Contact Topology and Riemannian Geometry
I. Introduction
for quite some time it has been clear that there are deep connections between the topology of 3-manifolds and Rièmaniàn metrics (ie. Thurston's geometrization program) more recently there have also been deep connections between the topology of 3 -manifolds and contact geometry
but there seems to be few results relating propaties of contact structures (like tightness) and Riemannion geometry
in these talks we will explore such connections among other things we will prove

$$
\text { Th' } 1 \text { (E-Komendarczogk - Massot): }
$$

let $(4,3, g)$ be a contact metric 3 -manifold If g is a complete metric and $\exists K>0$ s.
the sectional curvature of g satisfies

$$
4 / 9 K<\sec (g) \leqslant K
$$

then the universal cover of $\left(M_{1}\right)$ is $\left.\left(S^{3},\right\}_{\text {sta }}\right)$ where $l_{s t d}$ is the unique tight contact structure on 5^{3}

- Ge-Ituang improved $4 / 9$ to $1 / 4$
- the classical Sphere theorem said "curvature can controle topology" here we see 17 can also controle contact topology!

Thㅡㅡ2 (EKM):
let $\left(M_{1}\right)$) be a contact 3 -manifold weakly compatible with a complete Riemonnion metric g if

$$
\sec (g) \leq-m_{g}^{2}
$$

then $(\mu, 3)$ is universally tight
here

$$
m_{g}=\sup _{\mu}\left\|\nabla\left(\ln \theta^{\prime}\right)^{\perp}-\nabla \ln \rho\right\|
$$

where ρ is the length of a Reeb vector field
θ^{\prime} is the instantanious rotation of?

- one might hope this might be useful in finding tight contact structures on hyperbolic 3-manifolds another theorem that might help with this is

$$
\text { Th } \quad 3 \text { (EM): }
$$

let $(M, 3)$ be a closed contact manifold
suppose M admits a complete metric g such that the sectional curvature of g is bounded above by $-k$ for some $K>0$
and \exists a Reeb vector field R for 3 such that $N=R /\|\mathbb{R}\|$ satisfies $\left\|\nabla_{N} N\right\|<\sqrt{K}$
then the universal cover of $(M, 3)$ is tight
there are sevenal other results and conjectures we will discuss lath but first we give some Rièmonnion
and contact background
II. Riemannian geometry
recall the curvature of a curve:
given $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}$ unit speed

$$
\gamma(0)=p
$$

then the curvature is how fast γ bending

$$
K_{p}=\left|\gamma^{\prime \prime}(0)\right|
$$ from a line

given a surface $\Sigma \subset \mathbb{R}^{3}$ a point $p \in \Sigma$ and
a unit vector $v \in T_{p} \Sigma$
let γ be the curve $\sum \Lambda$ span $\left\{r_{i} N\right\}$ vector to

parameterize γ so it is unit speed
the curvature of Σ is direction v is

$$
K_{\rho}(v)=\gamma^{\prime \prime}(0) \cdot N
$$

note: $\mathcal{K}_{p}: s^{\prime} \xrightarrow{\infty}$
so K_{p} has a max and min: $K_{\text {min }}$. $K_{\text {max }}$
the Gauss curvature of $\sum_{\text {at }} p$ is $K=K_{\text {min }} K_{\max }$
examples:

1) if $k>0$ then at ρ, Σ "locally curves to one side of $\tau_{p} \Sigma^{\prime \prime}$

ie. if you tried to flatten it on table if would rip
2) If $K<0$ then at P, Σ is "locally on both sites of $\tau_{p} \Sigma$

re. if you try to flatten it would wrinkle

In general, you car defuse K for any surface with a Riemonnion metric (ie. inner product on tangent vectors)
does not have to be in \mathbb{R}^{3}, but this g ire intuition the "curving in on itself" can be made rigors by saying if Σ a compact oriésted surface and $K>0$ on Σ then $\Sigma \cong S^{2}$
more generally: M an n-manifold $\left.\begin{array}{c}g \text { a metric on } M\end{array}\right\} \Rightarrow \begin{gathered}\Sigma_{\sigma} \text { a surface in } M \\ \text { made }\end{gathered}$ $\left.\begin{array}{c}9 \text { a metric on } M \\ \sigma \text { a plane in } \tau_{\rho} M\end{array}\right\} \Rightarrow \begin{gathered}\Sigma_{\sigma} \text { a surface in } M \\ \text { made of geodesics } \\ \text { tangent to } \sigma\end{gathered}$
Σ_{σ} gets metric from M
define

$$
K(\sigma)=\text { Gauss curvature of } \Sigma_{\sigma} \text { at } \rho
$$

this is the sectional curvature of (μ, g) along σ a vast generalization of above observation is

Sphere Th<compat>́<compat>ᅳ (Ranch, Klingenbeng, Beige) If M is a compact, simply connected, Riemonnion. n-manifold st. \exists a constant $C>0$ st.

$$
1 / 4 C<K(\sigma) \leq C
$$

for all σ, then M is homeomopshic to S^{n}

- Brendle-Schoen $2007 \Rightarrow$ differ!
- if < changed to \leq then not true! eg $\mathbb{C P}{ }^{n}$

Th (Cartan-Hadamard):
a simply connected manifold with a complete non positively curved metric is diffeomorphic to \mathbb{R}^{n}
these are two prototypical examples of the interplay between geometry and topology!
more types of curvature:
Ricci curvature is a "average" of sectional curvature:
given unit vector $v \in \tau_{p} M$ let $v_{1}, \ldots, v_{n-1} \in \tau_{p} M$ st.
$v_{1} v_{i}, \ldots v_{11}$ is an orthonormal basis

$$
R \dot{c}_{p}(v)=\sum_{\substack{n=1 \\ \text { some put } \frac{1}{n-1} \text { here }}}^{n-1} K\left(\operatorname{span}\left\{v_{1} v_{i}\right\}\right)
$$

Scalar curvature is an "average" of Ricci curvature if v_{1}, \ldots, v_{1} an orthonormal basis for $T_{p} M$
then

$$
S_{p}=\sum_{i \neq j} K\left(\text { span }\left\{v_{1 .} v_{j}\right\}\right)
$$

recall a geodesic in a Riemonnian manifold $\left(\mu_{2} g\right)$
is a path γ that is locally length minimizing
fact: given $v \in T_{0} M$ there is a unique geodesic

$$
\gamma_{v}:(-\varepsilon, \varepsilon) \rightarrow M \quad \text { st } \begin{aligned}
& \gamma_{v}(0)=\rho \\
& \gamma_{v}^{\prime}(0)=v
\end{aligned}
$$

we say g is complete if each geodesic can be extended to a geodesci defined on \mathbb{R} is

$$
\gamma_{v}: \mathbb{R} \rightarrow M
$$

eg: $\mathbb{R}^{2}-\{0\}$ with standard "flat" metric is not complete

we can define a map

$$
\operatorname{expp}_{p}: T_{p} M \rightarrow M
$$

by sending $v \in T_{p} M(v \neq 0)$ to $\gamma_{v}(1)$ (and 0 to ρ)
it is known expp is a diffeomorphism from a unbid of $0 \in \tau_{p} M$ to o ubhd of $p \in M$
we define the injectivity radius at p to be ball of radius s a abut $\operatorname{inj}_{p}=\sup \left\{r\right.$ st $\left.\exp _{p}\right|_{B_{0}(r)}$ is a differ. onto its image 3
example:

so ing $_{N}=\pi$
if $r<\operatorname{inj}$ then $B_{p}(r)=\operatorname{im} \exp \left(B_{0}(r)\right)$
is called the geodesic ball of radius r and its boundary $S_{p}(r)$ the geodesic sphere
one last thing we will need (for now) is the Hodge star operator
let V be a vector space with inner product and e_{1}, \ldots, e_{n} an oriented orthonormal basis and $e^{\prime}, \ldots, e^{\wedge}$ the dual basis for V^{*}

$$
: \Lambda^{k} V^{} \rightarrow \Lambda^{n-k} V^{*}
$$

is defined by sending the basis element $e^{n_{1}} \ldots \ldots e^{p_{k}}$ to $e^{J_{1}} 1 \ldots 1 e^{J_{n-k}}$
where $e_{1_{1}},-e_{n}, e_{J_{1}}, \ldots e_{J_{n-k}}$ is an oriented basis for V erencése: 1) $* 1=e^{\prime} \wedge \ldots n e^{n}$

$$
\text { So } *: \Lambda^{0} \vee \rightarrow \Lambda^{n} V: r \mapsto r e^{\prime} \Lambda \ldots c e^{n}
$$

2) $* e^{i}=(-1)^{2-1} e^{1} \wedge \ldots 1 \hat{e}^{i} \wedge \ldots 1 e^{n}$
3) **: $^{(\rho} V^{* *} \rightarrow \Lambda^{\rho} V^{*}$ is multiplication by $(-1)^{p(n-p)}$
4) $\langle v, w\rangle=*(v \wedge * w)=*(w \wedge * v)$
under
product
now if g is a metric on M then it gives an inisenproduct on $T_{p} M$ for all $\in M$ so we can apply the Hodge star to each $\tau_{p} M$ to get a Hodge star operator

$$
*: \Omega^{k}(\mu) \rightarrow \Omega^{n-k}(\mu)
$$

exercise:
given a metric eg we get an isomorphism

$$
\phi_{g}: \tau M \rightarrow \tau^{*}(M): v \mapsto g(v, \cdot)
$$

If we let $\neq(M)=$ vector fields on M
and $C^{\infty}(M)=$ functions on M
then for a 3 -monifold we hove

$$
\begin{aligned}
& C^{\infty}(\mu) \xrightarrow{D_{1}} \nexists(M) \xrightarrow{D_{2}} \not \forall(M) \xrightarrow{D_{3}} C^{\infty}(\mu) \\
& \downarrow \text { d } \quad \downarrow \phi_{g} \quad \downarrow \circ 0 \phi_{g} \downarrow i d \\
& \Omega^{0}(M) \xrightarrow{d} \Omega^{(}(M) \xrightarrow{d} \Omega^{2}(N) \xrightarrow{d} \Omega^{3}(M)
\end{aligned}
$$

the vertical arrows are isomorphisms define D_{i} using is morphusms and d Show for \mathbb{R}^{3} with standard metric

$$
D_{1}=\text { gradient }
$$

$$
\begin{aligned}
& D_{2}=\text { curl } \\
& D_{3}=\text { dwergence }
\end{aligned}
$$

III Contact Geometry
a contact structure on a 3 -manifold M is a plane field $\quad 3^{2} \subset T M$

$$
\stackrel{\downarrow}{M}
$$

that is non-integrable
(ie. not tangent to a surface along an open set in the surface)
one can show $\}$ is contact $\Leftrightarrow \exists\left(l_{\text {cully }}\right)$ a 1 -form α st.

$$
\begin{aligned}
& 3=\operatorname{ker} \alpha \\
& \alpha_{1} d \alpha>0
\end{aligned}
$$

(we always assume α can be defined globally)
examples:

1) $\left.\mathbb{R}^{3}\right\}_{\text {sta }}=\operatorname{ker}\left(d z-r^{2} d \theta\right)=\operatorname{span}\left\{\frac{\partial}{\partial r}, r^{2} \frac{\partial}{\partial z}+\frac{\partial}{\partial \theta}\right\}$

2) $S^{3}=$ unit sphere $11 \mathbb{C}^{2}$

$$
\begin{aligned}
3_{\text {std }} & =\text { complex tangencies to } S^{3} \\
& =\text { her }\left(x_{1} d y_{1}-y_{1} d x_{1}+x_{2} d y_{2}-y_{2} \partial x_{2}\right) \\
& =\text { orthogonal planes to Hop fibration }
\end{aligned}
$$

3) $\mathbb{R}^{3} \quad 3_{0 t}=\operatorname{ker}(\cos r d z+r \sin r d \theta)$

note $D=\{(r, \theta, z) \mid z=0, r \leq \pi\}$
has 20 tangent to ? of such a disk is called an oventwisted disk if a contact structure has soch a disk if is called oventwisted otherwise called tight

Facts:

1) (Darboux 1882) every contact structure is locally equivalent to $\left.\left(\mathbb{R}^{3},\right\}_{s+d}\right)$
2) (Lutz, Martinet 1970) every closed oriented 3-manifold admits a contact structure
3) (Bennequin 1.982)
$\left(S^{3}, l_{s+d}\right)$ and $\left(\mathbb{R}^{3}, i_{\text {std }}\right)$ are tight (Birth of contact topology!)
4) (Eliáshberg 1992)
classified oventwisted contact structures

$$
\begin{aligned}
\left\{\begin{array}{c}
\text { of structures upton } \\
\text { isotopy }
\end{array}\right\} \leftrightarrow & \\
& \left.\begin{array}{c}
\text { (an under s fields upton } \\
\text { homotopy }
\end{array}\right\} \\
& \text { alg vebraic topology }
\end{aligned}
$$

5) (Eliashberg 1992)
there is a unique tight contact structure on S^{3}
6) (Etnyre-Honda 2001)
not all closed or céntuble 3-manifolds have tight contact structures
 (Poincare homology sphere with opposite orientation)
later Liscu-Stipsizz: all Seifent fibered spaces have tight contact structures except

7) tight contact structures are important
in $C R$-geometry
as boundaries of symplectic manifolds
in fluid mechanics
in knot theory
in 3 -manifold topology
and they have a rich and subtle structure
Major open question
Do hyperbolic manifolds admit
tight contact skuctures

IV Metrics and Contact Structures
let 3 be a plane field on a 3 -manifold M
exencise: the Frobenius theorem says 7 is integrable
iff the flow of a non-zero vector field tangent to ? preserves?
so if 3 contact then it must twist as you flow along a vector field tangent to?
let's see how to measure this with a Riemonncan metric let g be a metric on M and $\}$ be a plane field
fix an orthonormal basis u,v for 3 and let $n=$ oriented unit normal to $\}$
we want to measure how much v twists as we flow along or

let ϕ_{t} be the flow of u

$$
g\left(\left(\Phi_{-t}\right)_{p} v, n\right)
$$

says how much v twists but to nomalize we scale and define

$$
\theta(t)=\cos ^{-1}\left(-\frac{g\left(\left(\phi_{-t}\right)_{*} v, n\right)}{\left\|\left(\phi_{-t}\right)_{v} v\right\|}\right)
$$

