Exotic Structures on Open 4-Manifolds

A) Statements of results

Large exotic \mathbb{R}^4 1
Small exotic \mathbb{R}^4 4
Universal exotic \mathbb{R}^4 5
Algebraic Structure (end sum and exotic monoid) 6
Partial Order 11
Topology on space of exotic \mathbb{R}^4 14
Symmetries 15
Geometry 21
Invariants 24
Other manifolds 29

B) Constructions of exotic structures

I) Restrictions of the intersection form (failure of smooth surgery)

existence of one large \mathbb{R}^4 35
countably infinite family of large \mathbb{R}^4 38
infinite family of smooth str on $M \times \mathbb{R}$ 40
uncountably many large \mathbb{R}^4 42

II) Topologically slice not smoothly slice knots (more large \mathbb{R}^4) 45

III) Constructing small exotic M^4 using failure of smooth 5D h-cobordism M^4 50
If \(n \neq 4 \), then \(\mathbb{R}^n \) has one smooth structure (this means if \(R \) is a smooth \(n \)-manifold and \(R \) is homeomorphic to \(\mathbb{R}^n \) then \(R \) is diffeomorphic to \(\mathbb{R}^n \))

in dimension 4 we have

Thm 1:

There exist a 2-parameter family

\[
\{ \mathcal{R}_{s,t} \mid s,t \in (0,1) \}
\]

such that \(\mathcal{R}_{s,t} \) is homeo to \(\mathbb{R}^4 \) but there is no embedding of \(\mathcal{R}_{s,t} \) to \(\mathcal{R}_{s,t'} \)

if \(s > s' \) or \(t > t' \)

(\text{i.e. if } \mathcal{R}_{s,t} \text{ diffeo to } \mathcal{R}_{s',t'} \text{ then } s = s' \text{ and } t = t' \)

but if \(s \leq s' \) and \(t \leq t' \) then \(\mathcal{R}_{s,t} \rightarrow \mathcal{R}_{s',t'} \)

Moreover each \(\mathcal{R}_{s,t} \) contains a compact set that does not embed in \(\mathbb{R}^4 \) so they are not diffeo to \(\mathbb{R}^4 \)

Remarks:

1) the existence of one such exotic \(\mathbb{R}^4 \) follows from an argument of Casson
using work of Donaldson and Freedman

2) 3 such examples were found by Gompf in
 "Three exotic \(\mathbb{R}^4 \)'s, and other anomalies"
 and a countable family was found by Gompf in
 "An infinite set of exotic \(\mathbb{R}^4 \)'s"

4) An uncountable family \(\{ \mathcal{R}_t : t \in (0,1) \} \) was found by Taubes in
 "Gauge theory on asymptotically periodic manifolds"

 in the second paper of Gompf above he gave
 the family in Thm 1 using Taubes work

Thm 1 can be refined, we say \(\mathcal{R} \leq \mathcal{R}' \) if any

compact, smooth, codimension zero
submanifold of \(\mathcal{R} \) embeds in \(\mathcal{R}' \)

we say \(\mathcal{R} \) and \(\mathcal{R}' \) are compactly equivalent if

\(\mathcal{R} \leq \mathcal{R}' \) and \(\mathcal{R}' \leq \mathcal{R} \), denote \(\mathcal{R} \sim \mathcal{R}' \)

it is easy to see \(\leq \) is a partial order on equivalence classes of \(n \)-manifolds

Exercise: assume \(\mathcal{R} \) and \(\mathcal{R}' \) are connected

1) if \(\mathcal{R} \sim \mathcal{R}' \), then they are both closed or both non-closed
2) if \(R, R' \) are closed and \(R \sim R' \), then \(R \) is diffeomorphic to \(R' \)

Theorem 1':

There exist a 2-parameter family

\[
\{ R_{s,t} \mid s, t \in (0, 1) \}
\]

such that \(R_{s,t} \) is homeo to \(R^4 \) but

\[
R_{s,t} \leq R_{s', t'} \iff s \leq s' \text{ and } t \leq t'
\]

Remark: \(\text{Th } 1 \) and \(1' \) are proven using

A) Freedman's proof that "Casson handles are topological 2-handles" i.e. classifying simply connected 4-manifolds

B) Donaldson's Diagonalization Theorem

C) for the uncountable family, Taubes generalization of B) to "end periodic" manifolds

we will cover these later.

Remark: getting a single exotic \(R^4 \) can be done by

uses A) and

B) or

Khovanov homology

finding a topologically (locally flat) slice knot in \(S^3 \) that is not smoothly slice

This can be done with no analysis as we will see later.
there exist a family
\[\{ R_t : t \in (0,1) \} \]
such that \(R_t \) is homeomorphic to \(\mathbb{R}^4 \) and
1) all \(R_t \) are subsets of \(\mathbb{R}^4 \)
2) \(R_t \rightarrow R_{t'} \) if \(t \leq t' \)
3) uncountably many of the \(R_t \) are not
diffeomorphic
note all \(R_t \sim \mathbb{R}^4 \)

Remark:
1) The first such \(R \) was constructed by Freedman
in unpublished work based on ideas of Casson
2) Thm 2 was proved by DeMichelis and Freedman
 "Uncountably many exotic \(\mathbb{R}^4 \)'s in standard 4-space"

there is a family \(\{ R_t : t \in (0,1) \} \) such that \(R_t \) is
homeomorphic to \(\mathbb{R}^4 \) and \(R_t \sim R_{t'} \iff t = t' \)
and for each \(t \) \exists an uncountable family
\(\{ R_{t,s} \} \) such that \(R_{t,s} \) is homeomorphic
to \(\mathbb{R}^n \), all \(R_{t,s} \) are compactly equivalent and
Remark: This is due to Gompf is

"An Exotic Menagerie"

Remark: The proof of Th°2 is based on A) above and
D) \(\exists \) h-cobordant 4-manifolds that are not diffeomorphic

we call an exotic \(R^4 \) large if it contains compact codimension 0 sets that don't embed in \(R^4 \) and we call it small if it is compactly equivalent to \(R^4 \)

Open Question (?): if \(R \sim R^4 \), does \(R \) embed in \(R^4 \)

Th°3: \(\exists \) an exotic \(R^4 \), \(R_u \), such that any exotic \(R^4 \), \(R \) embeds in \(R_u \)

Remark: This is due to Freedman and Taylor

"A universal smoothing of four-space"
Open questions:

1) Does every compact equivalence class of exotic \mathbb{R}^4's have uncountably many representatives?
2) Is R_u the unique representative in its compact equivalence class?
3) Given a compact equivalence class C of \mathbb{R}^4's does $\exists R_e \in C$ s.t. any $R \in C$ embeds in R_e?

