Exotic Structures on Open 4-Manifolds
A) Statements of results

Large exotic \mathbb{R}^{4}
Small exotic \mathbb{R}^{4}
Universal exotic \mathbb{R}^{4}
Algebraic Structure
(end sum and erotic monoid)
Partial Order
Topology on space of exotic \mathbb{R}^{4}
symmetries
Geometry
Invariants
1
4 5
6

Other manifolds
B) Constructions of exotic structures
I) Restrictions of the intersection form (failure of smooth surgery)
existence of one large \mathbb{R}^{4}
countably infinite family of large \mathbb{R}^{4}
in finite family of smooth str on $M^{3} \times \mathbb{R}$
uncountable many large \mathbb{R}^{4}
II) Topologically slice not smoothly slice knots (more large \mathbb{R}^{4})
III) Constructing small exotic \mathbb{R}^{4} using failure 50 of smooth 5D h-cobordism th ${ }^{m}$

If $n \neq 4$, then \mathbb{R}^{n} has one smooth structure (this means if R is a smooth n-manifold and R is homeomorphic to \mathbb{R}^{n} then R is diffeomorphic to \mathbb{R}^{n})
in dimension 4 we hove
Th
there exist a 2 -parameter family

$$
\left\{R_{s, t} \mid s_{c} t \in(0,1)\right\}
$$

such that $R_{s, t}$ is homes to \mathbb{R}^{4} but there is no embedding of $R_{s, t}$ to $R_{s, f^{\prime}}$ if $s>s^{\prime}$ or $t>t^{\prime}$
(re. if $R_{s, t}$ differ to $R_{s^{\prime}} t^{\prime}$ then $s=s^{\prime}$ and $t=t^{\prime}$) and $t=t^{\prime}$)
but if $S \leq s^{\prime}$ and $t \leq t^{\prime}$ then $R_{s_{1} t} \hookrightarrow R_{s^{\prime} t^{\prime}}$ moreover each $R_{s, t}$ contains a compact set that does not embed in \mathbb{R}^{4} so they are not differ to \mathbb{R}^{4}

Remarks: 1) the existence of one such exotic \mathbb{R}^{4} follows from an argument of Casson
using work of Donaldson and Freedman
2) 3 such examples were found by Gompf in "Three exotic $\mathbb{R}^{4 / s}$, and other anomalies" and a countable family was found by Gompf in "An infinite set of exotic \mathbb{R}^{4};"
4) An uncountable family $\left\{R_{t}: t \in(0,1)\right\}$ was found by Tarbes in
"Gauge theory on asymptotically periodic manifolds"
in the second papen of Gompf above he gave the family in $T^{m} 1$ using Taubes work
Th표 can be refined, we say $R \leq R^{\prime}$ if any compact, smooth, codimenenswin zero submanifold of R embeds is R^{\prime} we say R and R^{\prime} are compactly equivalent if

$$
R \leq R^{\prime} \text { and } R^{\prime} \leq R \text {, denote } R \sim R^{\prime}
$$

it is easy to see \leq is a partial order on equivalence classes of n-manifolds
exercise: assume R and R^{\prime} are connected

1) if $R \sim R$ ', then they are both closed or both non-closed
2) If R, R^{\prime} are closed and $R \sim R$!,
then R diffeomorphic to R^{\prime}
The 1':
there exist a 2 -parameter family

$$
\left\{R_{s, t} \mid s_{c} t \in(0,1)\right\}
$$

such that $R_{s, t}$ is homes to \mathbb{R}^{4} but

$$
R_{s, t} \leq R_{s^{\prime}, t^{\prime}} \Longleftrightarrow s \leq s^{\prime} \text { and } t \leq t^{\prime}
$$

Remark: Th\underline{I} and 1 'are proven using
A) Freedman's proof that "Casson handles are topological 2-handles" ie. classifying simply connected
4-manifolds

C) for the uncountable family, Taubes $\{$ harden generalization of B) to "end \} analysis periodic " manifolds we will coven these later.

Remark: getting a single exotic \mathbb{R}^{4} can be done by uses A) and $\begin{aligned} & \text { B) or finding a topologically (locally flat) slice knot ii } S^{3} \\ & \text { that is not smoothly slice }\end{aligned}$
Khovanov that is not smoothly slice
homology This can be done with no analysis as we will see later

Th
there exist a family

$$
\left\{R_{t}: t \in(0,1)\right\}
$$

such that R_{t} is homeomorphic to \mathbb{R}^{4} and

1) all R_{t} are subsets of \mathbb{R}^{φ}
2) $R_{t} \hookrightarrow R_{t^{\prime}}$ if $t \leq t^{\prime}$
3) uncountably many of the R_{t} are not diffeomorphic
note all $R_{t} \sim \mathbb{R}^{4}$

Remark:

1) The first such R was constructed by Freedman in unpublished work based on ideas of Casson
2) Th $\underline{\underline{m}} 2$ was proved by DeMichelis and Freedman "Uncountably many exotic \mathbb{R}^{4} s in standard 4-space"
Th ${ }^{m} Z^{\prime}$:
there is a family $\left\{P_{t}: t \in(0,1)\right\}$ such that R_{t} is homeomorphic to \mathbb{R}^{4} and $R_{t} \sim R_{t^{\prime}} \Leftrightarrow t=t^{\prime}$ and for each $+\exists$ an un countable family $\left\{R_{t, s}\right\}$ such that $R_{t, s}$ is homeomorphic to \mathbb{R}^{n}, all $R_{t, s}$ are compactly equivalent and
$R_{t, s}$ is diffeomopic to $R_{t, s^{\prime}}$ if $s=s^{\prime}$

Remark: This is due to Gomph is
"An Exotic Menagerie"
Remark: The proof of $T^{n}{ }^{n} 2$ is based on A) above and
D) \exists h-cobordant 4-manifolds that are $\}$ analysis
not diffeomorphic
we call an exotic \mathbb{R}^{4} large if it contains compact codiniension O sets that don't embed in \mathbb{R}^{4} and we call if small if it is compactly equivalent to \mathbb{R}^{4}
Open Question (?):
if $R \sim \mathbb{R}^{4}$, does R embed in \mathbb{R}^{4}
Thㅢㅡㄹ:
\exists an exotic \mathbb{R}^{4}, R_{u}, such that any erotic \mathbb{R}^{4}, R embeds in R_{a}

Remark: This is due to Freedman and Taylor "A universal smoothing of four-space"

