how mucha twists

as we flow alongo
&aL U

let o be the flow ofa

g((-z)
=
v ,
n)

says how mucha trists but to normalize we scale

and define Note -n
-

sig
1 incorrect in-(t)= Cos ( in ()
EKM paper

~

for 3 to be a (positive) contact structure EH)must

be increasing
we call 0= Eld the instantanious rotation of 3

t is a function on M and 3 is contact( > O

note : E' might depend on 2
,
u

to see this is not the case we can rewrite (1) as

Cost() =
-

W,
n

11(
- +)+/

differentiate with respect to + to get

(t)ECH SI.
= V911, 1) +1I (-, n)z

at t= 0

' = L (g) +=g(ur, n) only consider one
↑

point so no derivative
of g



- =g(n ,
[u ,v])

it x is any contact form for > then m x.) =·g (n , ·)

for some functionm

so ' = mx((u ,r]) O since eker a
/x

= m (n · <(r) - a(n) + x((a
,
])

= mdx (n ,v)

now ifwit' two other oriented orthonormal vector fields

spanning) then

u = an +by for functions a
,
b

.
c

,

&

r' = cu +do St. ac -bd = 1

now mdx (u !v) = mda (au +bw, <n +dr)

= m((ad - bc)dx(u,)
= md2(u,r)

so only depends on 3 andg

definition :

we say a metricg on M is weakly compatible with

a contact structure ? If there is a Reeb rector

field R for3 such that Rtg ?

Irecall R is a Reeb vector field for 3 if
R is transvers to > and flow of R preserves >

given a contact form & for 7
,

a unique

Reeb field Ry Satisfying< (Ry) = 1 and (pd =0)



Propositio 1 :

let & be a contact form on M

ga Riemannion metric

Ra the Reeb field of a

Then the following are equivalent
1) Ry +g7 (1e .g weakly compat. with 3)

2) x dL = 0'L
Hodge->
Star 3) g(u, =

,
da(u

,
↑(r)) + p

=
x(u) <()

where p = / Rall
J is complex structure on 3

given by rotation by/2
: TM-7 is projection to

I followed by J

note : given any contact form2 with Reeb field Ra

any positive functions P,
E : M-IR

and
any complex structur 5 : -T

such that dal,not
to for UEO - is said3 to be compatible.

and 2150,
50) = da( with do

(lots of these
define TM = 3 + SpanER] Ess
-

O

then glu .
2) = E. da (n ,

↑(w) +p x(u) < (2)

is weakly compatible with

so every has lots of weakly compatible metrics !
Proof : 1) => 2)

set p = 11 Ryl

unit orthogonal to 3 is n = Ra/



so P((w) =g(n ,
e)

from above computation we have

0 = pdx(u , v)

for any oriented or thonormal basis uiw for 3 (might only
exist locally)

Se , 22 ,
37 = SUN

, n3 is an orthonormal basis for TM

let Se ,et,23] be the dual basis for T*M

so =px and x = He

write dx = a ene + bene + cene ?

note :

Le
,

d =

Rap
x = = (

,

d = 0

:. b = c = 0

a = dd(e, ez) = dx(n,) =

*/
da = opene

exercise : A e'12 = e3

so xda = 8/e = =)

2) => 1) let win be an oriented orthonormal basis for

n the unit normal to 3

n. rn an orthonormal basis for TM

denote it ei,er, es

let ! e? "
be the dual basis

*da = Ex = Eme
some m

: dx = *+ dx = * 0x = 'menez



-

so Ind = 0 : n parallel to Xx

12. Xa orthogonal to

3) => 1 is obvious so we are left to show

1) = 3) le+ 1) = 3 + 1 : B(Rx) = 03

exercise : ↑
pp

: 3 - 1) : 0+ da(0
, ·)

↑
g

: 3 -> 1) : +>g(r, )

are both isomorphisms

set = da

#

Claims A Said for some positive m : MXIR

indeed at a point pick a symplectic basis for do

18
.

