Math 8803: MC6

- Primer, Farb-M
- Flipped / Just in Time
- ~ 1 chapter/ week
- Midterm: Read \& summarize a paper on MCG
- Final: Attempt research

Proposal Nor 2
Target Nov 23
Groups ok.

- Participation

Teams: Q's for class open q's.

Also: This Wed 11:15 start.

Mapping $\mathrm{Class}^{\text {Gps }}$

$$
\begin{aligned}
\operatorname{Mod}(s) & =\pi_{0} \text { Homeo }^{+}(s) \\
& =\text { Homeo }^{+}(s) / \text { isotopy }
\end{aligned}
$$

Sample elements
(1)
S_{3}

(2) Dehn twist

$$
\text { A } \rightarrow 8
$$

3 Reasons
(1) Alg geometry.

$$
\operatorname{Mod}\left(S_{g}\right)=" \pi_{1}^{\prime \prime} M_{g}
$$

$M_{g}=$ moduli space of alg. curves of genus 9 .

(2) Topology $\{S$-bundles over $B\} \longleftrightarrow \underset{\text { "mondedmy" }}{\left\{\pi_{1} B \rightarrow \operatorname{Mod}^{+}(S)\right\}}$

Nobivs band also
Ammuss: $[0,1,3$ Thent om S^{\prime}

Agol, Wise, Perelman, Thurston...
Essentially all 3 -manifolds arise this way.

$$
\frac{\sum_{0}^{\partial} \int_{0}^{2} \int_{0}^{2} \Rightarrow \operatorname{Mod}(S)}{[\varphi]=f} \begin{aligned}
& S \times[0,1] /(x, 1) \sim(\varphi(x), 0) \\
& {[\varphi]}
\end{aligned}
$$

Donaldson:
All symplectic 4 -mans arise essentially this way. Also. Contact tepology:Openblks
(3) Geometric Group Thy

$$
\operatorname{Cut}(G) \cong \operatorname{Aut}(G) / \operatorname{Inn}(G)
$$

Dehn. Nielsen-Baer the

$$
\begin{array}{ll}
\operatorname{Mod}^{ \pm}\left(S_{g}\right) \cong & \text { Out } \pi_{1}\left(S_{g}\right) \\
\text { Topology. } & \text { Algebra }
\end{array}
$$

Number thy
Receded topics
$G_{\text {rap }}$ color.
Group theory Rep thy
Gravely Complex anal.

Part I $\quad \underbrace{\text { (1) Curves on surfaces - Wed. }}_{\text {Overview of Book/Class }}$ (3) Dehn twists
homeos: linear maps::
curves: vectors
(2) MCG basics

$$
\operatorname{Mod}\left(T^{2}\right) \stackrel{\cong}{\cong} S L_{2} \mathbb{Z}
$$

Prap. $a \neq b$
alg. $T_{a} T_{b} T_{a}=T_{b} T_{a} T_{b}$
$\Longleftrightarrow i(a, b)=1$. tapol.
(4) Generating MCG

Dehn: $\operatorname{Mod}\left(S_{g}\right)=\left\langle T_{c}\right\rangle$
((1) Alexander
(5) Presentations of MCG
(6) Symplectic rep.

$$
\begin{aligned}
& H_{1}\left(M_{\operatorname{lod}}\left(S_{g}\right)\right)=0 \\
& H_{2}\left(\operatorname{Mod}\left(S_{g}\right)\right)=\mathbb{Z} \\
& H_{k}\left(N_{0 d}\left(S_{g}\right)\right) \longleftrightarrow \begin{array}{c}
\text { charactenstic } \\
\text { classes for }
\end{array} \\
& \overbrace{\text { super duper }} \mathrm{Sg}^{\mathrm{Sg} \text {-burdles }} \\
& \text { mysterios. }
\end{aligned}
$$

(7) Torsion

In $\operatorname{Mod}\left(S_{g}\right)$, elements of order

$$
1,2,3,4,6,7,8,9,12,14
$$

(8) DNB (see above)
(9) Braid gps

Parts II \& II
Nielsen - Thusston Classification Thu: Any f in ModS) has a rep. φ that is
(1) Finite order
(2) reducible: fixes a collection of disjoint caves.
(3) psendo-Anoso : like $\binom{2}{1} \circlearrowleft \mathbb{R}^{2}$

Chapter 1 Highlights
(1) Geometric int \# $i(\alpha, \beta)=\min _{\alpha^{\prime} \sim \alpha}\left|\alpha^{\prime} \cap \beta^{\prime}\right|$
$\underset{\beta^{\prime} \sim \beta}{\alpha^{\prime} \sim \text { function on pairs of hamotopy }}$ classes.
(2) Bison criterion
α, β are in minimal position (realize $i(\alpha, \beta))$

(3) Change of coordinates principle.

Example. if $i(a, b)=1$ then it's this pic

$\mathrm{Ta}_{a} \mathrm{~T}_{b} \mathrm{Ta}_{a}$

$$
=T_{b} T_{a} T_{b}
$$

Geometric intersection number
Observ. $1 \quad i(a, b) \neq|\hat{\imath}(a, b)|$

$$
\begin{aligned}
& i(a, b)=2 \\
& i(a, b)=0
\end{aligned}
$$

homologn clas

Bigon crit \Rightarrow min. pos.
Observ. $2[a]=\left[a^{\prime}\right] \not a_{a} i(a, b)=i\left(a^{\prime}, b\right)$

Fact. On $T^{2}:\left\{\begin{array}{l}\text { him. classes of } \\ \text { simple closed comes }\end{array}\right\} \longleftrightarrow$ primitive ells $\left(\begin{array}{c}\text { of } \mathbb{Z}^{2} \\ \text { not an integer }\end{array}\right.$ not an integer
multiple, multiple,
 then surges:

$$
+\rightarrow-\Gamma
$$

Fact. $i((p, q),(r, s))=\left|\begin{array}{ll}p & r \\ q & s\end{array}\right|$ Pf. First check for $(p, q)=(1,0)$ General case: apply $A \in S L_{2} \mathbb{L}$ st. $A(f)=(!) \quad 2 \operatorname{lin}_{o f+T}$

(3) Change of Cords Principle

First example: $\alpha, \beta \subseteq S_{g}$ nonsep. ut $\exists h \in$ Homed $^{(S g)}$ st $h(\alpha)=\beta$.
Pf. $\left.S_{g}\right\rangle_{\alpha}^{\downarrow} \& S_{g}>\beta$ are both $S_{g-1}^{2} \quad$ cut Class. of surf's $\left.\sim h_{0}: S_{g}\right\rangle \alpha \longrightarrow \bar{S}_{g} \searrow \beta \quad h_{0}$ $\sim h$.