EKM papen
for 3 to be a (positive) contact structure $\theta(t)$ must be increasing
we call $\theta^{\prime}=\theta^{\prime}(0)$ the instantanious rotation of ? θ^{\prime} is a function on M and 3 is contact $\Leftrightarrow \theta^{\prime}>0$
note: θ^{\prime} might depend on v,u
to see this is not the case we can rewrite (1) as

$$
\cos \theta(t)=-\frac{g\left(\left(\phi_{-}\right)_{*} v, n\right)}{\left\|\left(\phi_{-t}\right) \times v\right\|}
$$

differentiate with respect to t to get

$$
\begin{aligned}
& \theta^{\prime}(t) \sin (\theta(t))=\frac{d}{d t} \frac{\left.g\left(\phi_{-t}\right)_{x} v, n\right)}{\left\|\left(\phi_{-}\right)_{x} v\right\|} \\
& \left.\quad=\frac{d}{d t}\left(\frac{1}{\left\|\left(\phi_{-}\right)_{x} v\right\|}\right) g\left(\left(\phi_{+}\right)_{x} v, n\right)+\frac{1}{\left\|\left(\phi_{-t}\right)_{x} v\right\|} \frac{d}{d t} g\left(\phi_{-t}\right)_{x}, n\right)
\end{aligned}
$$

$$
\theta^{\prime}=(\quad) g(u, n)+\frac{1}{1} g\left(\mathscr{L}_{u} v, n\right)
$$ of g

$$
\theta^{\prime}=g(n,[u, v])
$$

if α is any contact form for ? then $m \alpha(\cdot)=g(n, \cdot)$ for some function m

So $\theta^{\prime}=m \alpha([u, r])$

$$
\begin{aligned}
& =m(u \cdot \alpha(v)-v \cdot \alpha(u)+\alpha([u, v]) \\
& =m d \alpha(u, v)
\end{aligned}
$$

now if $u^{\prime} \cdot v$ 'wo other oriented orthonormal vector fields spanning ? then
$u^{\prime}=a u+b v \quad$ for functions a, b, c, d
$v^{\prime}=c u+d v$
St. $a c-b d=1$
now $m d \alpha\left(u^{\prime} v^{\prime}\right)=m d \alpha\left(a u+b r_{1} c u+d v\right)$

$$
=m((a d-b c) d \alpha(u, r))
$$

$$
=m d_{\alpha}(u, v)
$$

So θ^{\prime} only depends on 3 and g
definition:
we say a metric g on M is weakly compatible with a contact structure $?$ if there is a Reeb vector field R for 3 such that $\left.R \perp_{g}\right\}$
(recall R is a Reed vector field for $?$ if R is fransuens to $\}$ and flow of R preserves? given a contact form \propto for $?, \exists$ a unig̀ve Reed field R_{α} satisfying $\alpha\left(R_{\alpha}\right)=1$ and $\left(R_{\alpha} d_{\alpha}=0\right)$

Proposition 1:
let α be a contact form on M
ga Riemannion metric
R_{α} the Reel field of α
Then the following are equivalent

1) $\left.R_{\alpha} \perp_{g}\right\}$ (ie. g weakly compact. with 3)

Hthelge 2) $* d \alpha=\theta^{\prime} \alpha$
Star
3) $g(u, v)=\frac{\rho}{\theta^{\prime}} d \alpha(u, \phi(v))+\rho^{2} \alpha(u) \alpha(r)$
where $\rho=\left\|R_{\alpha}\right\|$
σ is complex structure on? given by rotation by $\pi / 2$
$\left.\phi: T_{M} \rightarrow\right\}$ is projection to $\}$ followed by J
note: given any contact form α with Reed field R_{α} any positive functions $\rho, \theta^{\prime}: M \rightarrow \mathbb{R}$ and any complex structur $J:\} \rightarrow\}$
such that $d x(v, v, v)>0$ for $v \neq 0$
and $d \alpha(J v, J r)=d \alpha(v, v)$ (lots of these)
define $T M=\underbrace{\left\{+\operatorname{span}\left\{R_{\alpha}\right\} \xrightarrow{\rho r q}\right\} \xrightarrow{J}}_{\phi}\}$
then $g(u, v)=\frac{f}{\theta^{\prime}} d \alpha(u, \phi(v))+\rho^{2} \alpha(u) \alpha(v)$
is weakly compatible with ?
so every 3 has lots of weakly compatible metrics!
Proof: $1 \Rightarrow 2$)
set $\rho=\left\|R_{\alpha}\right\|$
unit orthogonal to $\}$ is $n=R_{\alpha} / \rho$
so $\rho \alpha(v)=g(n, v)$
from above computation we have

$$
\theta^{\prime}=\rho d \alpha(u, v)
$$

for any oriented orthonormal basis ur for $\}$ (might only $\begin{gathered}\text { exist locally) }\end{gathered}$ $\left\{e_{1}, e_{2}, e_{3}\right\}=\left\{u_{1} v, n\right\}$ is an or thonormal basis for $T M$ let $\left\{e^{1}, e_{1}^{2}, e^{3}\right\}$ be the dual basis for $T^{*} M$
so $e^{3}=\rho \alpha$ and $\alpha=\frac{1}{p} e^{3}$
write $d \alpha=a e^{1} \wedge e^{2}+b e^{1} \wedge e^{3}+c e^{2} \wedge e^{3}$
note: $C_{e_{3}} d \alpha=C_{R_{\alpha / \rho}} d \alpha=\frac{1}{\rho} C_{R_{\alpha}} d \alpha=0$

$$
\begin{aligned}
\therefore b & =c=0 \\
a=d \alpha\left(e_{1}, e_{2}\right) & =d \alpha\left(u_{1} v\right)=\theta^{\prime} / \rho \\
d \alpha & =\theta^{\prime} / \rho e^{\prime} \wedge e^{2}
\end{aligned}
$$

exercise: $* e^{\prime} n e^{2}=e^{3}$
So $* d \alpha=\theta^{\prime} / \rho e^{3}=\theta^{\prime} \alpha$
2) \Rightarrow 1) let v, u be an oriented orthonormal basis for? n the unit normal to ?
u, v, n an orthonormal basis for TM
denote if e_{1}, e_{2}, e_{3}
let e_{1}, e^{2}, e^{3} be the dual basis

$$
\begin{aligned}
& * d \alpha=\theta^{\prime} \alpha=\theta^{\prime} m e^{3} \quad \text { some } m \\
& \therefore d \alpha=* * d \alpha=* \theta^{\prime} \alpha=\theta^{\prime} m e^{\prime} e^{2}
\end{aligned}
$$

So $c_{n} d \alpha=0 \quad \therefore n$ parallel to X_{α}
ie. X_{α} orthogonal to 3
3) $\Rightarrow 1$) is obvious so we are left to show