How can we organize exotic \mathbb{R}^4's?

Algebraic Structure

Let \mathcal{R} be the set of all exotic \mathbb{R}^4's and \mathcal{R}_n be the compact equivalence classes of exotic \mathbb{R}^4's. So far, we know these are both uncountable sets. We can define a binary operation called end sum.

Given $R_1, R_2 \in \mathcal{R}$, choose proper embeddings $\gamma_i : [0, \infty) \to R_i$.

We can take neighborhoods of $\partial([0, \infty))$ $N_i : (0, \infty) \times D^3 \to R_i$.
now \(\partial(R_2 - \text{int } N_2) = \mathbb{R}^3 \)

choose an orientation reversing diffeomorphism

\[\phi: \partial(R_1 - \text{int } N_1) \rightarrow \partial(R_2 - \text{int } N_2) \]

and define the end sum to be

\[R_1 \uplus R_2 = (R_1 - \text{int } N_1) \cup (R_2 - \text{int } N_2) / \sim \]

where \(x \in \partial(R_1 - \text{int } N_1) \) is glued to \(\phi(x) \in (R_2 - \text{int } N_2) \)
note: any 2 choices for ϕ are isotopic so η is well-defined if any choices for V_i are isotopic

exercise: show two proper embeddings of $[0,\infty)$ into an exotic \mathbb{R}^4 are isotopic

Hint: first isotop so agree at the integers

![Diagram]

now have lots of loops each bounds disk with a finite number of intersection points use "finger moves" to remove double pts ...

we now have a map

$$\eta: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

and
\(\forall : \mathcal{R} \times \mathcal{R} \to \mathcal{R} \)

Lemma 4:

\(\mathcal{R} \) and \(\mathcal{R}_\sim \) are commutative monoids under \(\forall \), i.e. \(\forall \) is associative and has an identity, no non-trivial element has an inverse.

Proof:

Clearly \(\mathcal{R}^4 \) is the identity and \(\forall \) is associative and commutative.

Suppose \(\mathcal{R}_1 \forall \mathcal{R}_2 = \mathcal{R}^4 \)

Then \(\mathcal{R}_1 = \mathcal{R}_1 \forall (\mathcal{R}_2 \forall \mathcal{R}_1) \).

\[
\mathcal{R}_1 = \mathcal{R}_1 \forall (\mathcal{R}_2 \forall \mathcal{R}_1) \forall (\mathcal{R}_2 \forall \mathcal{R}_1) \forall \ldots \\
= (\mathcal{R}_1 \forall \mathcal{R}_2) \forall (\mathcal{R}_1 \forall \mathcal{R}_2) \forall \ldots \\
= \bigwedge_{i=1}^{\infty} \mathcal{R}^4 = \mathcal{R}^4
\]

Thm 3':

\(\mathcal{R}_u \) from Thm 3 satisfies \(\forall \mathcal{R}_u = \mathcal{R}_u \) for all \(\mathcal{R} \in \mathcal{R} \).

Clearly Thm 3' \(\Rightarrow \) Thm 3.
Open Question:

Is there a group we can associate to \(\mathbb{R} \) or \(\mathbb{R}_+ \) and \(92 \)? Some other operation?

Note: Knots in \(S^3 \) under \# is a monoid without inverses, but knots up to cobordism is a group under \#

So question above is asking for something like this for \(92 \)

Recall: one way to get a group from a commutative monoid is to form its Grothendieck group where you “add inverses” this is how you get \(\mathbb{Z} \) from \(\mathbb{N} \cup \{0\} \)

Specifically if \((M,+)\) is a commutative monoid, then its Grothendieck group is constructed as follows:

- start with \(M \times M \)
 - think of \((m,n)\) as “\(m-n \)"
- define the equivalence relation
 \((m_1,n_1) \sim (m_2,n_2) \) if \(\exists k \in M \)
\[\text{s.t. \ } m_1 + n_2 + k = m_2 + n_1 + k \]
\[\text{set } K = M \times M / \sim \]

note: if \((m_1 \neq m_2 \Rightarrow m_1 + n \neq m_2 + n)\) then don't need \(\sim\)

* define \((m_1, n_1) + (m_2, n_2) = (m_1 + m_2, n_1 + n_2)\)

\((K, +)\) is the **Grothendieck group** of \((M, +)\)

Exercise: show the Grothendieck group of \(\mathbb{N} \cup \{0\}\) is \(\mathbb{Z}\)

Lemma 5:

The Grothendieck group of \((\mathbb{R}, \times)\) and \((\mathbb{R}_n, \times)\) is trivial

Proof:

\[R = R^+ \cdot R = (R^+ \cdot R) \cdot R = R^+ \cdot (R \cdot R) \]
\[= R^+ \cdot R = R \]

Partial Order:

Lemma 6:

if \(R_1 \leq R_2\) and \(R_3 \leq R_4\), then

\[R_1 \cdot R_3 \leq R_2 \cdot R_4 \]

and \(\leq\) is a partial order on \(R_n\)
Exercise: Convince yourself of this. What more can you say about \(\leq \) on \(R \) and \(R_\sim \)?

Note: minimal elements:
- \(R^4 \leq R \quad \forall R \in R \)
 so \(R^4 \) is minimal elt in both \(R \) and \(R_\sim \)
- if \(R_m \) is another minimal elt in \(R_\sim \) then \(R_m \leq R^4 \) and \(R^4 \leq R_m \)
 \[R^4 \sim R_m \]
 i.e. \([R^4] \) is unique minimal elt in \(R_\sim \)
- if \(R \) such that \(R \in R^4 \) then \(R \) is also a minimal element in \(R \)

Question: if \(R \in R \) is a minimal element does \(R \) embed in \(IR^4 \) ?

Maximal elements:
- \(R \leq R_u \quad \forall R \in R \)
 so \(R_u \) is maximal element for both \(R \) and \(R_\sim \).
as above \([R_u]\) is the unique maximal element in \(\mathcal{R}\)

Question:

if \(R \in \mathcal{R}\) is a maximal element does \(R_u\) embed in \(\mathcal{R}\)?
or is \(R_u = \mathcal{R}\)?

gaps:

Question:

- if \(R \leq \mathcal{R}'\) is there always some \(\mathcal{R}''\) such that \(R \leq \mathcal{R}'' \leq \mathcal{R}'\)?
- infinitely many such \(\mathcal{R}''\)?

comparability:

Question:

- given \(R\) are there \(\mathcal{R}'\) that are not comparable to \(\mathcal{R}\)?
 - uncountably many?
- given a family \(\{R_a\}\) are there (uncountably many) \(\mathcal{R}'\) that are not comparable to any \(R_x\)?
Question:

- What else can you say about \leq on \mathbb{R} or \mathbb{R}^∞?
- Is there another order on \mathbb{R} or \mathbb{R}^∞?
- Is there an order on a compact equivalence class?