Open questions: \qquad

1) Does every compact equivalence class of exotic \mathbb{R}^{4} 's have uncountubly many representatives?
2) Is R_{u} the unique representative in its compact equivalence class?
3) Given a compact equivalence class C of \mathbb{R}^{4} s, does $\exists R_{e} \in e$ sit. any $R \in C$ embeds in R_{e} ?
How can we organize exotic \mathbb{R}^{4} '?
Algebraic Structure
let R be the set of all exotic \mathbb{R}^{4} 's and \mathcal{R}_{n} be the compact equivalence classes of exotic \mathbb{R}^{4} 's
so for we know these are both uncountable sets we can define a binary operation called end sum.
given $R_{1}, R_{2} \in R$ chose proper embeddings

$$
\gamma_{i}:[0, \infty) \longrightarrow R_{i}
$$

we can take neighborhoods of $\gamma((0, \infty))$

$$
N_{i}:(0, \infty) \times D^{3} \longrightarrow R_{i}
$$

now $\partial\left(R_{2}-\right.$ in $\left.N_{i}\right)=\mathbb{R}^{3}$
choose an onentation reversing diffeomorphism

$$
\phi: \partial\left(R_{1}-i m N_{1}\right) \rightarrow \partial\left(R_{2}-i \sin N_{2}\right)
$$

and define the end sum to be

$$
R_{1} \mapsto R_{2}=\left(R_{1}-\operatorname{in} N_{1}\right) \cup\left(R_{2}-i \sin N_{2}\right) / \sim
$$

where $x \in \partial\left(R_{1}-\sin N_{1}\right)$ is glued to

$$
\phi(x) \in\left(R_{2}-\operatorname{in} N_{2}\right)
$$

note: any 2 choices fore ϕ are isotopic so A is well-defined if any choices for γ_{i} are isotopic
exercise: show two proper embeddings of $[0, \infty)$ into an exotic \mathbb{R}^{4} are isotopic
Hint: first isotop so agree at the integers

now hove lots of loops each bounds disk with a finite number of intersection points use "finger moves" to remove double pts...
we now have a map

$$
\xi: \mathcal{R} \times \mathcal{R} \rightarrow X
$$

and

$$
G: \mathcal{R}_{\sim} \times \mathcal{R}_{\sim} \rightarrow \mathcal{R}_{N}
$$

lemma 4:
\mathcal{R} and \mathcal{R}_{\sim} are commutative monoids under h re. G is associative and has an identity no nontrivial element has an inverse

Proof:
Clearly \mathbb{R}^{4} is the identity and h is associative and commutative suppose $R_{1}, R_{2}=\mathbb{R}^{4}$
then $\mathbb{R}_{1}=\mathbb{R}_{1} G\left(\bigoplus_{n=1}^{\infty} \mathbb{R}^{4}\right)$

$$
\begin{aligned}
& =R_{1} G\left(R_{2} G R_{1}\right) G\left(R_{2} G R_{1}\right) G \ldots \\
& =\left(R_{1} G R_{2}\right) G\left(R_{1} G R_{2}\right) G \cdots \\
& =G_{i=1}^{\infty} \mathbb{R}^{4}=\mathbb{R}^{4}
\end{aligned}
$$

ThM․:
R_{u} from $T h \underline{m} 3$ satisfies $R G R_{u} \cong R_{u}$ for all $X \in X$
clearly Th ${ }^{m} 3^{\prime} \Rightarrow T_{h}$ m 3

Open Question:
Is there a group we can associate to Roo R and 4 ? Some other operation?
note: Knots is S^{3} under $\#$ is a monoid without inverses, but knobs up to wbordism is a group under \# So question above is asking for something like this for 9
Recall: one way to get a group from a commutative monoid is to form its Grothendieck group Where you "add inverses" this is how you get \mathbb{Z} from $\mathbb{N u \{ 0 \}}$
specifically if $(M,+)$ is a commutative monoid, then its Grothendieck group is constructed as follows:

- start with $M \times M$
think of (m, n) as " $m-n$ "
- define the equivalence relation

$$
\left(m_{1}, n_{1}\right) \sim\left(m_{2}, n_{2}\right) \text { if } \exists k \in M
$$

sit. $m_{1}+n_{2}+k=m_{2}+n_{1}+k$
set $K=M \times M / \sim$
note: if $\left(m_{1} \neq m_{2} \Rightarrow m_{1}+n \neq m_{2}+n\right)$
then don't need ~

- define $\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)=\left(m_{1}+m_{2}, n_{1}+n_{2}\right)$
($K_{1}+$) is the Grothendieck group of $(\mu,+)$
exencise: show the Grothenchick group of $\mathbb{N} \cup\{0\}$ is \mathbb{Z}
lemma 5:
The Grothendieck group of $(2, G)$ and $\left(\mathscr{R}_{n}, 5\right)$ is trivial

Proof:

$$
\begin{aligned}
R & =\mathbb{R}^{4} G R=\left(R_{u}^{-1} G R_{u}\right) G R=R_{u}^{-1} G\left(R_{u} G R\right) \\
& =R_{u}^{-1} G R_{u}=R_{u} \text { 四 }
\end{aligned}
$$

Partial Order:

$$
\left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)=\left(m_{1}+m_{2}, n_{1}+m_{2}\right)
$$

$$
5
$$

. $\left(R_{n}, G\right)$ is trivial

Proof
lemma 6:
if $R_{1} \leq R_{2}$ and $R_{3} \leq R_{4}$, then

$$
R_{1} G R_{3} \leq R_{2} G R_{4}
$$

and \leq is a partial order on R_{\sim}
exercise: Convince yourself of this
What more can you say about \leq on R and R ?
note: minimal elements:

- $\mathbb{R}^{4} \leq R \quad \forall R \in R$
so \mathbb{R}^{4} is minimal alt in both R and R
- if R_{m} is another minimal et in R_{\sim}
then $R_{m} \leq \mathbb{R}^{4}$ and $\mathbb{R}^{4} \leq R_{m}$

$$
\therefore \mathbb{R}^{4} \sim R_{m}
$$

1.e. $\left[\mathbb{R}^{4}\right]$ is unique minimal et in R_{\sim}
. If R such that $R \subseteq \mathbb{R}^{4}$ then R is also a minimal element in R

Question: \qquad
if $R \in \mathcal{R}$ is a minimal element does R embed in \mathbb{R}^{4} ?
maximal elements: $y^{\text {th }}=3$ above

$$
\cdot R \leq R_{u} \forall R \in R
$$

so R_{u} is maximal element for both $R_{\text {and }} R_{\sim}$

- as above $\left[R_{u}\right]$ is the unique maximal element in R_{\sim}

Question: \qquad
if $R \in R$ is a maximal element does R_{4} embed in R ? or is $R_{u} \cong R$?
gaps: Question: \qquad

- if $R \leq R^{\prime}$ is there always some $R^{\prime \prime}$ such that $R \leq R^{\prime \prime} \leq R^{\prime}$?
- infinitely many such $R^{\prime \prime}$?
comparability:
Question:
- given R are there R^{\prime} that are not comparable to R ?
uncountably mary?
- given a family $\left\{R_{\alpha}\right\}$ are there (uncountable many) R^{\prime} that are not comparable to any R_{α} ?
other:

Question:

- What else can you say a bout s on R or R ?
- Is there another order on R or R_{\sim} ?
- Is there an order on a compact equivalence class?
Topology
We can put a topology on R_{N} using \leq
for all $R \in R_{\sim}$ let

$$
\left.\begin{array}{l}
K_{R}=\left\{R^{\prime} \in R_{2}: R^{\prime} \leq R\right\} \\
L_{R}=\left\{R^{\prime} \in R_{2}: R \leq R^{\prime}\right\}
\end{array}\right\} \text { these form a } \text { dosed subbasis }
$$

let $B=\left\{\right.$ all finite unions of K_{R} and $\left.L_{R} ' s\right\}$
and $\tau_{\underline{s}}^{c}=\{$ all infricte intersections of efts of $B\}$
so open sets in $\tau_{\underline{I}}$ are complements of els of $\tau_{\underline{L}}{ }^{c}$ not much is known about this topology, but Gompf in "A moduli of exotic $\mathbb{R}^{4 \prime}$ " gave a refinement of r_{\leq} for any compact oriented 4 -manifold X let

$$
U_{x}=\left\{R \in \mathbb{R}_{N}: X \text { embeds in } R\right\}
$$

now let τ be the topology with closed
subbasis all $R_{N}-U_{x}$ and L_{R}
Gompf proved:

1) τ is regular
2) τ is $2^{\text {ad }}$ countable
3) τ is metrizable
4) every increasing sequence converges

Open Problems:

- is $\tau=\tau_{\leq}$?
- what more can be said about τ or τ_{\leq}?
- is there a "better "topology on R~?
. is there a "good" topology on M?
Symmetries:
note if $\tau: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is rotation by π then $\mathbb{R}^{2} / x \sim \tau(x) \equiv \mathbb{R}^{2}$ and $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2} / \tau$ this is the standard 2 -fold coven of \mathbb{R}^{2} branched over a point

$$
\text { so } \tau^{\prime}=\tau \times i d:\left(\mathbb{R}^{4}=\mathbb{R}^{2} \times \mathbb{R}^{2}\right) \rightarrow \mathbb{R}^{4} ;(x, y) \mapsto(\tau(x), y)
$$

satisfies $\mathbb{R}^{4} / x \sim \tau^{\prime}(x) \cong \mathbb{R}^{4}$ and $\mathbb{R}^{4} \rightarrow \pi^{4} / \tau^{\prime}$ this is the standard 2 -fold cover of \mathbb{R}^{4} branched over a plane

Theorem 7:
there exists $\mathbb{R}^{4 / s} \quad R_{1}, R_{2}$ and a smooth involution $\sigma: R_{1} \rightarrow R_{1}$ that is

1) topologically standard
2) $R_{1} \rightarrow R_{1} / \sigma \cong R_{2}$
and we can independently choose
R_{1} and R_{2} to be large or small
exotic $\mathbb{R}^{4 / s}$ as long as R, is not \mathbb{R}^{4} (we can take R_{2} to be standard)

Open Question:
can you find such an $R_{1} \rightarrow R_{2}$ with $R_{1} \cong \mathbb{R}^{4}$ and R_{2} not?

Remark:

1) R_{1} small
is due to Freedman in $\mathbb{R}^{4} \quad$ unpublished work
2) rest of theorem due to Gomph in "An exotic menagerie"
more group actions (from Gompf)
let G be I) a group that acts proper y discontinuously on \mathbb{R}^{3}
ne. $\forall x \in \mathbb{R}^{3} \exists$ a nh U of x
st. $g(U) \wedge U=\varnothing \quad f g \neq 1$
clearly G acts on $\mathbb{R}^{4}=\mathbb{R}^{3} \times \mathbb{R}$
or II) a finite group acting on \mathbb{R}^{4}
let $\alpha=\{(0,0,0)\} \times[0, \infty)$ and

$$
A=\bigcup_{g \in G} g(\alpha)
$$

let R be an exotic \mathbb{R}^{4} (large or small) set $R^{\prime}=\mathbb{R}^{4} G_{A}\left(\frac{11}{G} R\right)$
(ie. end sum ore R into \mathbb{R}^{4} along each $g(\alpha)$)
clearly C acts on R^{\prime} and is topologically equivalent to the G action on \mathbb{R}^{4} if $\mathbb{R}^{4} / G=\mathbb{R}^{4}$, then

$$
R^{\prime} / G \cong R
$$

note: R^{\prime}, R are both either large or small and $R^{\prime} \geq R$

Open Question:
Can an exotic \mathbb{R}^{4} cover a compact 4 -manifold?
now for any \mathbb{R}, R set

$$
D(R)=\{\text { diffeomorphisms of } R\} / \text { isotopy }
$$

and $D_{+}(R) \subset D(R)$ the subgroup of orientation preserving isotopy classes
note: $D_{1}\left(\mathbb{R}^{n}\right)=\{d\} \quad \forall n$
Th ${ }^{4} 8$:
There are uncountably many R (both large and small) for which there is an uncountable subgroup of $D_{t}(R)$
Remark: This is due to Gompf in "Group actions, corks and exotic smoothing of $\mathbb{R}^{4 "}$ When studying manifold with boundary we are interested in how differs of the boundary interact with differs of the mfd
for non-compact manifolds we introduce "diffeomorphisms at infinity"
a closed neighborhood of infinity (Cni) in a manifold M is a codimenscion one submanifold $E \subset M$ that is closed and $\overline{M-E}$ is compact given chi $E_{2} \subset \mu_{1}$ and $E_{2}^{\prime} \subset \mu_{i}^{\prime} \quad 2=1,2$ and diffeomorphisms $f_{2}: E_{2} \rightarrow E_{2}^{\prime}$ we say $f_{1} \sim f_{2}$ if \exists a chi $E \subset M$ st. $E_{i} \subset E_{1}$ and $f_{1} l_{E}=f_{2} l_{E}$ f_{1}, f_{2} have same "germ at ∞ "
a diffeomorphism at infinity from M to M^{\prime} is an equivalence class of such differs when M, M ' have a single end we also say this is a diffeomorphism of the ends
let $D^{\infty}(\mu)=\{$ isotopy classes of differs at $\infty\}$ and $D_{+}^{\infty}(M)$ the orient pres. subgroup there is an obvious restriction map

$$
r: D_{(t)}(M) \rightarrow D_{(t)}^{\infty}(\mu)
$$

lemma 9:
for any $R \in \mathcal{R}$, kerr r and when are countable

Theorem 9:
there are uncountably many \mathbb{R}^{4} ' R (large and small) st. 1) $r(D(R)) \subset D^{\infty}(R)$ is uncountable
2) \exists nonfinitely generated groups in woken $r=D^{2}(R)$
3) for the universal \bar{R}_{u} $(D(D))$

$$
\text { coke } r=\{1\}
$$

Open Question:
What can you say about kerr? is if always trivial?

Open Question:
Lan S^{\prime} or \mathbb{R} act non-trivially on an exotic \mathbb{R}^{4} ?