Example If $i(\alpha, \beta)=1 \quad \& \quad i(\gamma, \delta)=1$
then $\exists h \in H_{\text {oleo }}\left(s_{g}\right)$ st. $h(\alpha, \beta)=(\gamma, \delta)$
Same proof: Cut, use class. of surf.

$$
\begin{aligned}
S_{g} \searrow(\alpha \cup \beta) & =S_{g-1}^{\prime} \\
x\left(S_{g}\right)=2-2 g \quad x\left(S_{g-1}^{\prime}\right) & =2-2(g-1)-1 \\
& =3-2 g
\end{aligned}
$$

$5 x=-100 \cdot 6=0$

Extra time
Fact. $1+\alpha \in \pi_{1}\left(S_{g}\right) \quad g>1$

Pf.
Classify. of $\operatorname{lom}+1 H^{2}$
(2)

Alg. top: $\pi_{1}(s) \rightarrow \operatorname{Homeo}^{(\varsigma)}$
(beck trans)
Here: $\pi_{1}(S) \xrightarrow[\text { image }]{\longrightarrow} \underset{\text { discrete. }}{\text { Som }^{t}}\left(1 H^{2}\right)$
Fact $1 \propto \longrightarrow$ hyp/lox isometry
(i.e. translates alma)

Fact $2 \ln \mid \operatorname{som}^{+}\left(1 \mathrm{H}^{2}\right)$ axis
C (hyp som) $\cong \mathbb{R}=$ =ranslatation
1.2.1 Closed curves \& geodesics

$$
\left\{\begin{array}{c}
\text { conj classes } \\
\text { in } \pi_{1}(s)
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { free hoo. classes } \\
\text { of oriented X.c.c. }
\end{array}\right\}
$$

The two ells of π. you get differ by a point push \longleftrightarrow conj. because:

$$
\left\{\begin{array}{c}
\text { elts of conj} \\
\text { class } a
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { lifts to } H^{2} \\
\text { of a }
\end{array}\right\}
$$

lift = component of $p^{-1}(\alpha)$

repeated pain lift

$\left\{\begin{array}{c}\text { free hoo. classes } \\ \text { of (simple) curves }\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}\text { (simple) } \\ \text { geodesics }\end{array}\right\}$

\longrightarrow straight line homotopy to closest projection
injectivity: homotopies cant change endpts at $\partial_{\infty} H^{2}$.

Bigon criterion α, β are in min pos. $\Longleftrightarrow \alpha, \beta$ farm no bigons.

Lemma. α, β form no bigons
\Longleftrightarrow any two lifts intersect 0,1 times.
Pf of Lemma, \Rightarrow Lift the bigon to H^{2} (lifting criterion)

π_{1} (bison) $=1$,

Check this bigon in \mathbb{H}^{2} descends to bigon in S. (check ing).

To prove Big. Crit, need to show:
If all lifts of α, β intersect ≤ 1 time . then α, β min. pos.

Nomotopies is S cant change linking at ∞ and so cant remove intersections.

Proof \#2. Suppose α, β not in min. pos.
Want to find a bigon.
Let $H: S^{1} \times[0,1] \rightarrow S$ be a homotupy of $*$ that reduces intersection.

α maps to bigon in S.

Chapter 2
\& marked pts
$\operatorname{Mod}(s)=\pi_{0}\left(\operatorname{Homeo}^{+}(s, \partial s)\right)$ fixed as a set.

$$
\cong \operatorname{Homeo}^{+}(S, \partial S) / \text { homotopy } .
$$

example order 5 et in $\operatorname{Mod}\left(S_{2}\right)$
\exists order 5 element!

Basic examples $D^{2}, D^{2} \backslash p t, S_{0,1} \cong \mathbb{R}^{2}, S_{0,0} \cong S^{2}, S_{0,3}$ maple

$$
A=\text { annulus, } \quad S_{1,0}=T_{\text {genus }}^{2}
$$

Alexander Lemma
Prop. $\operatorname{Mod}\left(D^{2}\right)=1$.
Pf. $\varphi \in \operatorname{Nomeo}^{+}\left(D^{2}, \partial D^{2}\right)$

$$
\begin{aligned}
& \text { Cor of Proof } \\
& \begin{array}{l}
\varphi_{0}=\varphi \quad \text { Cor } \quad \operatorname{Mod}\left(D^{2} \backslash p^{t}\right)=1 .
\end{array}
\end{aligned}
$$

$\varphi_{t}: \quad \quad-t \mid$
\qquad Q here (really y conj by scaling by $1-t$)

Prop. $\operatorname{Mod}\left(S_{0,1}\right)=\operatorname{Mod}\left(\mathbb{R}^{2}\right)=1$
Pf. Straight line homotopy.

$$
\varphi \in \operatorname{Nameot}^{+}\left(\mathbb{R}^{2}\right)
$$

Prop. $\operatorname{Mod}\left(S_{0,0}\right)=\operatorname{Mod}\left(S^{2}\right)=1$.
Pf. First homotope so φ (north pole) $=$ north pole Apply presser. Prop.

Prop. $\quad \operatorname{Mod}(A) \cong \mathbb{Z}$.
Pf. Define $L: \operatorname{Mod}(A) \longrightarrow \mathbb{Z}$.
Let $[G] \in \operatorname{Mod}(A)$
Restrict $\tilde{\varphi}_{\text {to }} \mathbb{R} \times\{1\}$ in $\mathbb{R} \times[0,1]$

$$
\mathbb{R} \times[0,1]
$$

Surjectivity: Deme twist
Injectivity: Straight line homontopy $\tilde{\varphi} \rightarrow$ id.

The Torus not GL because $\hat{\imath}$ and $\hat{\imath} \leftrightarrow d e d$.
Prop. The map $\operatorname{Mod}\left(T^{2}\right) \rightarrow S L_{2} \mathbb{Z}$ given by action on $H_{1}\left(T^{2} ; \mathbb{Z}\right)$ is an \cong.

Pf. Surjectivity

$$
\begin{gathered}
\text { Pf \#1 } \\
T_{a} \longmapsto\left(\begin{array}{ll}
1 & -1 \\
0 & 1
\end{array}\right) \quad T_{b} \longmapsto\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), ~\left(\begin{array}{ll}
\end{array}\right) .
\end{gathered}
$$

Pf 2
Let $M \in S L_{2} \mathbb{Z}$, thought of as lin map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ M descends to $\varphi \in \operatorname{Homeo}^{+}\left(T^{2}\right)$ and $\varphi_{*}=M$
© action on H_{1}.

injectivity $P f \# 1 \quad K(G, 1)$ thery

$$
\left\{\underset{T}{\text { boved }} T^{\text {mapss }} \rightarrow T^{2}\right\} / \sim \longleftrightarrow\left\{\begin{array}{c}
\text { homoms } \\
\mathbb{L}^{2} \rightarrow \mathbb{L}^{2}
\end{array}\right\}
$$

Pf*2 Straight-line homotopy.

φ etemel
\Rightarrow S.L.B. equivariant w.r.t. decktars.

Pf\#3

What about higher genus?
$\operatorname{Mod}\left(S_{g}\right) \rightarrow \operatorname{Aut}\left(\mathbb{Z}^{2 g}\right)$ has a $($ big) kernel!
 Torelligp.

See Chap. 6.

Proposition 2.8 (Alexander method) Let S be a compact surface, possi-
bly with marked points, and let $\phi \in \operatorname{Homeo}^{+}(S, \partial S)$. Let $\gamma_{1}, \ldots, \gamma_{n}$ be a
collection of essential simple closed
the following properties.

1. The γ_{i} are pairwise in minimal position.
2. The γ_{i} are pairwise nonisotopic.
3. For distinct i, j, k, at least one of $\gamma_{i} \cap \gamma_{j}, \gamma_{i} \cap \gamma_{k}$, or $\gamma_{j} \cap \gamma_{k}$ is empty.
(1) If there is a permutation σ of $\{1, \ldots, n\}$ so that $\phi\left(\gamma_{i}\right)$ is isotopic to
$\gamma_{\sigma(i)}$ relative to ∂S for each i, then $\phi\left(\cup \gamma_{i}\right)$ is isotopic to $\cup \gamma_{i}$ relative to ∂S.
If we regard $\cup \gamma_{i}$ as a (possibly disconnected) graph Γ in S, with vertices
at the intersection points and at the endpoints of arcs, then the composition
of ϕ with this isotopy gives an automorphism ϕ_{*} of Γ.
(2) Suppose now that $\left\{\gamma_{i}\right\}$ fills S. If ϕ_{*} fixes each vertex and each edge of Γ with orientations, then ϕ is isotopic to the
nontrivial power that is isotopic to the identity.