e
,e St. da = ( : =)

let fit be the algebraic dual basis

↑
da

:
- fr

e
,
1+ - f

g
is represented by some positive definite (c) ac-b-20

(3) " = at (5 )

so
g:eafitbte

: Pileea!
and : easteris



1
.
e. Its matrix is A =

a ( )

. A2= a b 42 (= 5)(3 -5)

= (ac b )= - (b ;
)

so if m =Wait
,
At =-zid

set J = MA

note
2

= mAt = -id
z

so i is a complex structure on ?

for U
.
We

(1) g(Aw,
w) = <(A) (w) = ↑dy() (n)

= da(e,) = - dx(w
,2)

=- g(Aw,
2) = -g(,Aw)

: g(5,
w) = -g(r, 5 w)

(2) g(50,
5w) = -g(5,

5= w) =g(, w)

B) g(w) = -9 (w ,
52 u) = -mig (0,

Aw)-midt (Aw, 2)

=-mdx(5wir) = mdx (; w)

letwir be outhonormal basis for 3 ,
n unit normal to

a general vector is
w = an . +br+ ch



we know In a ra O

- any vector
so dx (au+be+ cu

,
V)

= da(an +br,)

= dx(w ?, )
↑

projection of w to 7

↓
normal component

now

g(U ,
V) =g(r? ") +g(U"

,
X")

mdx(r ? (3) +g(g(,n)n ,g(, n(n)

= mdx(U ,
PN) + g(u,n)g(Y. n)

(4)
= mdx(U

,
P()) + p - x(U)x(X)

(since IRI-ing
P

we need to determine m

for this note for T

g(w.
5) = my(,Art add (. = 0

so 50 orthogonal toa (so - rotation by IF/2)

(5) f 110:1 then da(
,
5t= mda(WAN)

= mg(Av.Av)
= in g(r,) > 0

so
,
Je oriented or thonormal

basis for 3 St rotation3 yπ(z)
let (1

,
223= /W

.
523 and eg = n = RC/

and !e,es be dual basis



as in proof of 1 = 2) we see

da = =esez
P

.. = da(2, 22) = da(v
,
vo)

gr, = n
A

So M =

El

plug into (4) to get

g((, x) = E,
dx(U

, P(v) +pa (u)C()

definition :

a contact structure) and a metric g are compatible
if there is a contact form a for3 such that

III = 1 and

*da = G'a

for some constant O'

(this is equivalentto saying the unit orthogonal
to 3 is a Reeb field and the instantanious

rotation is constant)

Remark :

This is the same as Chern and Hamilton's definition from

1984 if = 2

This form of compatibility has been extensively studied from a

Riemannian geometry perspective
(see book of David Blare and below)



we note that given a contact structure ? there is a

projection
T

Ball metrics -> scompatible metrics He'= 13

to define it
,
note that if gy is an inner product on 3 then

we can get a compatable metric as follows :

· g a gives area form . on 3

· take any contact form to for 7

note day an area form on 3

and for any 30
, diffoll= +doly

so I ! function for st. d(folly =->

set d= to %0

· define g to be
g, on 3 and Ry to be orthogonal

to > and of unit length

now define /g) = extension ofgl, to a compatiblemetric

exercise : it
g is compatible with 3 andE = 1 then (g) =9

3

Questions :

1) how do geometric quantities, like various curvatures of/

g
and Tg) compair ? What if itlg) is "close" to g ?& 3

2) If it is a family of contact structures howdolg) compain?
3) What can you say about image (2)
4) If you fixg st gt im ,

1 im i what can you say about

3 and 3 ?



recall if E-M is a bundle then a connection

on E is a way to differentiating sections
of E

more specifically if N(E) = Sections of E

and (M) = P (TM) = Vector fields on M

then a connection is a map

7 : A(M) x N(E)-> T(E)

(v
,
0) ++ J o

~

satisfying is Two is linea in AIM) . as a

((M) module

10
.

f
.gt(3(M), v

,
we A (M)

frgw o = 780 +go

2) Two is linen in P(E) as an

R-vector space
10 . Jya0+ by = a8p0+b7v y

for 9
,
3 IR

3) To satisfies a product rule

&v( fo) = f8y0+ (N.f) o

for f t(8 (M)

a linear connection is a connection on * (M) = ↑ (TM)

Facts : is connections exist for any E.