1) \Rightarrow 3) let $\Lambda_{\}}^{\prime}=\left\{\beta \in \Lambda^{\prime}: \beta\left(R_{\alpha}\right)=0\right\}$
exercise:

$$
\begin{aligned}
& \left.\phi_{d \alpha}:\right\} \rightarrow \Lambda_{3}^{\prime}: v \longmapsto d \alpha\left(v_{\cdot} \cdot\right) \\
& \left.\phi_{g}:\right\} \rightarrow \Lambda_{3}^{\prime}: v \longmapsto g\left(v_{1} \cdot\right)
\end{aligned}
$$

are both isomorphisms

$$
\operatorname{set} A=\phi_{g}^{-1} \circ \phi_{d \alpha}
$$

Claim: $A^{2}=-\frac{1}{m^{2}}$ id for same positive $m: M \rightarrow \mathbb{R}$
indeed at a porit pick a symplectic basis for $d \alpha$

$$
\text { le. } e_{1}, e_{2} \text { st. } d \alpha=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

let f^{\prime}, f^{2} be the algebraic dual basis

$$
\phi_{d \alpha}: \begin{aligned}
& e_{1} \longmapsto f^{2} \\
& e_{2} \longmapsto-f^{\prime}
\end{aligned}
$$

g is represented by some positive definite $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right) \quad a c-b^{2}>0$

$$
\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)^{-1}=\frac{1}{a c-b^{2}}\left(\begin{array}{cc}
c & -b \\
-b & a
\end{array}\right)
$$

So $\phi_{g}: e_{1} \longmapsto a f^{\prime}+b f^{2}$

$$
e_{2} \longmapsto b f^{\prime}+c f^{2}
$$

$$
\therefore \quad \phi_{g}^{-1}: f^{\prime} \longmapsto \frac{1}{f^{2} \longmapsto} \longmapsto \frac{1}{a c-b^{2}}\left(c e_{1}-b e_{2}\right)
$$

and $\phi_{9}^{-1} \circ \phi_{d \alpha}: \begin{aligned} & e_{1} \longmapsto \frac{1}{a_{c}-b^{2}}\left(-b e_{1}+a e_{2}\right) \\ & e_{2} \longmapsto \frac{1}{a} \text {. }\end{aligned}$
$\frac{1}{a c-b^{2}}\left(-c e_{1}+b e_{2}\right)$
1.e. its matrix is $A=\frac{1}{a c-b^{2}}\left(\begin{array}{cc}-b & -c \\ a & b\end{array}\right)$

$$
\begin{aligned}
\therefore A^{2} & =\frac{1}{\left(a c+b^{2}\right)^{2}}\left(\begin{array}{cc}
-b & -c \\
a & b
\end{array}\right)\left(\begin{array}{cc}
-b & -c \\
a & b
\end{array}\right) \\
& =\frac{1}{\left(a c+b^{2}\right)^{2}}\left(\begin{array}{cc}
b^{2}-a c & b c-b c \\
-b a+b a & b^{2}-a c
\end{array}\right)=-\frac{1}{(a c+b)}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

so if $m=\sqrt{a c-b^{2}}, \quad A^{2}=-\frac{1}{m^{2}}, d$
set $J=m A$
note $J^{2}=m^{2} A^{2}=-i d_{?}$
So J \& a complex structure on?
for $\left.v_{\imath} w \in\right\}$
(1)

$$
\begin{aligned}
g(A v, w) & =\phi_{g}(A v)(w)=\phi_{d \alpha}(v)(w) \\
& =d \alpha(v, w)=-d \alpha(w, v) \\
& =-g(A w, v)=-g(v, A w) \\
\therefore g\left(J v_{1} w\right) & =-g(v, J w)
\end{aligned}
$$

(2) $g\left(J_{v} J w\right)=-g\left(v, J^{2} w\right)=g\left(v_{l} w\right)$
(3)

$$
\begin{gathered}
g\left(v_{1} w\right)=-g\left(v, J^{2} w\right)=-m^{2} g\left(v_{1} A^{2} w\right) \stackrel{(1)}{=}-m^{2} d \alpha(A w, v) \\
=-m d \alpha(J w, v)=m d \alpha\left(v_{1} J_{w}\right)
\end{gathered}
$$

let u,v be orthonormal bases for ?, 1 unit normal to? a general vector is

$$
w=a u+b v+c n
$$

we know $l_{n} d \alpha=l_{R_{/ / / R_{\alpha} \|}} d \alpha=0$
so

$$
\begin{aligned}
d \alpha(a u+b v & +c u, v) \\
& =d \alpha(a u+b v, v) \\
& =d \alpha\left(w^{3}, v\right)
\end{aligned}
$$

now

$$
\begin{align*}
g(U, V) & =g\left(U^{?}, V^{3}\right)+g\left(U^{n}, V^{n}\right) \\
& \stackrel{(3)}{=} m d \alpha\left(U^{3}, J V^{3}\right)+g(g(U, n) n, g(V, n) n) \\
& =m d \alpha(U, \phi(V))+g(U, n) g(V, n) \\
& =m d \alpha(U, \phi(V))+p^{2} \alpha(U) \alpha(V) \tag{4}
\end{align*}
$$

(since $\underbrace{\| R_{\alpha}}_{\rho} \| \alpha=\ln _{n} g$)
we need to detumine m
for this note for $v \in$?

$$
g(v, J v)=m g(v, A v)^{(1)}=m d \alpha(v, v)=0
$$

so $\bar{v} v$ orthogonal to v (so J rotation by $\pm \pi / 2)$
(5)

$$
\text { if } \begin{aligned}
\|v\|=1 \text { then } d_{\alpha}(v, J v) & =m d \alpha(v, A v) \\
& =m g(A v, A v) \\
& =\frac{1}{m} g(v, v)>0
\end{aligned}
$$

so v, J_{v} oriented orthonormal basis for $\}$ (J rotation
let $\left\{e_{1}, e_{2}\right\}=\left\{v_{1} v_{v}\right\}$ and $e_{3}=n=R_{\alpha} / \rho$ and e_{1}^{1}, e^{2}, e^{3} be dual basis
as in proof of 1$) \Rightarrow 2$) we see

$$
\left.\begin{array}{l}
\qquad d \alpha=\frac{\theta^{\prime}}{\rho} e^{\prime} \wedge e^{2} \\
\therefore \frac{\theta^{\prime}}{\rho}=d \alpha\left(e_{1}, e_{2}\right)=d \alpha\left(v, v_{v}\right) \\
=\frac{1}{m} g(v, v)=\frac{1}{m} \\
\text { so } m=\frac{\rho}{\theta^{\prime}}
\end{array}\right\}
$$

definition:
a contact structure 3 and a metric g are compatible if there is a contact form α for $\}$ such that

$$
\begin{aligned}
& \|\alpha\|=1 \text { and } \\
& * d \alpha=\theta^{\prime} \alpha
\end{aligned}
$$

for some constant θ^{\prime}
(this is equivalent to saying the unit orthogonal to 3 is a Reed field and the instantanious rotation is constant)