Geometry:
There is not much known about Riemanian
metrics on exotic \mathbb{R}^{4} 's
here are a few: suppose $R \in \mathscr{R}$ but $\neq \mathbb{R}^{4}$

1) Cant have a constant curvature metric
(since this $\Rightarrow \mathbb{R}^{4}$ or S^{4})
2) Cant have curvature ≤ 0 (since $\Rightarrow \mathbb{R}^{4}$)
3) Can have a complete metric with negative Ricci curvature and one with sectional curvature any constant negative number (Lohkamp)

Questions:
Can you construct invariants of exotic $\mathbb{R}^{4} s$ using Riemannian metrics?
eg. for g on R let

$$
\begin{aligned}
& G_{g}=\text { max curvature - min curvature } \\
& G_{R}=\text { inf } G_{g}
\end{aligned}
$$

can this distinguish exotic \mathbb{R}_{s}^{4} ?
can this be 0?

Th ${ }^{2} 10:$
\exists exotic \mathbb{R}^{4} 's that admit metrics whose isometry group contains an uncountable subgroup

Remark: Due to Gompf in last mentioned papen an exotic \mathbb{R}^{4}, R, is called full if there exists a compact subset that cannot be embedded in its complement or into any homology S^{4} (not hard to construct these)
Th $\underline{\underline{G}} 11$:

1) any metric on a full R^{4} has finite isometry group
2) there exist R, full exotic $\mathbb{R}^{4 r} s$, with $D(R)$ and $D \infty(R)$ un countable

Open Question:
Does every isometry group of an exotic \mathbb{R}^{4} inject into its diffeotopy group?
note: not true for \mathbb{R}^{4} !

Remark: 1) in π^{m} due (mostly) to Taylor in "Smooth Euclidian 4-spaces with few isometries"
2) is due to Gompf in above paper
let's move to symplectic geometry
recall a symplectic structure on a 4 -manifold M is a 2 -form ω st. (closed) $d \omega=0$ and (non-degenerate) $\omega \wedge \omega$ is never zero (le. volume form) a complex manifold X is Stein if \exists an exhausting pluri-subharmonic function $\phi: X \rightarrow \mathbb{R}$
ie. $\phi^{-1}((-\infty, c])$ is compact $\forall c$ and $[d(d \phi \cdot J)](v, J v)>0 \quad \forall v \neq 0$ in TX this $\Rightarrow d(d \phi \circ J)$ is a symplectic form
here $\tau: T X \rightarrow T X$ is the action of multiplication by i on $T X$

Th \quad 12:
There are un countably many small exotic $\mathbb{R}^{4 \prime}$ s that admit Stein structures
There are uncountally many large \mathbb{R}^{4} 's that embed into Stein surfaces
There are exotic \mathbb{R}^{4} 's that donot embed into stein surfaces

Remark: $1^{\text {st }}$ result is due to Gompf in "Handlebody constructions of Stein surfaces" other results due to Bennett in
"Exotic smoothings via large \mathbb{R}^{4} 's in Stein surfaces"
Questions:
do all small \mathbb{R}^{4} s admit Stein structures?
(Symplectic with converse" "Sandory") does any large \mathbb{R}^{4} admit a stein structure?

Invariants:
given R homeomorphic to \mathbb{R}^{4}
for any compact subset $C \subset R$ there is a compact 3-manifold M separating C from ∞
(just take any smooth proper $f: P \rightarrow[0, \infty$)
then there is some regular value C
st. $C \subset f^{-1}([0, C])$ so $M=f^{-1}(c)$ works)
let $b_{c}=\min \left\{b_{1}(M)\right\}$ oren all such M N_{1} 渎 Betti number
note: if $\subset \subset c^{\prime} \subset R$ then $b_{c} \leq b_{c}$ '

Bizaka and Gompf defined the engulfing index of R to be

$$
e(R)=\sup \left\{b_{c} \mid c c \nmid\right\}
$$

easy to see $e\left(G R_{i}\right) \leq \sum e\left(R_{i}\right)$
in many examples if is ∞
Th ${ }^{\text {m }} 13:$
\exists exotic \mathbb{R}^{4} 's with e finite

Question: \qquad $\left(\begin{array}{l}1 \text { think sonly } \\ \text { many can ? }\end{array}\right.$
Which values of e can be realize?
Now given R consider the set

$$
S_{p}(R)=\{\text { closed spin } 4 \text {-manifolds with }
$$

intersection form $\oplus\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
into which R embeds $\}$
if $S_{p}(R)=\varnothing$, set $b_{E}=\infty$
otherwise $\quad b_{E}=\frac{1}{2} \min _{N \in S p(R)}\left\{b_{2}(N)\right\}$
for any smooth 4 -manifold M let
$\varepsilon(M)=\{$ topological embeddings e : $D \xrightarrow{\psi} M$
St. $e\left(\partial D^{4}\right)$ is bicollared and $\exists p \in \partial D^{4}$ sit. $e l_{\text {mhd }}(p)$ is smooth $\}$
for $e \in \varepsilon(M)$ let $R_{e}=$ smooth structure induced on $e\left(\right.$ interior of $\left.D^{4}\right)$
finally set

$$
\gamma(R)=\max _{e \in E(M)}\left\{b_{R e}\right\}
$$

this is called the Taylor invariant
roughly $\gamma(R)$ measures the minimal number n
$s t R$ embeds in $\# n S^{2} \times S^{2}$
all the complications in the deft are to prove things about γ
we can extend γ to any 4 -manifold as follows
if M is spin, then

$$
\gamma(M)=\max \{\gamma(\epsilon)\}
$$

where $E \subset M$ open set homes to \mathbb{R}^{4}
if M is orientable but not spin and

1) the $2^{\text {nd }}$ Steifel-Whitney class $w_{2}(M)$ has no comact dual then

$$
\gamma(M)=-\infty
$$

2) If there are compact duals then

$$
\gamma(M)=\max \left\{\gamma(M-F)-\operatorname{dim} H_{1}\left(F ; \mathbb{Z}_{2}\right)\right\}
$$

where F runs over all compact duals to $w_{2}(M)$
If M is nononentable, then let \tilde{M} be its orientation double coven and set

$$
\gamma(M)=\gamma(\tilde{M})
$$

Properties of γ :

1) if $w_{0} \subset \ldots \subset w_{1-1} \subset w_{1}^{0} \subset w_{2} \subset \ldots \subset M$
then $\gamma(\mu) \leq \max \left\{\gamma\left(\omega_{i}\right)\right\}$ get $=$ if M spin
2) If M_{2} spin and $M_{1} \subseteq M_{2}$ then

$$
\gamma\left(M_{1}\right) \subseteq \gamma\left(M_{2}\right)
$$

3) $\gamma\left(\mathbb{C} p^{2}\right)=0$ but \exists exotic $R \subset \mathbb{C} P^{2}$ st.
$\gamma(R)$ arbitrarily large
4) $\exists M$ with $\gamma(M)=-\infty$ and for each $n \geq 0, \exists$ un countably many exotic \mathbb{R}^{4} with $\gamma=n$ (n could be ∞)
5) If M is a Stein manifold then $\gamma(M) \leq b_{2}(M)$
so for a Stein exotic $\mathbb{R}^{4}, \gamma=0$
(\therefore get lots of exotic \mathbb{R}^{4} with no Stein str.)
6) \exists uncountably many exotic \mathbb{R}^{4} that embed in Stein manifold but have arbitrarily large γ
7) If R is an exotic \mathbb{R}^{4} and R non trivially covers some other manifold then

$$
\gamma\left(G^{r} E\right)=\gamma(E)
$$

\exists examples of R st. $\gamma\left(G^{\prime} E\right)=\frac{2}{3} r \gamma(E)$
so these cant coven!
8) $\gamma(R) \leq e(R)$