2) given a linear connection there exist unique
connections on TMQ ... TMOTMO ...TM

- --
K C

such that

1) on (P(M) (= 0th tensor power of TM)

Opt = v. f = df(e)

2) Jy(00n) = (0jo)0n + 00fM

3) Dr (two) = tr(8
,
of

there trace means plug one of the
sections of TM into one of the sections

of T*
M

3) given a metric there is a unique linear connection satisfying

1) Drg(u ,w) =g(8fu,
w) +g(u , 8 pw) (compatible)

2) Jyw - 82= [W
,
w] (symmetric)

this is called the Levi-Civita connection ofg

we will always use this connection

lemma 2 :

If 3 andg are weakly compatible and n is the unit

vector field normal to 7 then
recall def

*
Of is

8nn = - (8(p)] C unique Vit
. St.

M& gradient d+ (x) = g(8f, 2)Fr

Where" is the component of ~ in ?

and p = IRI where R is the Reeb Vector field

showing weak compatibility



Proof : for any vector
fielda

0 = 7ug(n , n) = 2g(8un , n)

soIn is tangent to 3 = n
+

now for 23

g(8nn ,
v) = -g(n ,

8nz) (g(n,
H = 0 so g(0n,

n) +g(2,0nn) =0

= -g(n, nw-yn) (from above g(1 , 7fn) = 0

= -g(n,
[n

,v])
=- px([n , 2)) (recall (n, . ) = p < ( .)

n= Ra X(V)= 0

- -= p(dx(n , 2) - n - x() + w. a(n) C
(d</4.2 = U.<I - W- < /)- </[U.r])

= pr.(tg( ,n) (as above)
= pw .(f) = -p(tzdp(z)

= - d((np)(v)
=
- g(8(np, ot (def gradient)

so Jun is in 3 and pairs with all rectors in the same as

- 81p ,
=

Jnn = (8(p)

Remark :

1) note that is .

3 and
g are compatible then the flow of the

associated Reeb. rector field is tangent to geodesics
2) Zeghib showed that no closed hyperbolic manifold can have

a non-singular rector field whose flow traces out geodesias

this is one of the major motivations for introducing

weakly compatible metrics !



I Convexity
let s be a hypersurface in a Riemannian manifold (M

, g)

that bounds a domain U

U is geodesically convex it for any geodesic

tangent to S at a point p we have

unu = Sp)
↑
locallyabld of p in U only

intersects U at p

-

LuP!-
lemma 1 :

if f : M-> I St
.
CER is a regular value and
s = f - (c)

u = f + ((-y, C])

then U is geodesically connex
#

=f(0) >O RETS

here f (
.
2) is the Hessian of f and is defined by

72f(u ,) = (udf) (2)

1 = Durf -

Jypf = Lof9(u ,r)

idea : compose f with ageodesic toget map 1-3.2)+ 1

its first derivative is O since tangent to S

its second derivative is positive ...



let

Conv(g) = sup&Bis geodesically oneon convexity
radius

example :

unit SCR with induced metric has

conv =*/2

:--
ThM2:

If K>0 and sealg K Then

conv(g) = min(ins (9) , E
where inj(y) is the injectivity radius

ifSec(g) = 0
,
then Convig) = ins (9)

now for symplectic convexity
let (wi) be an almost complex manifold

& a domain in W bounded by I

let 2 TI be the complex tangencies to

12 .

C = Tz1J(Tz)

we say[(or -) is (strongly) pseudo conver it I is
a positive contact structure (and I orientedas2 )

if fiW-R is a function anda a regular value St.