Examples.
(1)

(2)

Morally: A mapping
class is determined by its action on (finitely many) curves.
Q. Is there aversion without hypoth.
(3)
$?$

Q. Is there a similar example Satisfying 3. in Prop 2.8?
 Is there a cation o ital pos. for cones failing 3?

Pf by induction on n.
Say we modified φ by homotepy
So $\varphi\left(g_{1}^{\prime} \cup \cdots \cup g_{n-1}^{\prime}\right)=\mathcal{J}_{1} \cup \cdots \cup g_{n-1}$
Want to isotope φ sit. $f_{n}^{\prime} \rightarrow I_{n}$
\& we fix $j_{1} \cup \cdots \cup j_{n-1}$
Step 2. Remove annulus Step 1. Remove bigons

Cor. If $c_{i}=\left[z_{i}\right]$ as in Prap.

$$
\& f \in \operatorname{Mod}(s) \text { fixes }\left\{c_{i}\right\}
$$

Then f has finite order.
Moreover, f is det. by induced action on $\cup \eta_{i}$, thought of as a graph.

A good Alexander system:

This graph has no nontrivial automorphisms
So if f fixes the $\{c i\}$ as a set $f=$ id in $\operatorname{Mod}\left(S_{4}\right)$

Dehn twists

Prop. Dehn twist have ∞ order.
If a nonsep the T_{a}^{k} acts nontrivially on $H_{1}\left(S_{g}\right) \quad k \neq 0$ hence $T_{a}^{k} \neq i d$.
But for a sep. $T_{a}{ }^{k}$ acts trivially. Candraw $T_{a}^{k}(b)$. $\begin{array}{rlrl}\text { trivially: } & \text { Check } & i\left(T_{a}^{k}(b), b\right) \neq 0 \\ b: & \Rightarrow T_{a}^{k}(b) \neq b \\ & \Rightarrow T_{a}^{k} \neq i d\end{array}$

Plop. $i\left(T_{a}^{k}(b), b\right)=|k| i(a, b)^{2}$
Cor. $\left|T_{a}\right|=\infty$.
Need: Surgery desconption of Dehn twists

b

b

Prop. $i\left(T_{a}^{k}(b), b\right)=|k| i(a, b)^{2}$
Pf.

$$
i(a, b)=2 \quad k=1 \text {. }
$$

Our rep of $T_{a}^{k}(b)$ intersects β $|k| i(a, b)^{2}$ times.
Remains to check: No bigons.

Prop. $a_{1}, \ldots, a_{n} \quad i\left(a_{i}, a_{j}\right)=0$.

$$
\begin{gathered}
e_{i} \geqslant 0 \\
M=\pi T_{a_{i}}^{e_{i}} \quad \text { multituist } \\
\left|i(M(b), c)-\left|\sum_{i=1}^{n} e_{i} i\left(a_{i}, b\right) i\left(a_{i}, c\right)\right|\right. \\
\leqslant i(b, c)
\end{gathered}
$$

Note: for $b=c$ and $n=1$ get last prop.
Q Example where expected value is not right.

Prop. $\cdot a_{1}, \ldots, a_{n} \quad i\left(a_{i}, a_{j}\right)=0$.

$$
e_{i} \geqslant 0 .
$$

$$
\begin{aligned}
& e_{i} \geqslant 0 . \\
& M=\pi T_{a_{i}}^{e_{i}} \text { multitwist }
\end{aligned}
$$

$$
\leqslant i(b, c)
$$

Cor. \exists pair of filling curves on any S. with $X(S)<0$.
example

$$
\left|i(M(b), c)-\sum_{i=1}^{n} e_{i} i\left(a_{i}, b\right) i(a, c)\right|
$$

Pf of Cor. Choose pants decamp. of S

*Find $a \quad b$ s.t. $\quad i\left(a_{i}, b\right)>0 \forall i$
$\{a, b\}$ filling if $\max \{i(a, c), i(b, c)\}>0$ Let $a=\left(\pi T_{a i}\right)(b)$
By prop, a \& b are filling.

Bask Facts
Fact! $T_{a}=T_{b} \Longleftrightarrow a=b$
Pf. Find c s.t. $i(a, c) \neq 0$

$$
i(b, c)=0
$$

Then $i\left(T_{a}(c), c\right)=i(a, c)^{2} \neq 0$

$$
i\left(T_{b}(c), c\right)=i(c, c)^{2}=0 .
$$

How to find c ?
$a c$ Case. $i(a, b)>0$ take $c=b$
(ब):(-)) Case $i(a, b)=0$. Use

Fact $2 f T_{a} f^{\prime \prime}=T_{f(a)}$
Fact 3 $\left(f \leftrightarrow T_{a}\right) \Leftrightarrow f(a)=a$.
Pf. $\quad \Rightarrow$ Fact $1+$ fact 2.
\Leftarrow Fact 2
Fact 4. a, b no sep
Then T_{a} conj to T_{b} in MCG
P8. Fact $2+$ Change of cords.
Fact 5. $i(a, b)=0 \Leftrightarrow$

Thin . For $g \geqslant 3, Z\left(\operatorname{Mod}\left(S_{g}\right)\right)=1$.
Pf. Use the Alex. system
 (fact 3)

The graph $\Gamma=U a_{i}$ has no nontrivial autos.
So Alex Meth $\Rightarrow f=i d$.
What about $g=1,2$?

$P_{\text {sop }} . a_{1}, \ldots, a_{n} \quad i\left(a_{i}, a_{j}\right)=0$. $e_{i} \geqslant 0$.
$M=\pi T_{a_{i}}^{e_{i}}$ multitwist

$$
\begin{gathered}
\left|i(M(b), c)-\sum_{i=1}^{n} e_{i} i\left(a_{i}, b\right) i\left(a_{i}, c\right)\right| \\
\leq i(b, c)
\end{gathered}
$$

Pf. Make a rep β^{\prime} of $M(b)$ as Key obs: $\beta \cup \beta^{\prime}$ can be decamp. as before:

Zig-zag: Tum left on β^{\prime} right on β

As above: $\beta \cup \beta^{\prime}$ is a bunch of copies of a_{i} :

$$
\begin{aligned}
& \forall i: e_{i} i\left(a_{i}, b\right) \text { copies of } a_{i} \\
& \sum e_{i} i\left(a_{i}, b\right) i\left(a_{i}, c\right) \leqslant \mid\left(\beta \cup \beta^{\prime}\right) \cap \text { rep of } c \text {. } \\
& =i(M(b), c)+i(b, c)
\end{aligned}
$$

\# of int's you see in pic by fact at top
Need to prove other ineq.

Relations b/w 2 Dehn twists
Prop. $i(a, b)=1^{\text {top. }} \Rightarrow$ alg.

$$
T_{a} T_{b} T_{a}=T_{b} T_{a} T_{b}
$$

"braid relation"

$$
\text { If. } \begin{aligned}
& \left(T_{a} T_{b}\right) T_{a}=T_{b}\left(T_{a} T_{b}\right) \\
\Leftrightarrow & \left(T_{a} T_{b}\right) T_{a}\left(T_{a} T_{b}\right)^{-1}=T_{b} \\
\Leftrightarrow & T_{T_{a} T_{b}(a)}=T_{b} \\
\Leftrightarrow & T_{a} T_{b}(a)=b
\end{aligned}
$$

Change of coords

$\ddot{\square}$

Converse!
Application

Prop. $T_{a} T_{b} T_{a}=T_{b} T_{a} T_{b}, a \neq b$

$$
\Rightarrow i(a, b)=1 .
$$

Pf. $T_{a} T_{b} T_{a}=T_{b} T_{a} T_{b}$

$$
\Longrightarrow T_{a} T_{b}(a)=b
$$

(as above).