Remark:
This is the same as Cher and Hamilton's definition from 1984 of $\theta^{\prime}=2$
This form of compatibility has been extensively studied from a Rièmanicion geometry perspective
(see book of David Blare and below)
we note that given a contact structure? there is a projection

$$
\{\text { all metrics }\} \xrightarrow{\pi_{1}}\left\{\text { compatible metrics u/ } \theta^{\prime}=1\right\}
$$

to define π_{2} note that ${ }^{\prime} f g_{3}$ is an inner product on 3 then we can get a comparable metric as follows:

- g_{3} gives area form Ω on $\}$
- take any contact form α_{0} for $?$
note $d \alpha_{0}$ on area form on $?$
and for any $f>0,\left.d\left(f \alpha_{0}\right)\right|_{\}}=\left.f d \alpha_{0}\right|_{\text {? }}$
so $\exists!$ function f_{0} st. $\left.d\left(f_{0} \alpha\right)\right|_{?}=\Omega$
set $\alpha=f_{0} \alpha_{0}$
- define g to be g_{3} on 3 and R_{α} to be orthogonal to 3 and of unit length
now define $\pi_{3}(g)=$ extension of $g l_{3}$ to a compatible metric
exercise: if g is compatible with $\}$ and $\theta^{\prime}=1$ then $\pi_{3}(g)=g$
Questions:

1) Low do geometric quantities, like various curvatures, of g and $\pi_{3}(g)$ compar? What if $\pi_{3}(g)$ is "close" to g ?
2) if $\}_{t}$ is a family of contact structures how do $\pi_{r_{t}}(g)$ compair?
3) What can you say about image $\left(\pi_{3}\right)$
4) 'f you fix g st $g \in \operatorname{in} \pi_{3} \cap$ in π_{3}, what can you say about 3 and 3^{\prime} ?
recall if $E \rightarrow M$ is a bundle then a connection on E is a way to differentiating sections of E
more specifically if $\Gamma(E)=$ sections of E
and $\not \mathscr{}(M)=\Gamma(T M)=$ vector fields on M then a connection is a map

$$
\begin{aligned}
\nabla: X(M) \times \Gamma(E) & \rightarrow \Gamma(E) \\
(v, \sigma) & \longmapsto \nabla_{v} \sigma
\end{aligned}
$$

satisfying

1) $\nabla_{v} \sigma$ is linen in $X(M)$ as a $C^{\infty}(M)$ module
2e. $f_{r g} \in C^{\infty}(M), v, w \in \notin(M)$

$$
\nabla_{f v+g \omega} \sigma=f \nabla_{v} \sigma+g \nabla_{\omega} \sigma
$$

2) $\nabla_{v} v$ is liven in $\Gamma(E)$ as an \mathbb{R}-vector space
ie. $\quad \nabla_{v} a \sigma+b \eta=a \nabla_{v} \sigma+b \nabla_{v} \eta$ for $a, b \in \mathbb{R}$
3) $\nabla_{\gamma} \sigma$ satisfies a product rule

$$
\begin{aligned}
& \nabla_{v}(f \sigma)=f \nabla_{v} \sigma+(v \cdot f) \sigma \\
& \text { for } f \in C^{\infty}(M)
\end{aligned}
$$

a linear connection is a connection on $\not 甘(M)=\Gamma(T M)$

Facts: 1) connections exist for any E
2) given a linear connetion there exist unique connections on $\underbrace{T \mu \otimes \ldots \otimes T M \otimes T^{*} \mu \otimes_{\ldots} \underbrace{*}_{l} \mu}_{k}$ such that

1) on $C^{\infty}(M)\left(=0^{\text {ty }}\right.$ tensor power of $\left.T M\right)$

$$
\nabla_{v} f=v \cdot f=d f(v)
$$

2) $\nabla_{v}(\sigma \otimes \eta)=\left(\nabla_{v} \sigma\right) \otimes \eta+\sigma \otimes \nabla_{v} \eta$
3) $\nabla_{v}(\operatorname{tr} \sigma)=\operatorname{tr}\left(\nabla_{v} \sigma\right)$
then trace means plug one of the sections of $T M$ into one of the sections of $T^{*} M$
4) given a metric g there is a unique linear connection satisfying
5) $\nabla_{v} g(u, \omega)=g\left(\nabla_{v} u, \omega\right)+g\left(u, \nabla_{v}, w\right)$
(compatible)
6) $\nabla_{v} w-\nabla_{w} v=[v, w]$
(symmetric)
this is called the Levi-Civita connection of g we will always use this connection
lemma 2:
If $\}$ and g are weakly compatible and n is the unit vector field normal to? then

Where v^{\prime} is the component of v in ?
and $\rho=\|R\|$ where R is the Reel b vector field showing weak compatibility

Proof: for any vector field u

$$
0=\nabla_{u} g(n, n)=2 g\left(\nabla_{u} n, n\right)
$$

so $\nabla_{1} n$ is tangent to $\}=n^{\perp}$
now for $v \in\}$

$$
\begin{aligned}
& g\left(\nabla_{n} n, v\right)=-g\left(n, \nabla_{n} v\right) \quad\left(g(n, v)=0 \text { so } g\left(\nabla_{n}, v_{1}\right)+g\left(v \nabla_{n} n\right)=0\right) \\
& \left.=-g\left(n, \nabla_{n} v-\nabla_{v} n\right) \quad \text { (from above } g\left(1, \nabla_{v} n\right)=0\right) \\
& =-g(n,[n, v]) \\
& =-\rho \alpha([n, v]) \quad(\text { recall } g(n, \cdot)=\rho \alpha(0)) \\
& =\rho\left(d \alpha(n, v)^{n}-n \cdot \alpha(v)^{\alpha}+v \cdot v \cdot \alpha(n)\right) \\
& (d \alpha(u, v)=u \cdot \alpha(v)-v \cdot \alpha(u)-\alpha([u, v]) \\
& =\rho v \cdot\left(\frac{1}{\rho} g(n, n)\right) \quad \text { (as above) } \\
& =\rho v \cdot\left(\frac{1}{\rho}\right)=-\rho\left(\frac{1}{\rho^{2}} d \rho(v)\right) \\
& =-d(\ln \rho)(v) \\
& =-g(\nabla \ln \rho, v) \quad \text { (def } \wedge \text { gradient) }
\end{aligned}
$$

so $\nabla_{n} n$ is in $\{$ and pairs with all vectors in $\}$ the same as

$$
-\nabla \ln \rho, \therefore \nabla_{n} n=-(\nabla \ln \rho)^{3}
$$

Remark:

1) note that is 3 and g are compatible then the flow of the associated Reeb vector field is tangent to geodesics
2) Zeghib showed that no closed hyperbolic manifold can have a non-singular vector field whose flow traces out geodesics this is one of the major motivations for introducing weakly compatible metrics!