I = f (c)
- =f (7y, c])

then
e = ker (-dfor)



so I a contact structure

E

L(
,
0) > 0 for UEC

where

L(u
,
) = -d(dfo 5) (u

,
5)

is the Levi form

Why do we care about pseudoconver hypensurfaces ?

answer : control holomorphic curves
complex Str.

given a Riemannim surface (F
,
j)

and an almost complex manifold (X.
5)

a map n : F. -> X is called holomorphic if

duoj Joda (du preserves respects
almost complex strs)

if I is pseudoconver surface bounding &

and u(F) <-> then ulF) can't be

tangent toI (If = f"(c) as above
I'

fou satisfies a maximum

principal "C

where do we use holomorphic curves ?

ThM(Hofer) :

if M is closed and 3 is an overtwisted contact str

on M, then any Reeb vector field for 3

has a close orbit

Sketch ofproof :

consider W=-
,
] x M



If x is a contact form for 3
,
then w = det2) a symplectic

structure on W andI an almost complex str. J

on W that sends Ra to E+ and preserves 3
↑ Reeb feaWord on 1-1

,
0]

you can easily check 3 + 3xM pseudoconvex #+

let D be an oretwisted disk in (M , 1)

Its characteristic foliation is

⑳L↑
singular foliation ~
tangent to >TD

· Bishop proved there are holomorphic disks

C
+
&(2+(W

,
(i xD) + + So,

2)U : D

such that
Us constantly ED

on
fill anbedoos the

⑧

Fact : u/2DY) must be transverse to leaves of Ds LifnoDistantCanother max principal)
· "Standard" functional analysis says

if you extend the family of u above they always
fill out an open subset of D

(this is because the holomorphic curve equations are elliptic
-

· What happens if we have aCauchy sequence of Kolomorphic
disks Un : (2D -> /W

, 103XD)

if in un stay in [9,
0]xW for some a

then Arzelia-Ascoli says they will

converge to another holomorphic disk



unless the 8 Un blows up

but in this situation Gomor says

that can't happen (no bubbling" since
all 5t3 xM convex

so ifIn don't converge to a holomorphic

disk
,
then image of un must

"go to-
"

Hofer says if this is the case then there

must be a periodic orbit in Rx

specifically,
limit of un will be assymptotic

to (0, 03 xU for some periodic orbit

·
so if no periodic orbits any Unconverge

to another holomorphic dish

: subset of D filled by boundaries of
holomorphic disks is closed !

· in this case subset of D filled by such

boundaries is open and closed :
all of D !

but first boundary of holomorphic disk to touch JD



will be tangent to GD = leat of Ds
this contradicts Fact above

:. must have closed or bit in flow of Ra !
#

note : if M not closed
,
but (-7

,
0] x 2M pseudo - convex

then same argument says must be periodic or bit !

Putting I convexities together
Th3 (E-Komendarczyk-Massot) :

let g
be weakly compatible with (M,

3)

S a surface in M cut out by f and
U the sublevel set

I = RXS = R XM

- = 1XU = R XM

let R is the Reeb field for 3 showing weak compatibility witha
I be an almost complex structure on RXM that

preserves? and sends R to 87
for any 2 CaS complex tangencies to I

we have

L10
,
2) = 72f(,) + 5f(50

,
5)

. IRI
·

&
- 11011 (8inp -( (n01t 0f)

↑
instantanisae

the proof is a long computation
we can use this to prove a Darbox theorem with estimates

given (M,
3) a contact manifold and

g a metric on M

We define



-(g) = sup restrictedtoBrM 3
↑
rightness radius or

Darboux radius

Th4(EKM) :

if g is a metric compatible with (M,
3)

then

T(g) = conv (g)

note : ifM compact it is easy to use Darboux + Lebesque number
to proveTig) bounded by positive number

but not possible on non-compact manifold and computing
a lower bound in compact case would be hard

Proof:

fix a point pEM for all rcconvlg) we know By()

is geodesically conver

let 2
,

= complex tangencies to 2 (RXB(p)
then first , J flow,

5) = 0 and

one must be positive
:. ((0

,
2) > 0

and2r pseudoconvex for <convlg)

we can adapt a theorem of Hofer (see note above) to
see that ifI B is overtwisted then there

is a close Reeb Orbit W in By(p)

recall 2 is also a geodesic



but now By(P)

So
Bein

O
let r'be the largest radius St.