So:

$$
\begin{aligned}
i(a, b) & =i\left(a,-T_{a} T_{b}(a)\right) \\
& =i\left(a, T_{b}(a)\right) \\
& =i(a, b)^{2} \\
\Rightarrow i(a, b) & =0 \text { or } 1 \ldots
\end{aligned}
$$

Given $\operatorname{Mod}\left(S_{g}\right) \rightarrow \operatorname{Mod}\left(S_{g}\right)$
If you can show

$$
T_{a} \longrightarrow T_{a^{\prime}}
$$

Then curves \rightarrow curves $a \longmapsto a^{\prime}$
$i(a, b)=1 \longmapsto i\left(a^{\prime}, b^{\prime}\right)=1$.
$N_{\text {ext }}:\left\langle T_{a}, T_{b}\right\rangle \forall a, b$.

Ping Pong Lemma

$$
\begin{aligned}
& G G X=\text { set. } \\
& g_{1}, g_{2} \in G \\
& X_{1}, X_{2} \subseteq X \text { nonempty } \\
& g_{i}^{k}\left(X_{j}\right) \subseteq X_{i} \quad \text { if } \\
& \Rightarrow \neq j \neq 0 \\
& \Rightarrow\left\langle g_{1}, g_{2}\right\rangle \cong F_{2}
\end{aligned}
$$

Pf. Let $g_{t}\left\langle g_{1}, g_{2}\right\rangle$
WLOG (by conj)

$$
g=g_{1}^{*} g_{2}^{*} g_{i}^{*} \cdot g_{2}^{*} g_{1}^{*}
$$

Original sourcelapplication

Second application:

$$
\begin{aligned}
& \left\langle\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)\right\rangle \cong F_{2} \\
& x_{1}=\left\{\binom{a}{b} \in \mathbb{Z}^{2} \quad a \quad a>b\right\} \\
& x_{2} \text { similar. } \frac{x_{1} x_{1}+x_{1}}{x_{2}}
\end{aligned}
$$

Prop. $i(a, b)>1$

$$
\Rightarrow\left\langle T_{a}, T_{b}\right\rangle \cong F_{2} .
$$

Pf. Ping pong.

$$
X_{1}=\{c: i(c, b)>i(c, a)\}
$$

X_{2} similar.
Use our i- num. formulas.

In general: $\quad j, k \neq 0$

$$
\left\langle T_{a}^{j}, T_{b}^{k}\right\rangle \cong F_{2}
$$

unless

$$
i(a, b)=1 \text { and }
$$

$$
\{j, k\} \text { is }\left\{\begin{array}{l}
\{1,1\} \\
\{1,2\}
\end{array}\{1,3\}\right.
$$

$$
\underbrace{\begin{array}{c}
112112 \\
a b a b=211211 \\
\text { M. Mort }=\text { tala }
\end{array}}_{\substack{a \\
\sigma_{1}^{2}, \sigma_{2} \\
\sigma_{2}}}
$$

Cutting, capping, including
Later: want to prove things by induction, hence understand

$$
\operatorname{Mod}\left(S_{g}, a\right)
$$

Cut along a:
\qquad

Cap:

Including
Prop $S \subseteq S^{\prime}$ no comply. disks S closed in S^{\prime} $S \neq A$
a_{i} comps of ∂S bounding $(-$
$\left\{b_{i}, c_{i}\right\}$ bound (\exists)

$\operatorname{Ker}\left(\operatorname{Mod}(S) \longrightarrow \operatorname{Mod}\left(S^{\prime}\right)\right)$

$$
=\left\langle T_{a i}, T_{b i} T_{c_{i}}^{-}\right\rangle \cong \mathbb{Z}^{k}
$$

kernel:

$$
\left\langle T_{a}, T_{b} T_{c}^{-1}\right\rangle \equiv \mathbb{Z}^{2}
$$

Capping. Special case where $S \backslash S^{\prime}=0 \quad S \neq A$

$$
\begin{aligned}
& P \subset S_{0,3}=\because \\
& \sim M_{\text {od }}(P) \longrightarrow P M_{\text {od }}\left(S_{0,3}\right)=1
\end{aligned}
$$

Applications

$$
\begin{aligned}
M \operatorname{Mod}(P) & \cong \mathbb{Z}^{3} \\
\operatorname{Mod}\left(S_{1}^{\prime}\right) & \cong\langle a, b \mid a b a=b a b\rangle \\
\cong \pi_{1}\left(S^{3} \backslash(\mathbb{O})\right. & \cong B_{3} \\
& \cong L_{2} / L
\end{aligned}
$$

Cutting $S=S_{g, n}$
a_{1}, \ldots, a_{k} distinct, disjoint
stab of There is a well-def map
 $\{a i\} \longrightarrow$

$$
\operatorname{Med}(S,\{a i\}) \longrightarrow \operatorname{Mod}(S \backslash\{a i\})
$$

With kernel 〈Tai〉
If. Apply inclusion homom to

$$
S-\operatorname{Nbd}(V a i) c S
$$

Q. Given a_{1}, \ldots, a_{k} When is $\left\langle T_{a_{1}}^{e_{1}}, \ldots, T_{a_{k}}^{e_{k}}\right\rangle$ free?
(Hamidi-Tehrani)
When is it a RAAG? (Rumnels trefs)
Q (Afton) For which $G \leqslant M C G$

$$
\exists c, k \text { s.t. }\left\langle G, T_{c}^{k}\right\rangle \cong G * \mathbb{Z}
$$

Q. When is it $=M C G \ldots$

Chap 4. Generation.
TM fixing marked pts
The . $P M_{\text {od }}\left(S_{g, n}\right)$ is finitely gen. by Dehn twists about nonsep curves.

Humphries:

(minimal)

Application (later today.):
Every closed, rrientable M^{3} -obtained from S^{3} by Dehn surgery.
Application (next week?)

$$
H_{1}\left(M_{r d}\left(S_{g}\right)\right)=0
$$

The. $\operatorname{PMod}\left(S_{g, n}\right)$ is finitely gen. by Dehn twists about nonsep curves.

Proof strategy
(1) Induction on genus:
$\operatorname{Mod}(\mathrm{Sg}$) is gen. by.
stabilizers of nonsep curves
"complex of curves"

Complex of curres (Harveu)
$C(S)$ has
vertices: isotopy classes
of ess. s.c.c. in S edges: disjointness.

Facts (1) locally infinite
(2) connected (next!)
(3) $\operatorname{Mod}^{ \pm}(S) \stackrel{\cong}{\rightrightarrows} \operatorname{Aut}(C(S))$
(Ivanov)
applications...
Aut $\operatorname{Mod}\left(S_{g}\right)=M_{0}^{+}\left(S_{g}\right)$
(som Teich $\left(S_{g}\right)^{"}$
(4) $C(S)$ is hyperbolic
many applications...
\& ∞-diameter.
exercrise: Inind varties of distane $3,4, \ldots$

The. $3 g+n>5$ $C\left(S_{g, n}\right)$ is connected.

If. Induct on $i(a, b)$.

Base cases:

$$
\left(S_{a y} n=0\right)
$$

$$
\begin{aligned}
& i(a, b)=0 \\
& i(a, b)=1
\end{aligned}
$$

\checkmark
change of cords.

Assume $i(a, b) \geqslant 2$.

Two pictures:

Check: (1) c essential
(2) $i(a, c), i(b, c)<i(a, b)$

Orient a.