IV Convexity
let S be a hypasurface in a Riemonnion manifold (μ, g)
that bounds a domain U
U is gesdesically convex if for any geodesic γ
tangent to S at a point ρ we have

$$
\gamma \cap u=\{p\}
$$

${ }^{\imath}$ locally we ibid of p in r only intersects U at p

lemma 1:
if $f: M \rightarrow \mathbb{R}$ sit. $c \in \mathbb{R}$ is a regular value and

$$
\begin{aligned}
& S=f^{-1}(c) \\
& U=f^{-1}((-\infty, c])
\end{aligned}
$$

then U is geodesicially convex

$$
\Leftrightarrow
$$

$$
\nabla^{2} f(v, v)>0 \quad \forall v \in T S
$$

here $\nabla^{2} f(v ; v)$ is the Hessian of f and is defined by

$$
\begin{aligned}
\nabla^{2} f(u, v)= & \left(\nabla_{u} d f\right)(v) \\
& \left(=\nabla_{u} \nabla_{v} f-\nabla_{\nabla_{x} r} f=\frac{1}{2} \mathscr{L}_{\nabla f} g(u, v)\right)
\end{aligned}
$$

idea: compose f with a geodesic to get map $(-\varepsilon, \varepsilon) \rightarrow R$ its first derivative is 0 since tangent to S its second derivative is positive ...
let

$$
\operatorname{conv}(g)=\sup _{r}\left\{\begin{array}{l}
B_{1}(p) \text { is gesdesically convert } \\
\text { for all } p \in M
\end{array}\right\} \begin{aligned}
& \text { convexity } \\
& \text { radius }
\end{aligned}
$$

example: unit $s^{2} \subset \mathbb{R}^{3}$ with induced metric has

$$
\text { cons }=\pi / 2
$$

The 2:
if $K>0$ and $\sec (g) \leq K$ then

$$
\operatorname{conv}(g) \geq \min \left\{\operatorname{ing}(g), \frac{\pi}{2 \sqrt{k}}\right\}
$$

where ing (g) is the injectivity radices if $\sec (g) \leq 0$, then $\operatorname{conv}(g)=\operatorname{in})(g)$
now for symplectic convexity
let (ω, J) be an almost complex manifold Ω a domain in W bounded by Σ
let $C \subset \tau \Sigma$ be the complex tangencies to Σ

$$
\text { xe. } e=T \Sigma \cap J(T \Sigma)
$$

we say Σ (or Ω) is (strongly) pseudo convex if C is a positive contact structure (and Σ oriented as $\partial \Omega$)
if $f: w \rightarrow \mathbb{R}$ is a function and c a regular value sit.

$$
\begin{aligned}
& \Sigma=f^{-1}(c) \\
& \Omega=f^{-1}((-\infty, c])
\end{aligned}
$$

then

$$
e=\operatorname{ker}(-d f \circ J)
$$

so e a contact structure

$$
L(v, v)>0 \text { for } v \in C
$$

where

$$
L(u, v)=-d(d f \circ J)(u, J v)
$$

is the levi form
Why do we care about psendoconvex hypensurfaces?
answer: control holomorphic curves given a Riemannion surface (F, j) and an almost complex monifold (X, J) a map $u: F \rightarrow X$ is called holomorphic if
$d u 0 j=J 0 d u$ (du preserves respects almost complex stirs)
if Σ is pseudoconvers surface bounding Ω and $u(F) \subset \Omega$ then $u(F)$ cant be tangent to Σ (if $\Sigma=f^{-1}(c)$ as above fou satisfies a "maximum pricicipal")
where do we use holomorphic curves?
Th \quad (Hofer):
if M is closed and $\}$ is an overtwisted contact str on M, then any Reeb vector field for 3 has a close orbit

Sketch of proof:
consider $W=(-\infty, 0] \times M$
$1 f \alpha$ is a contact form for 3 , then $\omega=d\left(e^{t} \alpha\right)$ a symplectic structure on W and \exists an almost complex str, J on W that sends R_{α} to $\frac{\partial}{\partial t}$ and preserves 3
${ }^{*}$ neb field word on $(-\infty, 0]$
you can easily check $\{t\} \times M$ pseudo convert $\forall t$
let D be an oventwisted disk in $(\mu, 3)$
its characteristic foliation is
${ }^{*}$ singular foliation
tangent to IS TD

- Bishop proved there are holomorphic disks

$$
u_{t}:\left(D_{1}^{2} \partial D^{2} \rightarrow(W,\{0\} \times D) \quad t \in[0, \varepsilon)\right.
$$

such that
u_{0} constantly $P \in D$
$\bigcup_{t} u_{t}\left(\partial D^{2}\right)$ fill a abd of p in D

Fact: $u\left(\partial D^{2}\right)$ must be transuense to leaves of D_{3} (if not (another max principal) constant)

- "Standard" functional analysis says
if you extend the family of u_{4} above they always fill out as open subset of D
(this is because the holomorphic curve equations are elliptic)
- What happens if we have a Cauchy sequence of holomorphic disks $u_{n}:\left(D_{1}^{2}, \partial D^{2}\right) \rightarrow(\omega,\{0\} \times D)$
if in u_{n} stay in $[a, 0] \times W$ for some a then Arzelidi-Ascoli says they will converge to another holomorphic dist
unless the ∇u_{n} blows up but in this situation Gromov says that cant happen ("no bubbling" slice all $\{t\} \times M$ convex)
so if u_{1} don't converge to a holomorphic disk, then linage of u_{n} must "go to -a"
Hofer says if this is the case then there must be a pencoclic orbit in R_{α} specifically, limit of u_{n} will be assymptotic to $(-\infty, 0] \times r$ for some periodic orbit

so if no periodic orbits any un converge to another holomorphic dish
\therefore subset of D filled by boundaries of holomorphic disks is closed!
- in this case subset of D filled by such boundaries is open and closed \therefore all of $D!$ but first boundary of holomorphic disk to touch $D D$
will be tangent to $\partial D=$ leaf of D_{i}
this contradicts Fact above
\therefore must have closed orbit in flow of R_{α} !
note: if M not closed, but $(-\infty, 0] \times \partial \mu$ pseado-convex then same argument says must be periodic orbit!
Putting 2 convexities together
Th ${ }^{m} 3$ (E-Komendarczyh-Massot):
let g be weakly compatible with $(M, 3)$
S a surface in M cut out by f and
U the sublevel set

$$
\begin{aligned}
& \Sigma=\mathbb{R} \times S \subseteq \mathbb{R} \times M \\
& \Omega=\mathbb{R} \times U \subseteq \mathbb{R} \times M
\end{aligned}
$$

let R is the Reeb field for 3 showing weak compatibility with g J be an almost complex structure on $\mathbb{R} \times M$ that preserves 3 and sends R to $\frac{\partial}{\partial t}$
for any $v \in C \in$ complex tangencies to Σ
we have

$$
\begin{aligned}
L(v, v)= & \nabla^{2} f(v, v)+\nabla^{2} f(J v, \tau v)\|\beta\| \\
& -\|\tau\|^{2} g\left(\nabla \ln \rho-\left(\nabla \ln \theta^{\prime}\right)^{2}, \nabla f\right)
\end{aligned}
$$

the proof is a long computation
we can use this to prove a Darboux theorem with estimates given $(\mu, 3)$ a contact manifold and g a metric on M
we define

$$
\tau(g)=\sup \left\{\begin{array}{c}
3 \text { restricted to } B_{r}(\rho) \\
\text { is tight for all } p \in M
\end{array}\right\}
$$

tightness radius or
Darboux radius
Th ${ }^{m} 4$ (EM) :
If g is a metric compatible with $(M, 3)$ then

$$
\tau(g) \geq \operatorname{conv}(g)
$$

note: if M compact if is easy to use Darboux + Lebesgue number to prove $\tau(g)$ bounded by positive number but not possible on non-compart manifold and computing a lower bound in compact case would be hard