2B , (d) 12

must have GB
, (p) tangent to 2

and UCB , (p) & Convexity

so 3/B(p) right ! #

this is

ThM5(EKM) :
↓
Th2 from
introductionlet (M.

3) be a contact 3-manifold weakly compatible Section
with a complete Riemannian metr itg

if

sec(g) 1 - my - sec m
then (M

,
3) is universally fight

C
2

+ is componentof v Mg Fer
here

mg
= sup (18(np

- 8((o)
+

I
peop to 3

N
1 -call this Dg

where
P is the length of a Reeb verfor field

= is the instantanious rotation of

Proof :

pull everything back to the universal coverE

let Bpl be ball of radus : aboutp

if seeg) 1- for some >O
,
then

below we see for <+(r > my
& (IRxBSPD is pseudo-convex

-where (tpl = < 20th (UK)



c+
,

(r)-
- ........

---------

&
I

but we are assuming
: ey) -

My
so < (IRxBSP) is pseudo-convex forall

now arguing as in last proof it (R2
,

3) is overtristed
- a closed Reeb orbit in Brlp) for some r

note : RXW is holomorphic in RXM (with 5 used above

start shrinking Br(p) to first to where GB (P) 180
there RXU will be tangent to +2 Br. 10)

but this contradicts pseudo convexity
:. M =M is tight

now for the above claim about pseudoconvexity

fix p and let

rp :M+R : x +->d(p,
x)

if >0 and Sec(g)1-1 then it is known that

Org = (t,1 g

now forot I
,

we can write it as

v= vi+ aR +b+
recall 5 is an isometry on 3 so



g(r, ) = g(w !, (h) + az+3
=

= g(je ! jv) +a+b=gljr.r

so ((
,
2) = 3Up (, 2)

+J
p
(

,52)-g(g , rp)12
↑
Th*3

↓
unit normal

= 2 c>
(v) 1121F- 1/8rp/lg(Dg , Up) 11

=> 2 Ct
, (v) III-IIDgIIIWIR

< larges than-

=> 2 ct,
(lI/F- Mg P g(g,

up)

= (c+(() -Mg) (12)
and 118rpl =1

so 2 (IRxBpH) is conver if Chal = Mg #



Il Seeing Overtwisted Disks and the Contact Sphere Th

Th6(EKM) :

let (M
. 3) be a contact manifold compatible withg

if r < injply) and > is overtwisted on Brlp)

then 2Br(p = Sylp) contains an over twisted disk

So we can't guarantee 31, p
is right, we can

clearly see when it is not

we will prove this later but now prove the contact

Sphere theorem

Proof of Contact Sphere Th (Th* 1
,
from intro

Recall we have (M,
3) compatible with g and

JK70 St. /q < secLg) K

we want to show ? is right
we pull 3 back to universal cover is

Ordinary sphere that says ES3

easy to see if pulled back 3 istight
so is

so we assume M
= S3

for contradiction assume 3 is over twisted

let D be an overtwisted disk

⑱
M

rescale so that K = 1 (note still compatible)

Bonnet-Meyer's The says that

diam(n)g = 3



a result of Klingenberg says that

inj(g) = TYp = π

and we mentioned above

Convly) = F = I

using "standard" Toponogov comparison argument
we see that if p.gtM such that

d(p, 9) = diam (M)

then there are Upd
T and qL

S
.
F

.

M = Br(p) uBr(q)I

-
M

so

·
Brq(9)

we can assume D does not contain q

Th * 4 above
says Br19) is standard contact ball

for standard contact ball there is a vector fielder

whose flow pushes any point 9 into small nbhd

of 2Br
,

(9) c int Brop)

so we can assume DCBr
but The5 above says 2Dr must

now contain an overtwisted disk D' !