Cerf theory proof (Ivanov)
Given a, b. Choose Morse fins f_{a}, f_{b} sit. a, b level on S.

Complex of Nonsep curves
$N(S)=$ subcomplex of $C(S)$ spammed by nonseps.
Then $N\left(S_{g}\right)$ connected $g>1$.
Note. $N\left(S_{1, n}\right)$ not connected!
Pf of The .

$a, b \in N(S)$
Connect by path ${ }^{V_{i}}$ in $C(S)$.
Can assume no consec. V_{i}

If we have

either: sep is not needed. or can replace with a nonsep.

Modified complex $\hat{N}(S)$
Same vertices as $N(S)$ edges: $i(a, b)=1$.

The. $\hat{N}\left(s_{g}\right)$ connected $g \geqslant 1$.

$$
g=1
$$

Pf of Th m

Prop. $\operatorname{Mod}(S)$ is gen. by. stabilizers of (oriented) nonsep. s.c.c.
(Induction on genus).
Pf. Let $f \in \operatorname{Mod}\left(S_{g}\right)$

For each i:

$$
\left.T_{v_{i}} T_{v_{i+1}}\left(v_{i}\right)=v_{i+1} \quad \text { (braid vel }\right)
$$

$$
\text { So }\left(\pi T_{v_{i j}}\right) f=\bar{f} \in S_{t a b}(a)
$$

The (Waldhausen) $M^{3}=$ closed, oriented Then M^{3} ob
Deli surgery
\longrightarrow remove disjoint collection of solid tori, reglue.
Pf. Step 1. M ${ }^{3}$ has a Neegaard decomp:

Why? Triangulate M^{3}.
Thicken 1-skeleton.
That's one Vg .
The complement is other.
Step 2. Use fact that $\operatorname{Mod}\left(S_{g}\right)$ is gen by Dehn twists
M^{3} has Heed. decamp with φ_{M} S^{3} has with φ_{0} $\varphi_{M} \varphi_{0}^{-1} \in$ Homes $\left(S_{g}\right)$ product of T_{a}

Thm (Dehn ${ }^{22}$)
$\operatorname{PMod}\left(S_{g, n}\right)$ is fin. gen. by Dehn twists.
Lickorish '60s: nonsep. curres.
Numphries '70s: 2g+1 curres. (minimal)

Pf sketch. Let $f \in \operatorname{PMod}\left(S_{g, n}\right)$
Choose some curve a.
Step1 Find $\pi T_{c_{i}}$ s.t. how to conn. (with orientation)

Step 2. Stabla) Fin. gen. by Dehntw's. $\underset{\substack{\text { cutting } \\ \text { homam. }}}{\longrightarrow} \operatorname{Mod}\left(S_{g-1, n+2}\right)$
Birman exact seg.

Towards Birman ex. seq
Rush map: $\pi_{1}(S, x) \longrightarrow \operatorname{Mod}(S, x)$ isotopy extension

Forgetful map:

$$
\operatorname{Mod}(S, x) \rightarrow \operatorname{Mod}(S)
$$

Note: $\operatorname{Push}(\pi,(S, x)) \subseteq \operatorname{ker}($ Forget $)$
Birman: this is $=$

$$
\text { Fer }(\text { forget }) \rightarrow \pi_{1}(S, x)
$$

Given φ choose a homotepy to id, so x traces a loop.

The (Airman '69) $x(s)<0$ This is exact:

$$
1 \longrightarrow \pi_{1}(s, x) \xrightarrow{\text { Push }} \operatorname{Mod}(s, x) \xrightarrow{\text { Forget }} \operatorname{Mod}(s) \longrightarrow 1
$$

Pf. This is a fiber bundle: What is a fiber bundle?

$$
\begin{aligned}
\mathrm{Homeo}^{+}(S, x) \longrightarrow & \text { Homed }^{+}(S) \\
& \int_{\downarrow} \varepsilon=\underset{\sim}{\text { val at }} \times \\
& U \subseteq S
\end{aligned}
$$

Choose $U \in S, x \in U$
$\forall u \in U$, choose φ_{u} s.t. $\varphi_{u}(x)=u$
亿 vary continuously wot u.

$$
U \times \operatorname{Homeo}^{+}(S, x) \longrightarrow \varepsilon^{-1}(U)
$$

$$
(u, \psi) \longmapsto \varphi_{u} \circ \psi
$$

$F \rightarrow E=$ total sp. examples:
$E=$ cylinder or
Mübius band
Locally: $p^{-1}(u)=u \times F \quad B=S^{\prime}, F=I$
For
$||||\mid(u, x)$
$E=$ cor space,
$F=$ discrete set

This is a fiber bundle:

$$
\begin{aligned}
& \begin{aligned}
& \text { Homo }^{+}(s, x) \longrightarrow \text { romeo }^{+}(s) \\
& \downarrow=\frac{\text { evan at }}{x} \\
& S
\end{aligned} \leadsto \text { LES for fiber bundles. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { push map } \\
& \pi_{0} \mathrm{Homeo}^{+}(s, x) \longrightarrow \pi_{0} \mathrm{Homeo}^{+}(s) \longrightarrow \pi_{0} S^{1} \\
& \operatorname{Mod}(S, x) \uparrow \operatorname{Mod}(S)
\end{aligned}
$$

this is the forgetful map.

Push maps in terms of Detrn twists

Helps becave $\pi_{1}(s)$ is generated by simple loops.

Special case. Mod $\left(S_{0, n}\right)$ is fin. gen. by Dehn twists.
$\binom{n}{2}$ gens.
Pf. Ind. on n.
Base cases: $\operatorname{PMod}\left(S_{0, n}\right)=1 \quad n \leqslant 3$.

Explicit sets of gens
h Push $(\alpha) h^{-1}=\operatorname{Push}(h \alpha)$
Lickonsh: Ind step:

Humphries:
 Need to find product h of Hump. gens taking $h T_{m}, h^{-1}=T_{m s}$ m_{1} to m_{3}

Chap 5. Presentations \& H_{1}, H_{2}
Lantern Relation $S_{0,4} \subseteq 5$

$$
T_{x} T_{y} T_{z}=\pi T_{\partial_{i}}
$$

Pf \#1 Alex Method: Check relation on 3 ares.

Pf \#2 Boundary pushing $\quad X(S)<0 \quad S^{\circ}=5$ open disk.

$$
\text { Push: } \pi_{1} \text { UT (S) } \longrightarrow \operatorname{Mod}\left(S^{\circ}\right)
$$

$$
S^{\prime} \rightarrow U T(S)
$$

The lantern relation is:

$$
\text { Push }(\beta) \operatorname{Push}(\alpha)=\text { Push } \gamma
$$

$\beta \alpha=\gamma$
 in $\pi_{1}(u T(s))$.
\uparrow push wo rotating
Why is this lantern relation?

$T h_{m} H_{1}\left(\operatorname{Mod}\left(S_{g}\right)\right)=1 \quad H_{1}(G) \cong G^{\text {abel. }}=G /[G, G]$ $9 \geqslant 3$.

So: no char. classes for S_{g}-bundles over S^{1}.
Pf. Fact I. Mod(Sg) gen by T_{c}, c nonsep (Dehn-Lick.)

+ Haver ford Fact 2. Such T_{c} are conjugate (Change of cords)
Fact 3. ヨ lantern rely in S_{g} w/ all 7 curves nonsep.
(?!)
Given $\operatorname{Mod}\left(S_{g}\right) \longrightarrow A$
by fact $1,\left.\right|_{\text {mage }}$ is $\langle t\rangle$ (cyclic) gens $T_{c_{i}} \longmapsto t$ by fact 2

Fats 3 : $t^{3}=t^{4} \Rightarrow t=1$.