Topology

We can put a topology on \mathbb{R}^∞ using \leq for all $R \in \mathbb{R}^\infty$ let

$$K_R = \{ R' \in \mathbb{R}^\infty : R' \leq R \}$$

$$L_R = \{ R' \in \mathbb{R}^\infty : R \leq R' \}$$

These form a closed subbasis.

Let $B = \{ \text{all finite unions of } K_R \text{ and } L_R \text{'s} \}$

and $T_\infty = \{ \text{all infinite intersections of elts of } B \}$

so open sets in T_∞ are complements of elts of T_∞.

Not much is known about this topology, but Gompf in

"A moduli of exotic R^4's" gave a refinement of T_∞ for any compact oriented 4-manifold X let

$$U_X = \{ R \in \mathbb{R}^\infty : X \text{ embeds in } R^3 \}$$

Now let T be the topology with closed...
subbasis all $\mathbb{R}_n - U$ and L_R

Gompf proved:

1) \mathcal{I} is regular
2) \mathcal{I} is 2nd countable [follows from 1), 2) by Urysohn Metrization]
3) \mathcal{I} is metrizable
4) every increasing sequence converges

Open Problems:

- is $\mathcal{I} = \mathcal{I}_S$?
- what more can be said about \mathcal{I} or \mathcal{I}_S?
- is there a "better" topology on \mathbb{R}_n?
- is there a "good" topology on \mathcal{I}?

Symmetries:

note if $\gamma: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is rotation by π
then $\mathbb{R}^2/_{x \sim 2\pi(x)} \cong \mathbb{R}^2$ and $\mathbb{R}^2 \rightarrow \mathbb{R}^2/\gamma$
this is the standard 2-fold cover of \mathbb{R}^2
branched over a point

so $\gamma' = \gamma \times \text{id}: (\mathbb{R}^4 = \mathbb{R}^2 \times \mathbb{R}^2) \rightarrow \mathbb{R}^4$ $(x, y) \mapsto (2\pi(x), y)$
satisfies $\mathbb{R}^4/_{x \sim 2\pi(x)} \cong \mathbb{R}^4$ and $\mathbb{R}^4 \rightarrow \mathbb{R}^4/\gamma'$
this is the standard 2-fold cover of \mathbb{R}^4
branched over a plane
Theorem 7:

there exists \(R^4 \)'s \(R_1, R_2 \) and a smooth involution \(\sigma : R_1 \rightarrow R_1 \) that is

1) topologically standard
2) \(R_1 \rightarrow R_1/\sigma \cong R_2 \)

and we can independently choose \(R_1 \) and \(R_2 \) to be large or small exotic \(R^4 \)'s as long as \(R_1 \), is not \(R^4 \) (we can take \(R_2 \) to be standard)

Open Question:

can you find such an \(R_1 \rightarrow R_2 \) with \(R_1 \cong R^4 \) and \(R_2 \) not?

Remark:

1) \(R_1 \) small

- is due to Freedman in unpublished work

2) rest of theorem due to Gompf in "An exotic menagerie"
more group actions (from Gompf)

let G be I) a group that acts properly discontinuously on \mathbb{R}^3

i.e. $\forall x \in \mathbb{R}^3 \exists$ a nbhd U of x st. $g(U) \cap U = \emptyset$ if $g \neq 1$

clearly G acts on $\mathbb{R}^4 = \mathbb{R}^3 \times \mathbb{R}$

or II) a finite group acting on \mathbb{R}^4

let $a = \{(0,0,0)\} \times [0,\infty)$ and

$A = \bigcup_{g \in G} g(a)$

let R be an exotic \mathbb{R}^4 (large or small)

set $R' = \mathbb{R}^4 \sqcup_{A} (1124 \{1\} \mathbb{R})$

(i.e. end sum one R into \mathbb{R}^4 along each $g(a)$)

clearly G acts on R' and is topologically equivalent to the G action on \mathbb{R}^4

if $\mathbb{R}^4 / G = \mathbb{R}^4$, then

$R' / G \cong \mathbb{R}$
Note: \(R', R \) are both either large or small and \(R' \geq R \)

Open Question:

Can an exotic \(\mathbb{R}^4 \) cover a compact 4-manifold?

Now, for any \(\mathbb{R}^4, R \) set

\[
D(R) = \{ \text{diffeomorphisms of } \mathbb{R}^3/\text{isotopy} \}
\]

and \(D_+(R) \subset D(R) \) the subgroup of orientation preserving isotopy classes

Note: \(D_+(\mathbb{R}^n) = \{ \text{id} \} \) \(\forall n \)

Thm 8:

There are uncountably many \(R \) (both large and small) for which there is an uncountable subgroup of \(D_+(R) \)

Remark: This is due to Gompf in "Group actions, corks and exotic smoothings of \(\mathbb{R}^4 \)"

When studying manifold with boundary we are interested in how diffeos of the boundary interact with diffeos of the mfd
for non-compact manifolds we introduce "diffeomorphisms at infinity"

a closed neighborhood of infinity (cni) in a manifold M is a codimension one submanifold $E \subset M$ that is closed and $M - E$ is compact
given cni $E_1 \subset M_1$ and $E_2 \subset M_2$, $i = 1, 2$

and diffeomorphisms $f_i : E_i \to E_i$

we say $f_1 \sim f_2$ if there is a cni $E \subset M$ st. $E_i \subset E$ and $f_i|_E = f_2|_E$

f_1, f_2 have same "germ at ∞"

a diffeomorphism at infinity from M to M' is an equivalence class of such diffeos

when M, M' have a single end we also say this is a diffeomorphism of the ends

let $D^\infty(M) = \{\text{isotopy classes of diffeos at } \infty\}$

and $D^\infty_+(M)$ the orient pres. subgroup

there is an obvious restriction map

$r : D^\infty(M) \to D^\infty_+(M)$
Lemma 9: for any $R \in \mathbb{R}$, ker r and coker r are countable.

Theorem 9: there are uncountably many R^+'s R (large and small) such that:
1) $r(D(R)) \subseteq D^\infty(R)$ is uncountable
2) There exist nonfinitely generated groups in coker $r = D^\infty(R)/r(D(R))$
3) for the universal Ru

Coker $r = \{1\}$

Open Question: What can you say about ker r? Is it always trivial?