Proof:
fix a posit $p \in M$ for all $r<\operatorname{conv}(g)$ we know $B_{r}(p)$ is geodesically convex
let $C_{r}=$ complextangencies to $\partial\left(\mathbb{R} \times B_{r}(\rho)\right)$
then $\nabla^{2} f(v, v), \nabla^{2} f\left(v_{v}, v_{v}\right) \geq 0$ and one must be positive

$$
\therefore L(v, v)>0
$$

and $e_{r} p$ seudoconvex for $r<\operatorname{conv}(g)$
we can adapt a theorem of Hofer (see note above) to see that if $\left.3\right|_{B_{r}(p)}$ is oventwisted then there is a close Reeb orbit γ in $B_{r}(\rho)$ recall γ is also a geodesic
but now

let r^{\prime} be the largest radius st:

$$
\partial B_{r_{1}}(\rho) \cap \gamma
$$

must have $\partial B_{1}(\rho)$ tangent to γ
and $\gamma \subset B_{r^{\prime}}(\rho)$ convexity
So $\left.3\right|_{B_{r}(\rho)}$ tight!
Th M 5 (EM):
this is
let $\left(M_{1} i\right)$ be a contact 3 -manifold weakly compatible with a complete Riemonnion metric 9
if

$$
\sec (g) \leq-m_{g}^{2}
$$

then $(\mu, 3)$ is universally tight
here

$$
\begin{aligned}
& M, 3) \text { w Universally tight } v^{\perp} \text { is component of } v \\
& \text { pep. to ? }
\end{aligned}
$$

${ }_{r}$ call this D_{g}
where ρ is the length of a Reeb rector field
θ^{\prime} is the cistantanious rotation of? The ${ }^{2}$, from introduction section

$$
\begin{aligned}
-\sec & \geq m_{g}^{2} \\
m_{g} & \leq \sqrt{-\sec } \\
\leq & \sqrt{k}
\end{aligned}
$$

Proof:
pull evenyth ing back to the universal cover $\tilde{M} \cong \mathbb{R}^{3}$
let $B_{p}(r)$ be ball of radus r about p
(f $\sec (g) \leqslant-k$ for some $k>0$, then
below we see for $c t_{k}(r)>M_{g}$

$$
\partial\left(\mathbb{R} \times \mathbb{B}_{r}(p)\right) \text { is pseado-convex }
$$

where $c t_{k}(r)=\sqrt{k} \operatorname{coth}(\sqrt{k} r)$

but we are assuming $\sqrt{k} \geq \sqrt{-\sec (g)} \geq m_{g}$ so $\partial\left(\mathbb{R} \times B_{r}(p)\right)$ is pseado-convex for all r now arguing as in last proof if $\left.\left(\mathbb{R}^{3},\right\}\right)$ is oventuristed \exists a closed Reeb orbit in $B_{r}(\rho)$ for some r note: $\mathbb{R} \times \gamma$ is holomorphic in $\mathbb{R} \times \tilde{M}$ (with J used above) start shrinking $B_{r}(p)$ to first C_{0} whee $\partial B_{0}(p) \cap \gamma \neq \varnothing$ there $\mathbb{R} \times r$ will be tangent to $\mathbb{R} \times \partial B_{r_{0}}(p)$ but this contradicts pseudo convexity $\therefore M=\mathbb{R}^{3}$ is tight
now for the above claims about pseadoconvexity fix p and let

$$
r_{p}: M \rightarrow \mathbb{R}: x \longmapsto d(p, x)
$$

If $K>0$ and $\sec (g) \leq-K$ then it is known that

$$
\nabla^{2} r_{g} \geq c t_{k}(r) g
$$

now for $v \in e_{r}$ we can write it as

$$
v=v^{3}+a R+b \frac{\partial}{\partial t}
$$

recall J is an isometry on $\}$ so

$$
\begin{aligned}
g\left(v_{1} v\right) & =g\left(v_{1}^{3} v^{3}\right)+a^{2}+b^{2} \\
& =g\left(J v^{3}, J v^{3}\right)+a^{2}+b^{2}=g\left(J v, v_{v}\right)
\end{aligned}
$$

so

$$
\begin{aligned}
L(v, v) & =\nabla^{2} r_{p}(v, v)+\nabla_{r_{p}}^{2}\left(J_{v,} J_{v}\right)-g\left(D_{g}, \nabla r_{p}\right)\|v\|^{2} \\
& T h^{\underline{m}} 3 \\
\geq & 2 c t_{k}(r)\|v\|^{2}-\left\|\nabla r_{p}\right\| g\left(D_{g}, n_{p}\right)\|v\|^{2} \\
\geq 2 c t_{k}(r)\|v\|^{2}-\left\|D_{g}\right\|\|v\|^{2} & \text { normal } \\
\geq 2 c t_{k}(r)\|v\|^{2}-m_{g}\|v\|^{2} & \text { larges than } \\
& \geq\left(D_{g}, n_{p}\right) \\
& \geq\left(c t_{k}(r)-m_{g}\right)\|v\|^{2}
\end{aligned}
$$

so $\partial\left(\mathbb{R} \times B_{p}(r)\right)$ is convex it $c t_{k}(r) \geq m_{g}$

II Seeing Oventwisted Disks and the Contact Sphere Thu
Th ${ }^{m} 6$ (EM): \qquad
let $\left(M_{3} 3\right)$ be a contact manifold compatible with g
if $r<\operatorname{mij}(g)$ and 3 is oventwisted on $B_{r}(p)$
then $\partial B_{r}(\rho)=S_{r}(p)$ contains an oventwisted disk
So we can't guarantee $\left\{l_{B_{r}(\rho)}\right.$ is tight, we can clearly see when it is not
we will prove this later but now prove the contact sphere theorem
Proof of Contact Sphere $T^{n}{ }^{=}$(Th" 1, from intro)
Recall we have $(M, 3)$ compatible with g and

$$
\exists K>0 \text { ss. } \quad 4(9 K<\sec (g) \leq K
$$

we want to show ? is tight
we pull 3 back to universal coven \tilde{M} ordinary sphere the says $\tilde{M} \cong s^{3}$ easy to see if pulled back? is tight so is?
so we assume $M=S^{3}$
for contradiction assume 3 is over twisted
let D be an overtwisted disk

rescale g so that $K=1$ (note still compatible)
Bonnet-Meyer's Th ${ }^{m}$ says that

$$
\operatorname{diam}(M)<\pi / \sqrt{4 / 9}=\frac{3 \pi}{2}
$$

a result of Klingenberg says that

$$
\operatorname{inj}(g) \geq \pi / \sqrt{1}=\pi
$$

and we mentioned above

$$
\operatorname{conv}(g) \geq \frac{\pi}{2 \sqrt{1}}=\frac{\pi}{2}
$$

using "standard" Toponogov comparison argument
we see that if $p, q \in M$ such that

$$
d(p, q)=\operatorname{dicm}(M)
$$

then there are $r_{p}<\pi$ and $r_{q}<\frac{\pi}{2}$
st.