Presentations
We have them (see book)
Next goal: proof of fin. presentability.
fin generation \longleftrightarrow action on connected complex with finite quotient.
$\mathrm{H}_{2}(G) \longleftrightarrow$ fin presentability $\longleftrightarrow \ldots$ simply connected \cdots
(abelianized version)

Arc complex A(S)
vertices: ares /~
edges : disjointness
k-simplices: $(k+1)$ pairwise disjoint arcs.
(flag complex)
The. A $\left(S_{g, n}\right)$ contractible.

Pf (Hatcher) $V=$ any vertex
Goal: homotope $A\left(S_{g, n}\right)$ into Mil ion of
all Sim: v
\rightarrow $\operatorname{tar}(v) \simeq$ so paths vary contin.

Let $p \in\left|A\left(S_{g, n}\right)\right|$
$p=$ weighted sum of disjoint ares
thicken ares to bands, push together at V i

Homotopy (drain): V

$$
p_{\varepsilon}
$$

Prop. Say $G G X \simeq *$ who rotations \triangle
\& (1) $X I G$ finite
(2) vertex stabs f.p.

$$
\Leftrightarrow S \operatorname{tab}(e) \subseteq S \operatorname{tab}(v)
$$

(3) edge stabs fig.

Then G is f.p.
Pf idea Bore construction: Build a $K(G, 1)$ for G.

Them. $\operatorname{Mod}\left(S_{g, n}\right)$ fin pres.
For $n=0$:
Pf for $n>0$

$$
1 \rightarrow \pi_{1}\left(S_{g}\right) \rightarrow \operatorname{Mod}\left(S_{9,1}\right) \rightarrow \operatorname{Mod}\left(S_{9}\right) \rightarrow 1
$$

Apply Prop.
Stab's are MCG's of simpler surfaces. \rightarrow induction!
Also, alg. geom. proof: $M_{g, n}$ is a quasi-proj variety.
Q. What presentation do you get from this proof?

Last time: $H_{1}\left(\operatorname{Mod}\left(S_{g}\right) ; Z\right)=0$. Today (and next time):

$$
\begin{aligned}
& H_{2}\left(\operatorname{Mod}\left(S_{g}\right) ; \mathbb{Z}\right)=\mathbb{Z} \\
& H_{2}\left(\operatorname{Mod}\left(S_{g}^{\prime}\right) ; \mathbb{Z}\right)=\mathbb{Z} \\
& H_{2}\left(\operatorname{Mod}\left(S_{g .9}\right) ; \mathbb{Z}\right)=\mathbb{Z}^{2} \\
& 9 \geqslant 4
\end{aligned}
$$

Upshot: I alg. top which tells vs a surf. bundle over surf is nontrivial.

Univ. coff the: Same answers for H^{2} since
$1 \rightarrow E_{x}+\left(\mu_{n},\left(M_{0 a l}\left(S_{g}\right)\right) \rightarrow H^{2}\left(M_{\text {od }}\left(S_{g}\right)\right)\right.$
$\rightarrow \operatorname{Hom}_{\mathrm{om}}\left(\operatorname{He}\left(\operatorname{Mod}_{\text {od }}\left(\mathrm{S}_{\mathrm{g}}\right), \mathbb{Z}\right) \rightarrow 1\right.$
Overall Strategy
(1) Upper bounds on H_{2} using Hop of formula à la Pitch (2) Lower bounds on H^{2} by Constructing two indlep. Cases
Meyer sig couple, Eviller class.

Hopf Formula \quad Recall: $H_{1}(G)=G /[G, G] \quad H_{2}(G)=H_{2}(K(G, 1))$ bydion

$$
\begin{aligned}
& G=\langle F \mid R\rangle \cong F / K \quad k=\langle\langle R\rangle \\
& H_{2}(G ; \mathbb{Z}) \cong \underbrace{K \cap[F, F]} /[k, F]
\end{aligned}
$$

$\pi_{1}\left(s_{g}\right)=\left\langle a_{i}, b_{1}, \ldots, a_{g}, b_{g}\right\rangle$

$$
\left.\pi\left[a, b_{i}\right]=1\right\rangle
$$

Given
reins that are prod's
of commutators

$$
\pi_{1}\left(s_{g}\right) \longrightarrow G
$$

$$
\sim S_{g} \longrightarrow K(G, 1)
$$

$$
k\left(\pi_{1}\left(s_{s}\right), 1\right)
$$

So: $H_{2}(G) \leqslant K /[K, F] \leftarrow$ abelian, gen. by relations R
So: an elf of $H_{2}(G)$ looks like $r_{1}^{n_{1}} r_{2}^{n_{2}} \cdots r_{N}^{n_{N}}$

$$
\text { Pitch: For } G=M C G \text {, at most onechoies of }\left(n_{1}, \ldots, n_{N}\right) \text {. }
$$

Hop formula and MCC
For $\operatorname{Mod}\left(S_{9}^{\prime}\right)$ an elf of H_{2} is of form

$$
\left(\pi D_{i j}^{n_{i j}}\right)\left(\pi B_{i}^{n_{i}}\right) C^{n_{0}} L^{n_{L}}
$$

disjointreess braid chain lenten.

Will show: $n_{i j}=0, n_{i}=0$ i large

Hoff Formula \& commuting ells

For $g, h \in G \quad g \leftrightarrow h$
$\sim\{g, h\}=$ class of $[g, h]$ in H_{2} (think torus)
Fact 1. If $g \leftrightarrow h, k$ then $\{g, h k\}=\{g, h\}+\{g, k\}$
since $[x, y z]=[x, y][x, z z]\}^{\text {b }}$ by
Fact 2. $\left\{g, h^{-1}\right\}=-\{9, h\}$

Back to MCG
Lemma. $T_{a} \leftrightarrow T_{b}$
$\Rightarrow\left\{T_{a}, T_{B}\right\}=0$ in $H_{2}\left(n_{C G}\right)$
Pf. Cut S along a

$$
H_{1}\left(M_{\text {ed }}(S \backslash a)\right)=0
$$

$S_{0} T_{b}=\pi\left[x ; y_{i}\right]$
with $x_{i}, y_{i} \leftrightarrow T_{a}$.
in $\mathrm{Mod}_{\mathrm{od}}\left(\mathrm{g}_{\mathrm{g}}\right.$
Apply Facts 1\& 2:
$\left\{T_{a}, \pi\left[x_{i}, y_{i}\right]\right\}=0 . \square$

Eliminating more relations
The MCG gen Tag

only appears in disjaintress reins \& one braid rel.
In that braid reln it appears with exponent sum $=1$.
Q. Can we But... ells of $[F, F]$, hence H_{2}, have all \exp sums $=0$.
shew this

$$
\begin{aligned}
& \text { shew this } \\
& \text { classis is } \\
& \text { nonerer. }
\end{aligned} \text { So } n_{2 g}=0 \text {. }
$$

Q. Now have a finite lin. alg problem involving chain rel, Canveshow lantern rein, a few braid relns:
H_{3} is stable using simile
dea?

Which choices of n \qquad Answer: 1 choice!
$n_{1} n_{0}, n_{2}, n_{3}, n_{4}, n_{1}$ MCG gen appears with exp sim O?