Remark: All results due to Taylor
"An Invariant of Smooth 4-Marifolds"
except 6) due to Bennett in above papen
and 8) due to Khuzam in
"A comparative study of two fundamental invariants of exotic $\mathbb{R}^{4 / s}$ "

Question:
Can γ take on fiche negative values?
2uestion:

- can one find a non discrete invariant of exotic \mathbb{R}^{4} ?
- can one define an invariant of erotic $\mathbb{R}^{4 \prime}$
in a compact equivalence class? (note $\gamma(R)=\gamma\left(R^{\prime}\right)$ if $R=R^{\prime}$ is this true of e ?

Other Manifolds
Th ${ }^{\text {m }} 14$:
let X be one of the following

1) Wept for any topological manifold
2) total space of an oriented \mathbb{R}^{2} bundle oven an oriented surface
3) $Y \times \mathbb{R}$ for a 3-manifold Y that topologically locally flatly embeds in $\#^{n} \overline{\mathbb{C P}}^{2}$
then X admits uncountably many smooth structures

Remark: 1) is due to Gompf in
"An Exotic Menagerie"
but Furuta and Ohta proved many cases in "A remark on uncountably many exotic differential structures on one-porit punctured topological 4-manifolds"
2) is due to Ding in
"Smooth structures on some open 4-manifolds"
3) is due to Fang in
"Embedding 3-manifolds and smooth structures of 4-manifolds"
also note any rational homology sphere or seifert fibered space has such embeddings
Th M $15:$
If Y is any compact 3 -manifold then $Y \times \mathbb{R}$ admits infintely many smooth structures
if X is any open 4 -manifold with at least one end that is topologically $Y \times R$ and X has only finitely many ends homeomorphic to $Y \times \mathbb{R}$ then X admits infinitely many smooth structures

Remark: This is due to Bizaca and Etnyre in
"Smooth structures on collarable ends of 4-manifolds"

Questions:

1) can th it be upgraded to get uncountably many smooth structures?
2) Can th ${ }^{\underline{m}}$ be upgraded so Y is any 3 -manifold?
3) Can $t 4^{m}$ be upgraded so X is any open 4-manifold?

3 constructions of exotic \mathbb{R}^{4};
I) Restrictions of the intersection form of 4 -manifolds
(failure of smooth surgery)
recall given an oriented closed 4 -manifold X

$$
H_{\varphi}(x)=\mathbb{Z} \text { and a generator }[x]
$$ is called a fundamental class

Poincare Duality says

$$
\begin{aligned}
& H^{2}(x) / \text { for } \times H^{2}(x) \text { /to } \\
&(\alpha, \beta) \xrightarrow{I_{x}} \mathbb{} \\
& \alpha \sim \beta([x])
\end{aligned}
$$

is a (symmetric) non-degenarate pairing called the intersection form
using Poincare duality we con reinterperate this in $H_{2}(x)$ recall if $\Sigma \subset X^{4}$ is an embedded oriented surface then

$$
[\Sigma] \in H_{2}\left(x^{4}\right) \quad \begin{array}{r}
\text { (actually } i: \tau \rightarrow x \text { inclusion } \\
\\
\left.2_{*}([\Sigma]) \in H_{2}\left(x^{4}\right)\right)
\end{array}
$$

Fact: for any $h \in H_{2}\left(X^{4}\right) \exists$ some surface $\Sigma^{2}<X$ st. $h=[\Sigma]$
now given $h_{1} b^{\prime} \in\left(f_{2}\left(x^{4}\right)\right.$ let $h=[\Sigma]$ and $h^{\prime}=\left[\Sigma^{\prime}\right]$
we can isotop Σ^{\prime} so that Σ is transverse to Σ^{\prime}
so $\Sigma n \Sigma^{\prime}=\left\{p_{1} \ldots p_{k}\right\}$
let $\varepsilon\left(p_{1}\right)=$ sign of intersection
\{2.e does or ${ }^{n}$ an $T_{p_{1}} \Sigma$ followed by or on $\tau_{p_{1}} \Sigma^{\prime}$ agree or not with or ${ }^{n}$ an $T_{p_{1}} \times 3$
$\operatorname{define} \sum \cdot \Sigma^{\prime}=\sum_{i=1}^{k} \varepsilon\left(p_{l}\right)$
now $I_{x}: H_{z}(X) \times H_{2}(X) \rightarrow \mathbb{Z}$
$\left([\Sigma],\left[\Sigma^{\prime}\right]\right) \mapsto \Sigma \cdot \Sigma^{\prime}$
is Poincare dual to pairing above
example:
in dimension 2 :

$$
H_{2}\left(T^{2}\right) \cong \underset{a}{\mathbb{Z}} \oplus \underset{b}{\mathbb{Z}}
$$

$$
a \cdot a=?:
$$

$$
a \cdot b=1
$$

so $I=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
similarly for $S^{2} \times S^{2}$ we have $H_{2}\left(S^{2} x S^{2}\right)=\mathbb{Z} \oplus \mathbb{Z}$

$$
I=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

can also check $H_{2}\left(\mathbb{C} P^{2}\right)=\mathbb{Z}$ and $I=[1]$

Theorem [Donaldson]:
if X is an oriented, simply connected, smooth
4 -manifold with I_{X} negative definite

$$
\text { (..e. } \left.I_{x}(e, e)<0 \quad \forall e\right) \text { then } I_{x}=\oplus[-1]
$$

is. I_{x} is diagonalizable
Remark: there ore lots of non-diagonalizable symmetric
pairings, egg.

$$
\left(\begin{array}{ccccccc}
-2 & 1 & & & & & \\
1 & -2 & 1 & & & & \\
& 1 & -2 & 1 & & & \\
& 1 & -2 & 1 & & & \\
& 0 & & 1 & -2 & 1 & \\
& & & 1 & -2 & 1 & 1 \\
& & & & 1 & -2 & 0 \\
& & & & 1 & 0 & -2
\end{array}\right)
$$

is not diagonalizable oven \mathbb{Z}
so it cannot be I_{X} for X as in theorem
Idea of Proof:
Given X as in th ${ }^{m}$ except I_{X} is pos. definite (just revers or ${ }^{n}$) there is a SU(2)-bundle E oven X with Chem class $C_{2}(P)=1$
let $B=\left\{\text { connections } D \text { on } E \text { with self-dual curvature } R_{D}=* R_{D}\right\}^{[B+}$
$m=B / \& s^{\text {gauge group (symmetries of sol ns }}$)
using work of many people, in particular Taubes and Uhlenbeck one can show:

- \bar{M} is a compact oriented 5 -manifold with singular points
number $=1 / 2 \#$ solutions to $I_{x}(h, h)=1$ call this number m
- Singular points have ubhd that are cones on $C p^{2}$
- $\partial \bar{m}=x$
so $m^{\prime}=\bar{m}$ - nbhd of sing pis and arcs connecting them

has $\partial m^{\prime}=X u-\left(\#_{m} \subset P^{2}\right)$
I_{M} positive definite so $\operatorname{rank}\left(I_{M}\right)=\sigma\left(I_{M}\right)$
signiture
but signature is cobordism vivarcaint so

$$
\operatorname{rank}\left(I_{M}\right)=\sigma\left(I_{M}\right)=\sigma\left(\#_{M} ब \rho^{2}\right)=m
$$

note: for any symmetric pos. definite unimodular form
I, if $m=1 / 2$ \# solutions $I(h, h)=1$
then $m \leq \operatorname{rank}(I)$ and equality $\Leftrightarrow I$ diagonal indeed given sol th conscdion

$$
I=(\operatorname{span} h) \oplus(\text { span } h)^{\perp}
$$

if $k \neq \pm h$ is another sol then

$$
I(h \pm k, h \pm k)=1+1 \pm 2 I(h, k)
$$

since I pos. definite $I(h, k)=0$
\therefore all other sol" in (span) ${ }^{1}$
result follows by induction
Donaldson's th m now follows!

Existence of 1 large exotic \mathbb{R}^{4} :
let K be "the" K3 surface

$$
\text { ie. } K=\left\{z_{0}^{4}+z_{1}^{4}+z_{2}^{4}+z_{3}^{4} \text { in } \mathbb{C p}^{3}\right\}
$$

one can compute $\pi_{1}(K)=1, H_{2}(K) \cong \Theta_{22} \mathbb{Z}$, and

$$
I_{K}=E_{8} \oplus E_{8} \oplus_{3} H \quad \text { where } H=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

since $\pi_{1}=1$ we know $\pi_{2}(K) \cong H_{2}(k)$
so \exists immersions $e_{i}: S^{2} \rightarrow K$ generating $\oplus_{3} H$ after work of Casson we have

Th ${ }^{m}$ (Freedman):
let X be 3 copies of $S^{2} x\{p\} \cup\{p\} \times S^{2}$ in $\#_{3} S^{2} \times s^{2}$ connected by arcs

\exists a topological embedding $i: X \rightarrow K$ realizing $\theta_{3} \mid f$, a top embedding $j: X \rightarrow \#_{3} S^{2} \times S^{2}$ top isotopic to X,
a nbhd U of $i(x)$, a unbid V of $J(x)$, and a diffeomorphism $\phi: U \rightarrow V$

let $R=\left(\#_{3} s^{2} \times s^{2}\right)-j(x)$
Claim: R is an exotic \mathbb{R}^{4}
1 ${ }^{\text {st }} \boldsymbol{R}$ homes to \mathbb{R}^{4}
for this we use
Thㅡㅡ(Freedman):
any open manifold with $\pi_{1}=0$ and $H_{2}=0$ and one end topologically equivalent to $S^{3} \times \mathbb{R}$ is homeomorphic to \mathbb{R}^{4}
we can easily check these propatier for R
Ind: R not differ to \mathbb{R}^{4} assume R differ to \mathbb{R}^{4}
let $C=\#_{3} s^{2} \times s^{2}-V$
this is a compact set in \mathbb{R}^{4} we know gwen any compact set C \exists a 3-sphere S that separates C form ∞

now $\phi^{-1}(c)$ breaks K into K_{1} u K_{2} with

$$
i(x) \subset K_{2}
$$

set $K^{\prime}=K_{1} \cup B^{4}$ glued a long S^{3}

$$
I_{K^{\prime}} \cong \Theta_{2} E_{8}
$$

contradicts Donaldson's Th ${ }^{\mathrm{m}}$ so R not differ to \mathbb{R}^{4}
now let's check X is large
let C^{\prime} be a compact set in R containing C
and homeomorphic to \mathbb{R}^{4}
if C^{\prime} smoothly embedded in \mathbb{R}^{4} then it embeds in S^{4}

now we can glue $S^{4}-C$ to $K-\phi^{-1}\left(C^{\prime}-c\right)$
by ϕ on $\left(c^{\prime}-c\right)$ to $\phi^{-1}\left(c^{\prime}-c\right)$
giving a closed smooth mfd with $I=\theta_{2} E_{8}$

There are many ways to get an in finite family, one uses If X is a smooth closed spin 4 -manifold
then by Donaldson I_{x} is
trivialization over 2 -skeleton $\oplus_{k} E_{8} \oplus_{l} H \quad($ Rochlin's the says $\sigma=0 \bmod 16$
Th́ㅡ(Furuta): so k is even)
must have $l \geq k+1$
uses the Seiberg-Witten equations and restrictions on equivariant maps between spheres

Countably infinite family of large $\mathbb{R}^{4} s$
let $R_{1}=R$ from above

$$
\begin{aligned}
& R_{n}=R_{n-1}, 4 R \\
& \text { and } R_{\infty}=4_{\infty} R
\end{aligned}
$$

note: R_{n} contains a copies of C and C^{\prime}
let $C_{n}=$ the boundary sum of all these

$$
C_{n}^{\prime}{ }^{\prime}=\cdots
$$

we could alternately construct the R_{n} and C_{n}, C_{n}^{\prime}
by doing the above construction to $\#_{n} K$ and $\#_{3 n} s^{2} \times s^{2}$
lemma:
If X is any closed smooth spin 4 -manifold, then \exists an $m>0$ st. for any $n>m, R_{n}$ and C_{n} cannot be smoothly embedded in X

Proof:
as noted above $I_{x}=\oplus_{2 k} F_{8} \oplus_{l} H$
let m be any integer with $2 m>l-2 k$ if $n \geq m$ then R_{n} cannot in bed in X an to see this assume it does

So we can glue $X-C_{n}$ to a piece of $\#_{n} K$ cut along ∂C_{n}^{\prime} to get Z

$$
\text { with } I_{z}=\oplus_{2 n+2 n} E_{8} \oplus_{l} H
$$

but $l<2 k+2 n \otimes$ Furuta!
now all R_{n} are district since by construction

$$
R_{n} \text { embeds in } \#_{3 n} S^{2} \times S^{2}
$$

but by lemma not in \# $\#_{2 n} S^{2} \times s^{2}$ from this it is clear that infinitely many of the R_{n} are different
but now assume $R_{n}=R_{m}$ for $n \mathrm{~cm}$ this implies for any $k>m, R_{k}=R_{l}$ for $n \leq l \leq m$ $\therefore R_{n} \neq R_{m}$ for $n \neq m$
exercise: R_{n} cant embed in any neg. definite ut $R_{\infty} い$ or any spin mfd.
Infinitely many smooth structures on $M^{3} \times \mathbb{R}$
let M be a compact closed smooth
orientable 3-manifold
Fact: $\exists n$ sit. M smoothly embeds in $\# s^{2} \times s^{2}$ ($\therefore M \times \mathbb{R}$ does too)