Open Question: Can S^1 or R act non-trivially on an exotic \mathbb{R}^4?
Geometry:

There is not much known about Riemannian metrics on exotic R^4's. Here are a few: suppose $R \in \mathbb{R}$ but $\neq R^*$

1) Can't have a constant curvature metric (since this $\Rightarrow R^4$ or S^4)

2) Can't have curvature ≤ 0 (since $\Rightarrow R^4$)

3) Can have a complete metric with negative Ricci curvature and one with sectional curvature any constant negative number (Lohkamp)

Questions:

Can you construct invariants of exotic R^4's using Riemannian metrics?

Eg. for g on R let

$$G_g = \max \text{ curvature} - \min \text{ curvature}$$

$$G_R = \inf_g G_g$$

Can this distinguish exotic R^4's? Can this be 0?
Theorem 10: There exist \mathbb{R}^4's that admit metrics whose isometry group contains an uncountable subgroup.

Remark: Due to Gompf in last mentioned paper an exotic \mathbb{R}^4, \mathbb{R}, is called **full** if there exists a compact subset that cannot be embedded in its complement or into any homology S^4 (not hard to construct these).

Theorem 11:

1) any metric on a full \mathbb{R}^4 has finite isometry group

2) there exist \mathbb{R}, full exotic \mathbb{R}^4's, with $\text{D}^1(\mathbb{R})$ and $\text{D}^0(\mathbb{R})$ uncountable

Open Question: Does every isometry group of an exotic \mathbb{R}^4 inject into its diffeotopy group?

Note: not true for \mathbb{R}^4!
Remark: 1) in Thms due (mostly) to Taylor in "Smooth Euclidian 4-spaces with few isometries"
2) is due to Gompf in above paper

Let's move to symplectic geometry.

Recall a symplectic structure on a 4-manifold M is a 2-form ω st.

(closed) $d\omega = 0$ and

(non-degenerate) $\omega \wedge \omega$ is never zero (i.e. volume form)

A complex manifold X is **Stein** if

\[\exists \text{ an exhausting pluri-subharmonic function } \phi : X \to \mathbb{R} \]

i.e. $\phi^{-1}(-\infty, c]$ is compact $\forall c$ and

\[[d(d\phi \circ J)](v, Jv) > 0 \ \forall v \neq 0 \text{ in } TX \]

This $\Rightarrow d(d\phi \circ J)$ is a symplectic form.

Here $J : TX \to TX$ is the action of multiplication by i on TX.
There are uncountably many small exotic \(IR^4 \)'s that admit Stein structures.

There are uncountably many large \(IR^4 \)'s that embed into Stein surfaces.

There are exotic \(IR^4 \)'s that do not embed into Stein surfaces.

Remark: 1\(^{st} \) result is due to Gompf in “Handlebody constructions of Stein surfaces”
other results due to Bennett in “Exotic smoothings via large \(IR^4 \)'s in Stein surfaces”

Questions:

- Do all small \(IR^4 \)'s admit Stein structures?
 (Symplectic with convex “boundary”)

- Does any large \(IR^4 \) admit a Stein structure?

Invariants:

Given \(R \) homeomorphic to \(IR^4 \), for any compact subset \(C \subseteq R \) there is a compact 3-manifold \(M \) separating \(C \) from \(\infty \).
(just take any smooth proper $f: \mathbb{R} \to [0, \infty)$
then there is some regular value c
so $C \subset f^{-1}([0, C])$ so $M = f^{-1}(c)$ works)

let $b_c = \min \{ b_1(M) \}$ over all such M

*note: if $C \subset C' \subset \mathbb{R}$ then $b_c \leq b_{c'}$

Bičakča and Gompf defined the engulfing index of \mathbb{R}
to be
\[e(\mathbb{R}) = \sup \{ b_c \mid C \subset \mathbb{R} \} \]
easy to see $e(4R_i) \leq \Sigma e(R_i)$
in many examples it is ∞

Thm 13:

\[\exists \text{ exotic } \mathbb{R}^4 \text{'s with } e \text{ finite} \]

Question:

\[\text{Which values of } e \text{ can be realize?} \]

(1 think ∞, many can)

Now given \mathcal{R} consider the set
\[\text{Sp}(\mathcal{R}) = \{ \text{closed spin } \mathcal{R} \text{-manifolds with} \]
\[\text{intersection form } \Theta(\mathcal{R}) \]
\[\text{into which } \mathcal{R} \text{ embeds} \}

if $\text{Sp}(\mathcal{R}) = \emptyset$, set $b_\infty = \infty$
otherwise \(b_e = \frac{1}{2} \min_{N \in \mathcal{S}(\mathcal{R})} \{ b_2(N) \} \)

for any smooth 4-manifold \(M \) let

\[E(M) = \{ \text{topological embeddings } e : D^4 \to M \]
\[\text{st } e(D^4) \text{ is bicollared and } \exists p \in D^4 \text{ s.t. } e(\partial D^4) \text{ is smooth} \}

for \(e \in E(M) \) let \(R_e = \text{smooth structure induced on } e(\text{interior of } D^4) \)

finally set

\[\gamma(R) = \max \{ b_{R_e} \} \quad e \in E(M) \]

this is called the Taylor invariant

roughly \(\gamma(R) \) measures the minimal number \(n \)

\(\text{st } R \text{ embeds in } \#_n S^2 \times S^2 \)

all the complications in the def.\(^2\) are to prove things about \(\gamma \)

we can extend \(\gamma \) to any 4-manifold as follows

if \(M \) is spin, then

\[\gamma(M) = \max \{ \gamma(E) \} \]

where \(E \in M \text{ open set homeo to } R^4 \)

if \(M \) is orientable but not spin and
1) The 2nd Steifel–Whitney class $w_2(M)$ has no compact dual then

$$\gamma(M) = -\infty$$

2) If there are compact duals then

$$\gamma(M) = \max \{ \gamma(M-F) - \dim H_i(F; \mathbb{Z}_2) \}$$

where F runs over all compact duals to $w_2(M)$

If M is nonorientable, then let \tilde{M} be its orientation double cover, and set

$$\gamma(M) = \gamma(\tilde{M})$$

Properties of γ:

1) If $w_0 \leq \cdots \leq w_{n/2-1} \leq 0 \leq w_{n/2} \leq \cdots \leq w_n \leq M$ then $\gamma(M) \leq \max \{ \gamma(w_i) \}$ get = if M spin