Lower bound: Constructing nonzero celts of W^{2}
Fact. A short exact sequence

$$
1 \rightarrow \mathbb{Z} \rightarrow \tilde{G} \rightarrow G \rightarrow 1
$$

with \mathbb{Z} central gives $e \in H^{2}(G ; \mathbb{Z})$
and $e=0 \Longleftrightarrow$ sea. is split

$$
\Leftrightarrow \tilde{G}^{2} \cong G \times \mathbb{Z}
$$

But we have: $1 \rightarrow \underset{\mathbb{Z}^{\prime \prime}}{\left\langle T_{\partial}\right\rangle} \operatorname{Mod}\left(S_{9}^{\prime}\right) \underset{\text { Ever class }}{\stackrel{\text { cap }}{\longrightarrow}} \operatorname{Mod}\left(S_{g, 1}\right) \rightarrow 1$

$$
\begin{aligned}
& \text { Non-split since } \operatorname{Mod}\left(S_{g_{1}, 1}\right) \simeq e^{\text {has torsion }} \in \mathcal{N}^{2}\left(\operatorname{Mod}\left(S_{g, 1}\right) ; \mathbb{Z}\right) \text {. } \\
& \text { hat }
\end{aligned}
$$

Meyer Signature Cocycle
Still need an et of $H^{2}\left(\operatorname{Mod}\left(S g_{)}\right) ; \mathbb{Z}\right)$.
Q. What is an ell of H^{2} ? A. $\operatorname{Hom}\left(\operatorname{H}_{2}\left(\operatorname{Mod}\left(S_{g}\right)\right), \mathbb{Z}\right)$.

So, given elt of $H_{2}\left(\operatorname{Mod}\left(S_{g}\right)\right)$, need a number.
Q. What is an et of $H_{2}\left(\operatorname{Mod}\left(S_{g}\right)\right)$? A. Surface in $:\left(\operatorname{Mod}\left(S_{g}\right), 1\right)$
$S_{h} \rightarrow K\left(\operatorname{Mod}\left(S_{g}\right), 1\right)$
The latter gives S_{g}-bundle over $S_{h}\left(4-\right.$ mann $F_{1}\left(S_{d}\right)$:

4 -manifolds have signature (describes intersection form on $\mathrm{H}_{2}\left(M^{4}\right)$.
Signature is the desired number!

Ch 6. Symplectic rep.

$$
\hat{\imath}: H_{1}\left(S_{g} ; \mathbb{Z}\right) \times H_{1}\left(S_{g} ; \mathbb{Z}\right) \rightarrow \mathbb{Z}
$$

Can replace \mathbb{Z} with \mathbb{R}
$\hat{\imath}$ is alternating, bilinear, nondegen

$$
\forall x_{x}^{x^{0}} \exists \text { y sit. } \hat{\imath}(x, y) \neq 0 .
$$

Symplectic basis for $H_{1}\left(S_{g} ; 72\right)$:

$$
x_{i}, y_{i}
$$

$$
\hat{\imath}\left(x_{i}, y_{i}\right)=1 \text { all other } \hat{\imath} \text { 's } 0 \text {. }
$$

A geometric symplectic basis in S_{g} is a set of rented curves $\left\{a_{i}, b_{i}\right\}$ s.t. $i\left(a_{i}, b_{i}\right)=1$, all other is O

Aside: computing homology classes

$$
x=a_{1}+a_{2}+a_{3}+b_{3}
$$

since $\hat{\imath}\left(x, b_{1}\right)=1$, the coff on a_{1} is 1 .

$$
\text { i.e. } \quad a_{i}^{*}=b_{i}
$$

Euclidean alg. for curves
Prop. A nonzero et of $W_{1}\left(S_{g} ; \mathbb{Z}\right)$ is rep by a see \Longleftrightarrow it is primitive
Pf. \Rightarrow Change of coords.
\Leftarrow Example. $(2,0,3,0)$ in $H_{1}\left(S_{2} ; \mathbb{Z}\right)$

\# curves in the two "bundles":

The symplectic rep

$$
\psi: \operatorname{Mod}\left(S_{g}\right) \rightarrow S_{p_{2 g}} \mathbb{Z}
$$

$$
\operatorname{Aut}^{\prime \prime}\left(H_{1} \mid S_{g} ;() ; \hat{\imath}\right)
$$

Prop. $\psi\left(T_{b}{ }^{k}\right)[a]=[a]+k \hat{\imath}(a, b)[b]$
Pf. By change of coords, b is one of:

We see: ψ has kernel.
egg. T_{b}, b sep.
$\operatorname{ker} \psi$ called Torelligp
(Monday).
Choose a compatible geom. sumpl. basis Check the formula on the basis.

Surjectivity $\Psi: \operatorname{Mod}\left(S_{g}\right) \rightarrow S_{p 2 g} \pi$
The. ψ is surjective.

Pf \#1. Hit the "elementary matrices"
Pf\#4. Wit the transuections: $\tau_{v}(w)=w+\hat{\imath}(v, w) v$

$$
S_{p 2 g} \mathbb{Z}=\left\langle\tau_{v}: v p_{\text {prim }}\right\rangle
$$

Find T_{c} sit. $\psi\left(T_{c}\right)=I_{v}$ using Eucl. alg.
$P f \# 3$. Given $M+S_{p z g} \mathbb{L}, M(s+d$ basis $)=$ symplectic basis. B Can soup up Enc. alg to get a geom. sump. basis \widetilde{B}

Residual finiteness
G is reside. fin if $\bigcap_{\substack{\Gamma \leqslant G \\ f, i .}} \Gamma=1$
or. $\forall f^{*^{\wedge}} G \exists$ finite $F, \rho: G \rightarrow F$ s.t. $\rho(f) \neq i d$.

The. $\operatorname{Mod}\left(S_{g}\right)$ is reside. finite.
Pf. $g=0,1$ easy.
$\psi(f) \neq$ id \leadsto use $r f^{\prime}$ ness of $S_{p_{2 g}} \mathbb{Z}$.
Remains to deal with $f \in$ Corelli $=\operatorname{ker}(\psi)$.

Fact: $\operatorname{ker} \psi$ is torsion free,
Assume now $|f|=\infty$. Want finite $F, \rho: \operatorname{Mod}\left(S_{g}\right) \rightarrow F, \rho(f) \neq 1$
Choose a hyp. metric on $S_{g} \leadsto \rho: \pi_{1}\left(S_{g}\right) \rightarrow P S L_{2} \mathbb{R}=I_{\text {som }}{ }^{+} \mathbb{H}^{2}$
$I_{m \rho} \leq P S L_{2} A \quad A=$ finger subring of \mathbb{R}.
Such A is res. Finite. (back boo)
length of curves \longleftrightarrow traces of elts of $P S L_{2} R$

$$
|f|=\infty \Rightarrow \exists \gamma \in \pi_{1}\left(s_{g}\right) \text { sit. } \ell(\gamma) \neq l(f(f)) \in A
$$

A res. fin. $\Rightarrow \exists$ finite quotient Q st $\ell(\gamma) \neq \ell(f(\gamma))$ in Q.
Let $H=\operatorname{ker}\left(\pi_{1}\left(S_{g}\right) \rightarrow P S L_{2} A \rightarrow P S L_{2} Q\right) . \quad H \quad$ fri. $\pi_{1}\left(S_{g}\right)$
Take. $F=\operatorname{Out}\left(\pi_{1}\left(S_{g}\right) / H\right)$.