Idea: M is obtained from S^{3} by Dehn surgery on a link with even integer coeff egg $\left(\frac{\partial)^{U}}{6}{ }_{6}\right.$
so $M=\partial X$ where X is 4 -manifold obtained from B^{4} by attaching 2 -handles $D(X)=\partial(X \times[0,1])$ has handle diagram

handle slides give.
CO) Co © 4 -handle
this is $\#_{n} s^{2} \times s^{2}$
now $(M \times \mathbb{R}) \notin R_{n+1}$ is not differs to $M \times \mathbb{R}$ since it contains a set that cant be embedded in $\#_{n} S^{2} \times S^{2}$
similarly infinitely many of $(M \times \mathbb{R}) \subseteq R_{k}$ must be different

If M has boundary, but is orientable then $D(M)=\partial(M \times I)$ is closed and as above embeds in $\#_{n} S^{2} \times S^{2}$ so M does too now same argument $\Rightarrow M \times \mathbb{R}$ has infinitely many smooth stirs
if M is non oriented then let \tilde{M} be its orientation double coven
note the double coven of $(M \times \mathbb{R}) \subset R_{n}$ is $(\tilde{M} \times \mathbb{R}) \mapsto R_{2 n}$ and a differ of $(M \times \mathbb{R}) \mapsto R_{n}$ with $(M \times R) G R_{m}$ will lift to a differ of $(\tilde{M} \times \mathbb{R}) G R_{2 n}$ to $(\tilde{M} \times \mathbb{R}) G R_{2 m}$
\therefore infinitely many of $(M \times \pi) G R_{k}$ most be different.

Uncountably many large \mathbb{R}^{4} s
For this we need: an end E of an open manifold x is called periodic if \exists a shift mop $\phi: E \rightarrow E$
st. $\phi: E \rightarrow \phi(E)$ is a diffeomorphisen and $\phi^{\prime \prime}(E)$ exits any compact set for some
example: let $X=$ open 4 -manifold with a compact set K sit. $X-K$ has 2 components B and E as shown

and $\phi: B \rightarrow E$ a diffeomorphism st. "so" in B maps to " ∂K " in E
now let $X_{\infty}=11 X_{i / n}$ where $X_{1}=X$ and B in X_{i} glued to $E \min X_{1-1}$

clearly end periodic
Th쓰(Taubes):
let X be a smooth open simply connected 4-manifold with one end. If X is end periodic and I_{X} is definite then I_{x} is $\Theta_{n}(1)$ or $\Theta_{n}(-1)$
now let R be the first example constructed above
let $f: R \rightarrow[0, \infty)$ be a topological radial function
\exists some A st. $\quad C^{\prime} \subset f^{-1}([0, A))$
let $R_{t}=f^{-1}([0, t))$ for $t \geq A$
Claim: $R_{t} \neq R_{s}$ for $t \neq s$
if not let ψ be a differ $R_{t} \rightarrow R_{s}$ las

$$
\exists \varepsilon>0 \text { st. } \psi\left(R_{t}-R_{t-\varepsilon}\right)<R_{s}-R_{t}
$$

now consider the component of $K-\phi^{-1}\left(f^{-1}(s)\right)$

$$
I=\Theta_{2} E_{8}
$$

component of $U-\phi^{-r} / f^{-r}(s)$) not containing $i(x)$
we can now glue so copies of $\left(R_{s}-R_{t-\varepsilon}\right)$ to this using $\phi^{-10} \psi$ to get \hat{X} an open mfd
with periodic end and $I_{\hat{x}}=\otimes_{2} E_{8}$

* Taus
II) Topologically slice not smoothly slice knots (more large exotic $\mathbb{R}^{4} s$)
given a knot $k c s^{3}$
let $X(K)=B^{4} \cup Z$-handle attached to K with framing O
le. glue $D^{2} \times D^{2}$ to B^{4} along $S^{\prime} \times D^{2}$ by an embedding $\phi: S^{1} \times D^{2} \rightarrow S^{3}$
sending $\phi\left(s^{\prime} \times\{0,7)\right.$ to K and $\phi\left(S^{\prime} x\{p \neq 0\}\right)$ to a copy of K linking O tines w/k
$X(K)$ is called the zero trace of K
lemma (Trace Embedding Lemma):
K is smoothly (resp.topologically) slice in B^{4}

$$
\Leftrightarrow
$$

$X(k)$ smoothly (resp. topologically) embeds in S^{4}, or \mathbb{R}^{4}
recall K is slice in B^{4} if \exists an
embedded disk $D^{2} \subset B^{4}$ s.t $2 D^{2}=K$
it is smooth/top slice if the embedding is swooth/topological (locally flat).

Proof: $(\Rightarrow) K$ slice means we have

glue B^{4} to this B^{4} to get

a ubhd of D^{2} in B_{0}^{4} is $D^{2} \times D^{2}$ attacked to the other B^{4} along $S^{1} \times D^{2}$
pe. $B^{4} \cup D^{2} \times D^{2}$ is result of a 2 -handle attachment to K if framing not zero then D^{2} u Seitan surface for K would give a nontrivial
homology class in $H_{2}\left(S^{4}\right)=0$
(since self-intarection $\neq 0$)
\therefore we have $X(K)$ embedded in S^{4} (\Leftarrow) if $X(K)$ embeds we see

let $B_{0}^{4}=\overline{S^{4}-B^{4}}$ in $X(K)$
So B_{0}^{4} is a 4 -ball and $D^{2} \times\{0\}$ in 2 -handle gives slice disk for K in B_{0}^{4}

Fact: There are topologically slice knots that are not smoothly slice
to see this need
Freedman: If KCs^{3} has Alexander polynomial 1, then K is topologically slice

Gompf using Donaldson: I Alex poly 1 knots that are not smoothly slice more resently one can use Khovanor homology to construct examples (this is great! since if does not use any "hard analysis" like all previous methods used)
egg.