2) If M_2 spin and $M_1 \subseteq M_2$ then

$$\gamma(M_1) \leq \gamma(M_2)$$

3) $\gamma(S^2) = 0$ but \exists exotic $\mathbb{R} \subseteq S^2$ st.

$$\gamma(R) \text{ arbitrarily large}$$

4) $\exists M$ with $\gamma(M) = -\infty$ and

for each $n \geq 0$, \exists uncountably many exotic \mathbb{R}^n with $\gamma = n$ (n could be ∞)

5) If M is a Stein manifold then $\gamma(M) \leq b_2(M)$

so for a Stein exotic \mathbb{R}^4, $\gamma = 0$

(\therefore get lots of exotic \mathbb{R}^4 with no Stein str)
6) There are uncountably many exotic \mathbb{R}^4 that embed in Stein manifold but have arbitrarily large γ

7) If R is an exotic \mathbb{R}^4 and R nontrivially covers some other manifold then
 \[\gamma(4^4E) = \gamma(E) \]
 \[\exists \text{ examples of } R \text{ s.t. } \gamma(4^4E) = \frac{1}{3} \gamma(E) \]
 So these can't cover!

8) \(\gamma(R) \leq \varepsilon(R) \)

Remark: All results due to Taylor

"An Invariant of Smooth 4-Manifolds"

except 6) due to Bennett in above paper
and 8) due to Khuzam in

"A comparative study of two fundamental invariants of exotic \mathbb{R}^4's"

Question:
Can γ take on finite negative values?

Question:
- can one find a non discrete invariant of exotic \mathbb{R}^4?
- can one define an invariant of exotic \mathbb{R}^4's?
Other Manifolds

Theo 14: let X be one of the following

1) W-pt for any topological manifold
2) total space of an oriented \mathbb{R}^2 bundle over an oriented surface
3) $Y \times \mathbb{R}$ for a 3-manifold Y that topologically locally flatly embeds in $\# n \overline{CP}^2$

then X admits uncountably many smooth structures

Remark: 1) is due to Gompf in

"An Exotic Menagerie"

but Furuta and Ohta proved many cases in

"A remark on uncountably many exotic differential structures on one-point punctured topological 4-manifolds"

2) is due to Ding in
"Smooth structures on some open 4-manifolds"

3) is due to Fang in

"Embedding 3-manifolds and smooth structures of 4-manifolds"

also note any rational homology sphere or Seifert fibered space has such embeddings

Theorem 15:

If Y is any compact 3-manifold then $Y \times \mathbb{R}$ admits infinitely many smooth structures.

If X is any open 4-manifold with at least one end that is topologically $Y \times \mathbb{R}$ and X has only finitely many ends homeomorphic to $Y \times \mathbb{R}$, then X admits infinitely many smooth structures.

Remark: This is due to Bičaka and Etnyre in

"Smooth structures on collarable ends of 4-manifolds"

Questions:

1) can this be upgraded to get uncountably many smooth structures?
2) Can the be upgraded so Y is any 3-manifold?

3) Can the be upgraded so X is any open 4-manifold?

3 constructions of exotic \mathbb{R}^4's

I) Restrictions of the intersection form of 4-manifolds (failure of smooth surgery)

recall given an oriented closed 4-manifold X

$$H_4(X) = \mathbb{Z}$$

and a generator $[X]$ is called a fundamental class

Poincaré Duality says

$$H^2(X) \times H^2(X) \xrightarrow{I_X} \mathbb{Z}$$

$$(\alpha, \beta) \mapsto \alpha \cup \beta ([X])$$

is a (symmetric) non-degenerate pairing called the intersection form

using Poincaré duality we can reinterpret this in $H_2(X)$

recall if $\Sigma \subset X^4$ is an embedded oriented surface then

$$[\Sigma] \in H_2(X^4)$$

(actually $i^*: H_2(X^4) \to H_2(X)$ is an inclusion

$$i_*([\Sigma]) \in H_2(X^4)$$

Fact: for any $h \in H_2(X^4)$ \exists some surface $\Sigma^2 \subset X$ s.t. $h = [\Sigma]$
now given \(h, h' \in H_2(X) \) let \(h = [\Sigma] \) and \(h' = [\Sigma'] \)

we can isotop \(\Sigma' \) so that \(\Sigma \) is transverse to \(\Sigma' \)
so \(\Sigma \cup \Sigma' = \{ p_1, \ldots, p_k \} \)

let \(\epsilon(p_i) = \) sign of intersection
\[\{ \text{i.e. does or \(\circ \) on } T_{p_i} \Sigma \text{ followed by} \]
\[\text{or \(\circ \) on } T_{p_i} \Sigma' \text{ agree or not} \]
\[\text{with or \(\circ \) on } T_{p_i} X \} \]

define \(\Sigma \cdot \Sigma' = \sum_{i=1}^{k} \epsilon(p_i) \)

now \(I_X : H_2(X) \times H_2(X) \to \mathbb{Z} \)
\[([\Sigma], [\Sigma']) \mapsto \Sigma \cdot \Sigma' \]

is Poincaré dual to pairing above

example:

in dimension 2:

\[H_2(T^2) \cong \mathbb{Z} \oplus \mathbb{Z} \]

\[a \quad b \]

\[a \cdot a = ? : \]
so \(a \cdot a = 0 \)

\[a \cdot b = 1 \]

so \(I = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \)
similarly for $S^2 \times S^2$ we have $H_2(S^2 \times S^2) = \mathbb{Z} \oplus \mathbb{Z}$

$I = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

can also check $H_2(CP^2) = \mathbb{Z}$ and $I = [1]$

Theorem [Donaldson]:

If X is an oriented, simply connected, smooth 4-manifold with I_X negative definite (i.e. $I_X(e,e) < 0 \forall e$) then $I_X = \oplus [-1]$

Remark: there are lots of non-diagonalizable symmetric pairings, e.g.

$$
\begin{pmatrix}
-2 & 1 \\
1 & -2 \\
1 & -2 \\
0 & 1 & -2 \\
0 & 1 & -2 \\
0 & 1 & -2 \\
0 & 1 & -2 \\
0 & 1 & -2 \\
0 & 1 & -2 \\
0 & 1 & -2 \\
\end{pmatrix}
$$

is not diagonalizable over \mathbb{Z}

so it cannot be I_X for X as in theorem

Idea of Proof:

Given X as in thm except I_X is pos. definite (just reverses or \mathbb{C})

there is a $SU(2)$-bundle E over X with Chern class $c_2(P) = 1$
let \(B = \{ \text{connections } D \text{ on } E \text{ with self-dual curvature } R_D = * R_D \} \)

\[M = B/\mathbb{Q} \leq \text{gauge group (symmetries of solv's)} \]