$$
M=B_{r_{p}}(p) \cup B_{r_{q}}(q)
$$

so

we can assume D does not contain g q
ThN. 4 above says $B_{r_{q}}(q)$ is standard contact ball for standard contact ball there is a vector field v whose flow pushes any point $\neq q$ into small ubhd of $\partial B_{r_{q}}(q) c$ int $B_{r_{p}}(p)$
so we can assume $D \subset B_{r_{p}}(\rho)$
but Th ${ }^{m} 5$ above says $\partial D_{r_{p}}(\rho)$ must now contain an oventwisted disk D^{\prime} !

$$
\text { So } D^{\prime} \subset \partial B_{r_{p}}(p) \subset B r_{q}(q)
$$

Contradicting tightness of $\}\left.\right|_{B_{q_{q}}(a)}$
$\therefore 3$ tight contact str on S^{3}
(Eliashberg says $?$ standard)
for the proof of $\operatorname{Th} \mathrm{m} 5$ we need some preliminaries
lemma 6: \qquad
if $(u, 3)$ is compatible with g and $r<\operatorname{injp}_{p}(g)$, then the characteristic foliation $\left(\partial B_{r}(\rho)\right)_{3}$ has only 2 singular points (and they are $\gamma \cap \partial B_{r}(p)$ where γ is a Reed flow line through p)

Proof:
suppose $x \in \partial B_{r}(\rho)$ is a singular point
so we have

let γ be a geodesic starting at p st. $\gamma(r)=x$

by the Gauss lemma we know

$$
T_{x}\left(\partial B_{r}(\rho)\right)=?_{x}
$$

is orthogonal to $\gamma^{\prime}(r)$
$\therefore \gamma^{\prime}(r)=R$ the Reed field
and since the Reel flow is tangent to geodesics we see γ is a Reel flow line through p
\therefore can only be 2 singularities in $(A B,(p))$?
We call a surface \sum is $(\mu, 3)$, 3-conves it there is a vector field transverse to \sum whose flow preserves?
We say a sphere S is simple if S_{3} contains only two singular points (we call the positive one the north pole and the other the south pole)
S_{3} is almost horizontal if, in addition, all closed leaves of S_{3} are oriented as the boundary of the disk containing the north pole
examples:

almost horizontal

not almost horizontal
lemma 7 (Giroux):
If S_{3} is simple, then
S_{3} is $\left\{\right.$-convert $\Leftrightarrow S_{3}$ has no degenerate closed orbits
we are now ready for our main technical result
Proposition 8:
let B be a ball in (μ, i)
B is a union of a point p and spheres S_{t} for $t \in[0,1]$

1) $\left.\begin{array}{c}\left(S_{t}\right)_{3} \text { is simple } \\ 3 l_{B} \text { tight }\end{array}\right\} \Rightarrow\left(S_{t}\right)_{\}}$almost horizontal
2) all $\left(\mathrm{S}_{t}\right)_{3}$ almost horizontal $\left.\forall t \Rightarrow\right\}\left.\right|_{B}$ tight
3) if $\left(S_{t}\right)_{q}$ all simple and $3 l_{B}$ is oventwisted, then $\exists t_{0}$ such that
$\left(S_{t}\right)_{3}$ has a closed leaf for $t \geq t_{0}$ $\left.3\right|_{B_{t}}$ tight for $t<t_{0}$

Proof of $\pi n=6$:

$$
B_{r}(p)=\rho \cup \bigcup_{t \in[0, r]} S_{t}
$$

lemma 7 says $\left(S_{t}\right)_{3}$ simple since $r<i n j(g)$ pant 3) of Prop $8 \Rightarrow$ if $B_{r}(\rho)$ is overtwisted then we see an oventwisted disk on $\partial B_{n}(\rho)$

Proof of Proposition 8:

1) obvious, if \exists closed leaf then contact str is oventwisted
2) for small t, B_{t} will be tight by Darboux's Th $\frac{m}{}$ so $\left(S_{t}\right)_{?}$ has no c closed leaves for t small if there are no closed orbits in $\left(S_{t}\right)_{3}$ for all t, then by lemma 7 all of the S_{t} are 3-convex from this it is easy to argue that $3 l_{B}$ is tight (can show $\left.\overline{B_{1}-B_{\varepsilon}}=S^{2} \times\left[\varepsilon_{،}\right]\right]$ has an $\left[\varepsilon_{1}\right]$-nicaciant contact str, so B_{1} is the result of adding a "collar nbhd " to B_{ε})
so H_{B} is tight unless some $\left(S_{t}\right)$, has a closed leaf
let to be smallest t such that $\left(S_{t}\right)$, has a closed orbit
the closed orbit C of $\left(s_{t_{0}}\right)_{3}$ must be degenerate
(we assume orly one orbit, but you can consider other cases) we can find an nbhd A of C on $S_{f_{0}}$ st.

We can map $A \times\left[t_{0}-\varepsilon, t_{0}+\varepsilon\right]$ into B
So that a) $A_{t}=A \times\{t\}$ mos to S_{t}
b) leaves of $\left(S_{H}\right)_{\}}$enter top of A and exit bottom of A
c) $\{p\} \times\left[t_{0}-\varepsilon_{1} t_{0}+\varepsilon\right]$ maps to Legendrion arcs
note: A_{t} has no closed leaves for $t<t_{0}$ recall the contact planes along $\{\rho\} \times\left[t_{0}-\varepsilon, t+\varepsilon\right]$ rotate in left-harded way since $\left(S_{t_{0}}\right)_{3}$ is almost horizontal we see

just before to we see

So by Poincare-Bendixison there must be a closed leaf in A_{t}
contradicts fact that to smallest such t/
3) Note: the above argument say any time a new pencodic orbit is born and is closest to north pole if must go east to west

same argument says if a northern most periodic orbit dies it must go west to east
now let t_{0} be the first time a closed leaf appens in $\left(S_{t}\right)_{\text {? }}$ from above it must go east to west as t increases there can be finitely many birth deaths of periodic orbits
we inductively see that northern most orbit is always east to west and so can't die (ne. all $\left(s_{t}\right)_{\}}$for $t \geq t_{0}$ have closed orbit)
let t_{1}, \ldots, t_{n} be other birthldeath times from above $t \in\left[t_{0}, t_{1}\right]$ one orbit east to west suppose hypothesis true for $t<t / 2$ if t_{k+1} is a birth of an orbit closer to north pole than other orbits then done by above observation
(must go east to west)
if not northern most then done since northern most still east to west If $t_{k+1} a$ death if cant involve northen most orbit since deaths of northern most orbit only occur for west to east orbits

$$
\therefore \text { done }
$$

if $t<t_{0}$ than $\left.3\right|_{B_{t}}$ fight by 2)