Given a top slice, but not smoothly slice Kcs^{3} we can construct a large exatic \mathbb{R}^{4}
Since K is top slice, lemma above says \exists a topological embedding

$$
\phi: X(K) \rightarrow \mathbb{R}^{4}
$$

let $C=\mathbb{R}^{4}-\phi(\operatorname{in}+X(k))$
Quinn proved that any open 4 -manifold has a smooth structure
so we can put a smooth str on C $\partial C=-\partial X(k)$ and these are smooth 3-manifolds so they are diffeomorphic

$$
\psi: \partial c \rightarrow-\partial X(k)
$$

$$
\text { let } P=X(K) u_{\psi} c
$$

by Freedman's work discussed above we know R is homeomorphic to \mathbb{R}^{4} but $X(K)$ smooth ky embeds in R so R cant be \mathbb{R}^{4} or K would be smoothly slice by Trace Embedding Lemma

Question:
Can you construct more than one exotic \mathbb{R}^{4} using such knots?
almost certainly yes, but how do you distinguish them?
III) Constructing small exotic \mathbb{R}^{4} using the failure of the smooth 5D n-wbordism theorem an h-cobordism from M_{0}^{n} to M_{1}^{n} is a compact $(n+1)$-manifold W such that

$$
\partial w=-\mu_{0} \cup \mu_{1}
$$

and the inclusions $i_{j}: \mu_{j} \rightarrow W$ are homotopy equiv.
Fact: if M_{0} and M_{1} are homotopy equivalent then
they are h-cobordant (Novikou Wall)
Facts about h-cobordusms \& handlebodeés:
"recall" an n-disiensional k-handle is

$$
\begin{aligned}
h^{k} & =D^{k} \times D^{n-k} \\
\partial-h^{k} & =\left(\partial D^{k}\right) \times D^{n-k}=S^{k-1} \times D^{n-k}
\end{aligned}
$$

h^{k} is attached to the ∂ of an u-manifold X
by an embedding $\phi: \partial h^{k} \rightarrow \partial X$
so attaching h^{k} to x is

$$
x u_{\phi} h^{k}=x \Perp h^{k} / x \in \partial_{-} h^{k} \leadsto \phi(x) \in \partial X
$$

example:
a 0 -handle is just D^{n} attached along \varnothing so attaching 0-handle is just
disjoint union with D^{n}
a 1-handle in 2D

$$
h^{\prime}=D^{\prime} \times D^{\prime}
$$

a handlebody is a manifold X^{n} built from \varnothing or $M^{n-1} \times[0,1]$ by a sequence of hardle attachments
example:

Facts about handlebodies:

1) any compact smooth manifold, or cobordism, has structure of a handlebody
2) handles can be attached with increasing index

this is just It for belt and attaching spheres

д, M
3) if h^{k} and h^{k+1} attached to ∂M so that attaching sphere $h^{k+1} \cap$ belt sphere h^{k} exactly once (and transversely) then

4) If M^{n} connected and $\partial-\neq$ then can assume no 0 -handles
($\partial_{+} \neq 0$ then no n-handles)
(just cancel as above)
5) if X is a cobordism, $\pi(X)=1$, and $n \geq 5$, then can assume there are no 1 or ($n-1$)-handles (ard no 0 or n-handles, by 4))

Now suppose M and M^{\prime} are honeomorphic non-diffeo. 4 -manifolds (such examples exist due to

Freedman and Donaldson)
From above \exists a cobordism X with

$$
\partial X=-M \cup M^{\prime}
$$

and we can assume there are no $0,1,4$, and 5 handles
so $X=M \times[0,1] \cup 2$-h's $\cup 3$-h's
the $C W$-chain complex $C_{k}(X, M)=$ generated by k-handles and $\partial_{k} h^{k}=\sum_{i}\left\langle h_{i}^{k}, h_{i}^{k-1}\right\rangle h_{i}^{k-1}$
where $\left\langle h_{1}^{k} h_{2}^{k-1}\right\rangle=$ algebraic intersection of attaching sphere of h^{k} and belt sphere of h_{i}^{k-1}
since $H_{2}(X, M)=H_{3}(X, M)=0$ (since $M \rightarrow X$ a homotopy equiv)
we know ∂_{3} is an isomorphism (is particular
\# $2-4=\# 3-4$)
after "sliding handles" we can assume (attaching sphere $\left.h_{i}^{3}\right) \cdot\left(\right.$ belt sphere $\left.h_{j}^{2}\right)=\delta_{i j}$ if the geometric $\Lambda=\delta_{i j}$ then we could cancel all handles and $X=M \times[0,1]$
so $M^{\prime}=M \times\{1\} \otimes$ choice of M, M^{\prime}
From now on assume only one 2 and 3 -handles (argument same if more, and \exists examples like this)

we can find Casson handles in $X_{1 / 2}$ to cancel extra intersections between $A=$ attacking sphere of h^{3} and $B=$ belt sphere of h^{2}
and arrange that $N=$ open ubhd of $A \cup B \cup$ Mason handles
is homeomorphic (by Freedman) to $S^{2} \times S^{2}-$ Ball
let $U=$ everything above and below N

Set $R_{-}=M \cap U$ and $R_{+}=M^{\prime} \cap U$
note: R_{-}is obtained from N by "suryening B " so is topologically \mathbb{R}^{4} similarly for R_{+}
let $K=$ union of all cores and cocores of handles together with points above and below $A \cup B$

$U-K$ is a trivial cobordism from $R_{-}-(\overbrace{\left.K \cap R_{-}\right)}^{K_{-}}$ to $R_{+}-\underbrace{k \cap R_{+}}_{k_{+}})$
Claim: $R_{ \pm} \subset \mathbb{R}^{4}$
indeed, we can build $S^{4} \times[0,1]$ from $S^{4} \times[0, \varepsilon]$ by attaching a cancelling pair of 2 and 3 -handles now add double points to attatching \& belt spheres

now since we added the double pts \exists embedded disks to cancel them and a unbid of these disks are 2 -handles
recall any Casson handle embeds in a real
z-handle
so we car find N in $\left(S^{4} \times[0,1]\right)_{1 / 2}$ and U in

$$
S^{4} \times[0,1]
$$

now $U \cap\left(S^{4} \times\{0\}\right)$ is $R_{\text {- }}$ an is clearly contained in $\mathbb{R}^{4}=S^{4}$-pt same for R_{+}

Claim: $R_{ \pm}$not diffeomorphic to \mathbb{R}^{4}
If R - is diffeomorphic to \mathbb{R}^{4} then \exists a 4 -ball D_{-} in R_{-}st. $K_{-} \subset D_{-}$
since $U-K$ is a product, above ∂D_{-}is an S^{3} in R_{+} bounding some comact set D_{+}in R_{+}(and $K_{+} \subset D_{+}$) so we see

$$
M-\operatorname{nt} t\left(D_{-}\right) \cong M^{\prime}-\operatorname{int}\left(D_{+}\right)
$$

and

$$
S^{4}-\operatorname{int}\left(D_{-}\right) \cong S^{4}-\operatorname{int}\left(D_{+}\right)
$$

now $D^{4}=S^{4}-\sin t\left(D_{-}\right) \cong S^{4}-\sin t\left(D_{+}\right)$
so D_{+}also a 4-ball

$$
\begin{aligned}
\therefore M & =\left(M-\operatorname{lnt}\left(D_{-}\right)\right) \cup 4 \text {-handle } \\
M^{\prime} & =\left(M^{\prime}-\operatorname{sit}\left(D_{+}\right)\right) \cup 4 \text {-handle }
\end{aligned}
$$

$$
\text { So } M-\operatorname{cit}(D) \cong M^{\prime}-\operatorname{cit}\left(D_{t}\right) \Rightarrow M \cong M^{\prime} \nsubseteq
$$