Using work of many people, in particular Taubes and Uhlenbeck one can show:

- \(\overline{M} \) is a compact oriented 5-manifold with singular points.

 number = \(\frac{1}{2} \# \) solutions to \(I_X(h,h) = 1 \)

 Call this number \(m \)

- Singular points have nbhd that are cones on \(\mathbb{CP}^2 \)

- \(\partial \overline{M} = \overline{X} \)

so \(M' = \overline{M} - \text{nbhd of sing pts and arcs connecting them} \)

has \(\partial M' = X \cup - (\# \mathbb{CP}^2) \)

If positive definite so \(\text{rank}(I_M) = 0 \text{ (Im)} \)

but signature is cobordism invariant so

\[\text{rank}(I_M) = 0 \text{ (Im)} = 0 \text{ (}\# \mathbb{CP}^2\text{)} = m \]

note: for any symmetric positive definite unimodular form \(I \), if \(m = \frac{1}{2} \# \) solutions \(I(h,h) = 1 \)

then \(m \leq \text{rank}(I) \) and equality \(\iff \) \(I \) diagonal.

Indeed, given solv \(h \) consider

\[I = (\text{span } h) \oplus (\text{span } h)^\perp \]
if $k \neq h$ is another solution then

$$I(hk, h^2k) = 1 + 1 = 2I(h, k)$$

since I pos. definite $I(h, k) = 0$

all other solns in $(\text{span } h)^\perp$

result follows by induction

Donaldson's $(4+1)$ now follows!

Existence of 1 large exotic \mathbb{R}^4:

let K be "the" $K3$ surface

re. $K = \{ z_0^2 + z_1^2 + z_2^2 + z_3^2 \in \mathbb{C}P^3 \}$

one can compute $\pi_1(K) = 1$, $H_2(K) = \mathbb{Z}$, and

$$I_K = E_8 \oplus E_8 \oplus_3 H \quad \text{where } H = (0, 1)$$

since $\pi_1 = 1$ we know $\pi_2(K) = H_2(K)$

so 3 immersions $e_i : S^2 \rightarrow K$ generating $\oplus_3 H$

after work of Casson we have

Thm (Freedman):

let X be 3 copies of $S^2 \times \{p\} \cup \{p\} \times S^2$ in $\#_3 S^2 \times S^2$

connected by arcs

\exists a topological embedding $i : X \rightarrow K$ realizing $\oplus_3 H$

a top embedding $j : X \rightarrow \#_3 S^2 \times S^2$ top isotopic to X.
a nbhd U of $i(X)$, a nbhd V of $j(X)$, and a diffeomorphism $\phi: U \to V$

\[
\begin{array}{c}
\text{let } R = (\#_3 S^2 \times S^2) - j(X) \\
\text{Claim: } R \text{ is an exotic } \mathbb{R}^4 \\
\text{1st: } R \text{ homeo. to } \mathbb{R}^4 \\
\text{for this we use} \\
\text{Th}^m(\text{Freedman}): \\
\text{any open manifold with } \tau_1 = 0 \text{ and } H_2 = 0 \\
\text{and one end topologically equivalent to } S^3 \times \mathbb{R} \text{ is homeomorphic to } \mathbb{R}^4 \\
\text{we can easily check these properties for } R \\
\text{2nd: } R \text{ not diffeo to } \mathbb{R}^4 \\
\text{assume } R \text{ diffeo to } \mathbb{R}^4
\end{array}
\]
let $C = \mathbb{S}^5 \times \mathbb{S}^2 - V$

this is a compact set

in \mathbb{R}^4 we know given any compact set C

exists a 3-sphere S that separates C

now ϕ breaks K into $K_1 \cup K_2$ with

$i'(x) \subset K_2$

set $K' = K_1 \cup B^4$ glued along S^3

$I_{K'} \cong \oplus_2 E_8$

contradicts Donaldson's Thm

so X not diffeo to \mathbb{R}^4

now let's check X is large

let C' be a compact set in X containing C
and homeomorphic to \mathbb{R}^4

If C' smoothly embedded in \mathbb{R}^4 then it embeds in S^4

now we can glue $S^4 - C$ to $K - \phi^{-1}(C' - C)$

by ϕ on $(C' - C)$ to $\phi^{-1}(C' - C)$

giving a closed smooth mfd with $I = \oplus E_0$

There are many ways to get an infinite family, one uses

If X is a smooth closed spin 4-manifold

then by Donaldson I_X is $
\oplus_k E_8 \oplus_0 H$

(Rochlin's theorem says $\sigma = 0 \mod 16$
so k is even)

Theorem (Furuta):

must have $l \geq k + 1$

uses the Seiberg-Witten equations and restrictions on
equivariant maps between spheres

Countably infinite family of large \mathbb{R}^4's

let $R_i = \mathbb{R}$ from above
\[R_n = R_{n-1} \frac{47}{2} R \]

and \[R_\infty = \frac{47}{2} R \]

note: \(R_n \) contains \(n \) copies of \(C \) and \(C' \)

let \(C_n = \) the boundary sum of all these

\[C_n' = \ldots \]

we could alternately construct the \(R_n \) and \(C_n, C_n' \)

by doing the above construction to

\(\#_n K \) and \(\#_{3n} S^2 \times S^2 \)

lemma:

If \(X \) is any closed smooth spin 4-manifold, then

exists \(m > 0 \) st. for any \(n > m \), \(R_n \) and \(C_n \)

cannot be smoothly embedded in \(X \)

Proof:

as noted above \(I_X = \bigoplus_{2k} E_8 \bigoplus H \)

let \(m \) be any integer with \(2m > l - 2k \)

if \(n \geq m \) then \(R_n \) cannot be embedded in \(X \)

to see this assume it does
So we can glue $X - C_n$ to a piece of \mathbb{R}^n cut along $\partial C_n'$ to get Z with $I_Z = \oplus 2n+2e G e \oplus \ell H$

but $\ell < 2k+2n \notin \text{Furuta!}$

now all R_n are distinct since by construction R_n embeds in $\#_{3n} S^2 \times S^2$

but by lemma not in $\#_{2n} S^2 \times S^2$

from this it is clear that infinitely many of the R_n are different

but now assume $R_n = R_m$ for $n < m$

this implies for any $k > m$, $R_k = R_k$ for $n = l \leq m$

$\therefore R_n \neq R_m$ for $n \neq m$

exercise: R_n can't embed in any neg. definite mfd or any spin mfd.