So D' < 2 BpSp) < Brg(9)



contradiating tightness of 31 Bra)
: T right contact str on 33

Eliashberg says 3 standard)
-

for the proof of Th * 5 we need some preliminaries

lemma 6 :

if this) is compatible with g and

~< injp(g) , then the characteristic

foliation (GB/IP)
,
has only 2 singular

points (and they are Un 2B
,
(P)

where U is a Reeb flow line through pl

Proof :

Suppose x 2By(p) is a singular point
so we have
x
......

CB
,
(P)

letU be a geodesic starting at p S
.

t. Ulr = x

OB
by the Gauss lemma we know

Tx(2By
(p)) = 3

x

is orthogonal to U'(r)

: U'Ir) = R the Reeb field

and since the Reeb flow is

tangent to geodesics we see

& is a Reeb flow line through p



:· can only be 2 singularities in (B(P))

We call a surface I in (M. 3)
,
3-convex if there is a

vector field transverse to I whose flow preserves
We say a sphere S is simple it S>

contains only two singular
points (we call the positive one the north pole and the

other the south pole
S
,
is almost horizontal if

,
in addition

,
all closed leaves of 5

are oriented as the boundary of the disk containing the
north pole

examples :

O 52 52

i Se
-

almost horizontal not almost horizontal

Lemma7 (Giroux) :

If Sy is simple,

then

& is 5-conver ES
,
has no degenerate
closed orbits

we are now ready for our main technical result

Proposition ] :

let B be a ball in (M,4)

B is a union of a point p and

Spheres St for +E (0 . 1)



1(e)
,
is simple> (St)

,
almost horizontal

3) right

2) all (St)
,
almost horizontal + -> 1 right

3) if (t)
,
all simple and Thy is overtwisted,

then I to such that

(5)
,
has a closed leaf for += to

2)
By right for +> to

Proof of Th *6 :

By(p) = puU Se
+ -> (0,r]

lammat says (St) <
simple since + < inj(g)

part 3) of Prop 8 => if By(p) is overtwisted then

we see an oventwisted disk onaBlE
Proof of Proposition 8 :

1) obvious ,
it I closed leaf then contact str is overtwisted

2) for small +, By will be tight by Darboux's Th*

so (St)
,
has no closed leaves for+ small

if there are no closed orbits in (St)s for all +
,
then

by lemmat all of the St are 3-convex

from this it is easy to argue that 31 is right

( can show BFB = 32x (2
. 1] has an 23

, 1-invariant

contact str
,

so B
,
is the result of adding a "collar

nbhd" to Bel

so ilp is right unless some ( + ) , has a closed leaf



let to be smallest + such that (St)
,
has a closed orbit

the closed orbit C of (Sto) , must be degenerate
(we assume only one orbit

,
but you can consider other cases)

we can find an nbhd A of C on St St.

Esi
we can map Ax (to-5 , to+ E] into B

so that a Af= Ax 3+3 maps to St

b) leaves of (Sx)
,

enter top of A

and exit bottom ofA

c) [p3x [to-2, tota] maps to Legendrion arcs

note : At has no closed leaves for +< to

recall the contact planes along [p3x (to -2.++2]

rotate in left-handed way

since (Sto)
,
is almost horizontal we see

- A +↳ - ->

I L-
-
- ->-

just before to we see-
t< +

> x YIC-+ Y
x



so by Poincare - Bendixson theremust be a closed

leat in At

contradicts fact that to smallest suchf

3) note : the above argument say any time a

new periodic orbit is born and is closest

to north pole it must go lastto west

27
-S

same argument says if a northern most periodic orbit

dies itmust go west to east

now let to be the first time a closed leaf appears in (5.%
.

from above it must go east to west

as + increases there can be finitely many birth deaths
of periodic or bits

we inductively see that northern most orbit is always
east to west and so can't die (.e. all (St)3 for : to

have closedorbit

let +is th be other birth/death times

from about + <to t.
) one orbit east to west

suppose hypothesis true for<th
if tut, is a birth of an orbit closer

to north pole than other orbits
then done by above observation



(must go east to west)

If not northern most then done since

northern most still east to west

if the I
a death it can't involve norther

most orbit since deaths of

northern mostorbit only occur for

west to east orbits

: done

If +< to then 31
+
right by2)