Infinitely many smooth structures on $M^3 \times \mathbb{R}$

let M be a compact closed smooth
orientable 3-manifold

Fact: \(\exists n \text{ s.t. } M \text{ smoothly embeds in } \#_n S^2 \times S^2 \)
(\(\therefore M \times \mathbb{R} \text{ does too} \))

Idea: \(M \) is obtained from \(S^3 \) by Dehn surgery on a link with even integer coeff

\[\text{e.g. } \begin{array}{c}
\includegraphics[width=3cm]{diagram1.png} \\
\end{array} \]

so \(M = \partial X \) where \(X \) is 4-manifold obtained from \(B^4 \) by attaching 2-handles

\[\partial(X) = \partial(X \times [-1,1]) \text{ has handle diagram} \]

\[\begin{array}{c}
\text{handle slides give} \quad \includegraphics[width=3cm]{diagram2.png} \\
\text{this is } \#_n S^2 \times S^2
\end{array} \]

now \((M \times \mathbb{R}) \# \mathbb{R}_{n+1} \) is not diffeo to \(M \times \mathbb{R} \)
since it contains a set that can't be embedded in \(\#_n S^2 \times S^2 \)
similarly infinitely many of \((M \times \mathbb{R}) \# \mathbb{R}_k \) must be different \(\checkmark \)
If M has boundary, but is orientable, then $D(M) = \tau(M \times I)$ is closed and as above embeds in $\#_n S^2 \times S^2$ so M does too.

Now same argument $\Rightarrow M \times \mathbb{R}$ has infinitely many smooth strs.

If M is non oriented, then let \tilde{M} be its orientation double cover.

Note the double cover of $(M \times \mathbb{R}) \times \mathbb{R}^n$ is

$(\tilde{M} \times \mathbb{R}) \times \mathbb{R}^n$ and a diffeo of $(M \times \mathbb{R}) \times \mathbb{R}^n$

with $(\tilde{M} \times \mathbb{R}) \times \mathbb{R}^n$ will lift to a diffeo of

$(\tilde{M} \times \mathbb{R}) \times \mathbb{R}^n$ to $(\tilde{M} \times \mathbb{R}) \times \mathbb{R}^n$

i.e., infinitely many of $(M \times \mathbb{R}) \times \mathbb{R}^n$ must be different.

Uncountably many large \mathbb{R}^n's

For this we need: an end E of an open manifold X

is called periodic if \exists a shift map $\phi : E \to E$

st. $\phi : E \to \phi(E)$ is a diffeomorphism

and $\phi^n(E)$ exits any compact set for some n
Example: let X = open 4-manifold with a compact set K s.t. $X - K$ has 2 components B and E as shown

\[\begin{array}{c}
B & | & K & | & E \\
\end{array} \]

and $\phi : B \to E$ a diffeomorphism

st. "\infty" in B maps to "\infty" in E

now let $X_\infty = \bigcup X_i / \sim$ where $X_i = X$

and B in X_i glued to E in X_{i-1}

\[\cdots \]

clearly end periodic

Thm (Taubes):

Let X be a smooth open simply connected 4-manifold with one end.

If X is end periodic and I_X is definite

then I_X is $\Theta_n(1)$ or $\Theta_n(-1)$
now let R be the first example constructed above
let $f: R \to [0, \infty)$ be a topological radial function

\exists \text{ some } A \text{ st: } C' \subset f^{-1}(\Sigma_0, A))

let $R_t = f^{-1}(\Sigma_0, t))$ for $t > A$

Claim: $R_t \neq R_s$ for $t \neq s$

if not let ψ be a diffeo $R_t \to R_s \quad t < s$

\exists \varepsilon > 0 \text{ st } \psi(R_t - R_t - \varepsilon) < R_s - R_t$

now consider the component of $K - f^{-1}(\Sigma_0, s))$

$I = \emptyset \subset E$

we can now glue ε copies of $(R_s - R_t - \varepsilon)$ to this using $\phi^0 \psi$ to get \hat{X} an open mfd
II) Topologically slice not smoothly slice knots
(more large exotic \mathbb{R}^4's)

given a knot $K \subset S^3$

let $X(K) = B^4 \cup 2$-handle attached to K
with framing 0

ie glue $D^2 \times D^2$ to B^4 along $S^1 \times D^2$
by an embedding $\Phi : S^1 \times D^2 \to S^3$

sending $\Phi(s \times \{0\})$ to K and
$\Phi(s \times \{1 \times 0\})$ to a copy
of K linking 0 times w/ K

$X(K)$ is called the zero trace of K

Lemma (Trace Embedding Lemma):

K is smoothly (resp. topologically) slice in B^4
\iff
$X(K)$ smoothly (resp. topologically) embeds in S^4,
or \mathbb{R}^4

recall K is slice in B^4 if \exists an
embedded disk \(D^2 \subset B^4 \) s.t. \(2D^2 = K \)

it is smooth/top slice of the embedding

is smooth/topological (locally flat).

Proof: \(\Rightarrow \) \(K \) slice means we have

\[
\begin{array}{c}
\text{glue } B^4 \text{ to this } B^4 \text{ to get}
\end{array}
\]

a nbhd of \(D^2 \) in \(B^4 \) is \(D^2 \times D^2 \) attached to the other \(B^4 \) along \(S^1 \times D^2 \)

ie. \(B^4 \cup D^2 \times D^2 \) is result of a 2-handle attachment to \(K \)

if framing not zero then

\(D^2 \cup \text{Seifert surface for } K \)

would give a non-trivial
homology class in $H_2(S^4) = 0$
(since self-intersection $\neq 0$)

i.e. we have $X(K)$ embedded in S^4

(⇐) if $X(K)$ embeds we see

![Diagram showing S^4 and $X(K)$]

let $B_0^4 = \overline{S^4 - B^4}$ in $X(K)$

So B_0^4 is a 4-ball

and $D^2 \times \{0\}$ in 2-handle
gives slice disk for K in B_0^4

Fact: There are topologically slice knots that are not smoothly slice.

to see this need

Freedman: If $K \subset S^3$ has Alexander polynomial 1, then K is topologically slice
Given a top slice, but not smoothly slice $K \subset S^3$

we can construct a large exotic \mathbb{R}^4

Since K is top slice, lemma above says \exists a topological embedding

$$\phi: X(K) \to \mathbb{R}^4$$

let $\mathcal{C} = \mathbb{R}^4 - \phi(\text{int } X(K))$

Quinn proved that any open 4-manifold has a smooth structure
so we can put a smooth str on \(C \)
\[\partial C = - \partial X(K) \] and these are smooth 3-manifolds so they are diffeomorphic
\[\Psi: \partial C \rightarrow -\partial X(K) \]

let \(P = X(K) \cup_4 C \)

by Freedman’s work discussed above we know \(P \) is homeomorphic to \(\mathbb{R}^4 \)

but \(X(K) \) smoothly embeds in \(P \) so \(P \) can’t be \(\mathbb{R}^4 \) or \(K \) would be smoothly slice by Trace Embedding Lemma

Question:

Can you construct more than one exotic \(\mathbb{R}^4 \) using such knots?

almost certainly yes, but how do you distinguish them?
Constructing small exotic \mathbb{R}^4 using the failure of the smooth 5D h-cobordism theorem

an h-cobordism from M_0^5 to M_1^5 is a compact $(n+1)$-manifold W such that

$$\partial W = -M_0 \cup M_1$$

and the inclusions $i_j : M_j \to W$ are homotopy equiv.

Fact: if M_0 and M_1 are homotopy equivalent then they are h-cobordant (Novikov/Wall)

Facts about h-cobordisms & handlebodies:

"recall" an n-dimensional k-handle is

$$h^k = D^k \times D^{n-k}$$

$$2 \cdot h^k = (\partial D^k) \times D^{n-k} = S^{k-1} \times D^{n-k}$$

h^k is attached to the ∂ of an n-manifold X by an embedding $\phi : \partial h^k \to \partial X$

so attaching h^k to X is

$$X \cup_{\phi} h^k = \frac{X \cup h^k / \sim \subset h^k \cup \phi(x) \in \partial X}{x \in \partial h^k \cap \phi(x) \in \partial X}$$

Example:

a 0-handle is just D^n attached along ∂

so attaching 0-handle is just
a handlebody is a manifold X^n built from \varnothing or $M^{n-1} \times \{0,1\}$ by a sequence of handle attachments

Example:

$\varnothing \rightarrow \quad \Rightarrow \quad \Rightarrow \quad \cong \quad \Rightarrow$

$\rightarrow \quad \Rightarrow \quad \cong \quad \Rightarrow$

Facts about handlebodies:

1) any compact smooth manifold, or cobordism, has structure of a handlebody

2) handles can be attached with increasing index
3) if h^k and h^{k+1} attached to ∂M so that attaching sphere $h^{k+1} \cap$ belt sphere h^k exactly once (and transversely) then

$$M \cup h^k \cup h^{k+1} \cong M$$

4) if M^n connected and $\partial \neq \emptyset$ then can assume no 0-handles

$$\partial \neq 0 \text{ then no } n \text{-handles}$$

(just cancel as above)

5) if X is a cobordism, $\pi_1(X) = 1$, and $n \geq 5$, then can assume there are no l or $(n-1)$-handles (and no 0 or n-handles, by 4))

Now suppose M and M' are homeomorphic non-diffeo. 4-manifolds (such examples exist due to
From above, find a cobordism X with

$$\partial X = -M \cup M'$$

and we can assume there are no 0, 1, 4, and 5 handles.

So $X = M \times [0, 1] \cup 2$-h's $\cup 3$-h's.

The CW-chain complex $C_\ast(X, M)$ is generated by k-handles, and

$$\partial_X h^k = \sum_i \langle h_i^k, h_i^{k-1} \rangle h_i^{k-1}$$

where $\langle h_i^k, h_i^{k-1} \rangle$ is the algebraic intersection of the attaching sphere of h_i^k and the belt sphere of h_i^{k-1}.

Since $H_2(X, M) = H_3(X, M) = 0$ (since $M \to X$ a homotopy equiv),

we know ∂_3 is an isomorphism (in particular

2-h = # 3-h).

After "sliding handles," we can assume

(attach sphere h_i^3) · (belt sphere h_j^2) = δ_{ij}.

If the geometric $\Lambda = \delta_{ij}$, then we could cancel all handles and $X = M \times [0, 1]$.

So $M' = M \times \{1\}$ by choice of M, M'.

From now on assume only one 2 and 3-handles.

(argueent same if more, and 3 examples like this)
we can find Casson handles in $X_{1/2}$ to cancel extra intersections between $A = \text{attaching sphere of } h^3$ and $B = \text{belt sphere of } h^2$

and arrange that $N = \text{open nbhd of } A \cup B \cup$ Casson handles is homeomorphic (by Freedman) to $S^2 \times S^2 - B$.

let $U = \text{everything above and below } N$

set $R_\sim = M \setminus U$ and $R_+ = M' \setminus U$

note: R_\sim is obtained from N by "surgering $B"$

so is topologically R^4

similarly for R_+
Let $K =$ union of all cores and cocores of handles together with points above and below $A \cup B$

$U-K$ is a trivial cobordism from $R_-(K \cap R_-)$ to $R_+-(K \cap R_+)$

Claim: $R_+ \subset R^4$

Indeed, we can build $S^4 \times [0,1]$ from $S^4 \times [0,1]$ by attaching a cancelling pair of 2 and 3-handles.

Now add double points to attaching & belt spheres

Now since we added the double pts \exists embedded disks to cancel them and a nbd of these disks are 2-handles

Recall any Casson handle embeds in a real
2-handle
so we can find \(N \) in \((S^4 \times [0,1])_{1/2}\) and \(U \) in \(S^4 \times [0,1]\)
now \(U \cap (S^4 \times [0,1]) \) is \(R_- \) an is clearly contained in \(M = S^4 - pt \)
same for \(R_+ \)

Claim: \(R_+ \) not diffeomorphic to \(R^4 \)

If \(R_- \) is diffeomorphic to \(R^4 \) then \(\exists \) a 4-ball \(D_- \)
in \(R_- \) s.t. \(K_- \subset D_- \)
since \(U - K \) is a product, above \(D_- \) is an \(S^3 \) in \(R_+ \)
bounding some compact set \(D_+ \) in \(R_+ \) (and \(K_+ \subset D_+ \))
so we see

\[
\begin{align*}
M - \text{int}(D_-) &\cong M' - \text{int}(D_+) \\
\text{and} \quad S^4 - \text{int}(D_-) &\cong S^4 - \text{int}(D_+)
\end{align*}
\]

now \(D^4 \) = \(S^4 - \text{int}(D_-) \cong S^4 - \text{int}(D_+) \)

\(\text{recall} \cong D^4 \)
so \(D_+ \) also a 4-ball

\[
\therefore M = (M - \text{int}(D_-)) \cup 4\text{-handle}
\]
\[
M' = (M' - \text{int}(D_+)) \cup 4\text{-handle}
\]
So \(M - \text{int}(D) \equiv M' - \text{int}(D') \Rightarrow M \cong M' \)