Torelli groups

- $I\left(s_{g}\right)=\pi_{1}$ (Trellis space)

$$
\psi: \operatorname{Mod}\left(S_{g}\right) \longrightarrow S_{p_{2 g}} \mathbb{Z}
$$

$I\left(S_{g}\right)=\operatorname{ker} \psi$.
space of Rem. surf's with homology framings

- I(Sg) hard/non-linear part of MCG.
- All $\mathbb{Z} H S^{3}$ are:

$$
\mathrm{Hg}_{g} \frac{l l}{\varphi} \mathrm{Hg}_{g}
$$

Examples of Elements
(1) T_{c} c sep.
(2) Bounding pair map

$$
\begin{array}{ll}
T_{a} T_{b}^{-1} & {[a]=[b]} \\
i(a, b)=0
\end{array}
$$

(3) Fake bounding pair maps

$$
T_{a} T_{b}^{-1} \quad[a]=[b]
$$

(4) $\left[T_{a}, T_{b}\right] \quad \hat{\imath}(a, b)=0$.
special case of 3

$$
T_{a}\left(T_{b} T_{a}^{-1} T_{b}^{-1}\right)=T_{a} T_{T_{b}(a)}^{-1}
$$

(5) Boint/handle pushes ham. to a. special case of 3

Generators
$1 \rightarrow I\left(S_{g}\right) \rightarrow \operatorname{Mod}\left(S_{g}\right) \xrightarrow{\Psi} S_{p_{2 g}} \mathbb{Z} \rightarrow 1$ generators < relaters

Birman: presentation for S_{p}.
Powell ~ BP's \& Sep. twists
Airman: Do these generate?

Johnson:(1) Sep twists not needed
 needed.
So:
$I\left(S_{g}\right)=$ normal closure in Mod IS_{g}) of a single BP of genus 1 .

Johnson I: Finite generation.
The $\quad 9 \geqslant 3 \quad I\left(s_{g}\right) \quad$ fog.

Pf idea. List $O\left(2^{9}\right) B P s$
$\left\{f_{i}\right\}$
Check $\left\langle f_{i}\right\rangle \triangleq \operatorname{Mod}\left(S_{g}\right)$

$$
\Rightarrow\left\langle f_{i}\right\rangle=I\left(s_{g}\right)
$$

Mess $I\left(s_{2}\right) \cong F_{\infty}$
gen set $\longleftrightarrow N_{1}$ splittings
Open Q. Explicit gen set.
$\operatorname{Mapr} O_{p e n} Q$. Is $I\left(S_{g}\right)$ fin pres?
$\mathrm{H}_{2}(G) \infty$ gen $\Rightarrow G$ not fop.

Johnson Homomorphism

$$
\begin{aligned}
& \tau: I(S g) \rightarrow \Lambda^{3} H \\
& H=H_{1}\left(S_{g} ; T L\right) \cong \mathbb{Z}^{2 g}
\end{aligned}
$$

Issue: $I\left(S_{g}\right)$ acts triv. on

$$
H=\pi /[\pi, \pi] \quad \pi=\pi_{1}\left(S_{g}\right)
$$

Remedy: Look at action of $I\left(S_{g}\right)$ on

$$
\begin{array}{lll}
\text { at action of } I(S g) \text { on } & G_{1}=G \\
\pi /[\pi,[\pi, \pi]] & \text { 2. step nilpoent } & G_{2}=[G, G] \\
& \text { "like abelian" } & G_{3}=[G,[G, G]] \\
& G_{4}=[G,[G,[G, G]]]
\end{array}
$$

Lower central series of G

Probe G by understanding G / G_{k}.

Johnson Homomorphism
Consider $f(x)$

$$
\tau: I\left(S_{g}\right) \rightarrow \Lambda^{3} H
$$

$$
\begin{aligned}
& : I\left(S_{g}\right) \rightarrow \Lambda^{3} H \\
& \left.H=H_{1}\left(S_{g} ; \pi\right) \cong \mathbb{Z}^{2 g} \quad 1 \rightarrow[\pi, \pi] /[\pi,[\pi, \pi]]\right] \pi /[\pi,[\pi, \pi]] \rightarrow \pi /[\pi, \pi] \rightarrow 1
\end{aligned}
$$

Issue: $I\left(S_{g}\right)$ acts riv. on

$$
H=\pi /[\pi, \pi] \quad \pi=\pi_{1}\left(S_{9}\right)
$$

Remedy: Look at action of $I\left(S_{g}\right)$ on

$$
\pi /[\pi,[\pi, \pi]] \quad \text { 2-step rilpont } \begin{array}{ll}
\text { like allan" }
\end{array}
$$

Construct $\tau: I\left(S_{g}\right) \rightarrow \underbrace{\operatorname{Hom}(H, N)}$
Given $f \in I\left(S_{g}\right)$ ablian.

$$
x \in H
$$

need $\tau(f)(x) \in N$.

$$
\text { Lift } x \text { to } \tilde{x}^{\in} \in E
$$

$\sim f(\tilde{x}) \tilde{x}^{-1} \in N$.
$I_{\text {mage }} \cong 1^{3} H$.

Computations

$$
\tau\left(T_{c}\right)=0 \text { c sep. }
$$

$$
T_{c} \leftrightarrow \text { conj. by } \quad f \in[\pi, \pi]
$$

$f(\tilde{x}) \tilde{x}^{-}$

$$
\begin{aligned}
& f(\tilde{x}) \tilde{x}^{\prime} \tilde{x} \mathcal{J}^{-1} \tilde{x}^{-1}=[y, z] \tilde{x}[y, z]^{-1} \tilde{x}^{-1} \in[\pi,[\pi, \pi]] . \\
& \tau\left(T_{c} T_{d}^{-1}\right)=a_{1} \wedge b_{1} \wedge b_{2} \neq 0 . \\
& \Rightarrow I\left(S_{g}\right) \text { not gen bu septwists. }
\end{aligned}
$$

Topological interpretation \#1
$\alpha: \pi \cdot\left(S_{g}\right) \longrightarrow \mathbb{Z}^{2 g} \quad$ ablianization.

$$
\rightarrow A:\left(S_{g}, *\right) \longrightarrow\left(T^{2 g}, 0\right)
$$

Consider $A \cdot \psi \quad[\psi] \in I\left(S_{g}\right)$
Since $[\psi] \in I(S g)$,

$$
A \sim A \cdot \psi
$$

The homotopy is a 3 -man.
in $T^{2 g} \sim \Lambda^{3} \mathrm{H}$.

An ell of $\Lambda^{3} \mathrm{H}$ is a sum of 3 - motes in $T^{2 g}$

Top inter \#2
Given $f \in I\left(S_{g}\right)$ need ell of $\Lambda^{3} \mathrm{H}$ or $\left(\beta^{3} H\right)^{*}=\left\{\Lambda^{3} N \rightarrow \mathbb{Z}\right\}$

$$
5 x \times y n+7 a r b x c
$$

Given $f \in I\left(S_{g}\right), x \wedge y \wedge z \in \sqrt{3} \mathcal{H}$ need a number.
Construct mapping torus M_{f}

$x \sim \operatorname{sunface} \Sigma_{x}$ in M_{f}
The desired number is

$$
\hat{\iota}\left(\Sigma_{x}, \Sigma_{y}, \Sigma_{z}\right)
$$

Chap 7. Torsion
Thu. (Fenchel-Nielen)
Any fin. oder $f \in \operatorname{Mod}_{\mathrm{od}}\left(S_{g, n}\right)$
has a rep $\varphi \in H_{\text {omen }}{ }^{+}\left(S_{g, m}\right)$ of finite order
More: φ can be chosen to be isometry of a hur./Eucl. metric.

Pf. Later chapter.

Same true for $G \leq M_{\text {col }}(S g, n)$
$|G|<\infty$ much much harder.
Cor. $\partial S \neq \varnothing$
$\operatorname{Mod}(S)$ is torsion free.
Prof Cor.
$\mathbb{Z}^{b} \rightarrow \operatorname{Mod}\left(S_{g, n}^{b} \xrightarrow{\text { aping }} \operatorname{Mod}_{\operatorname{lod}}\left(S_{g, n+b}\right)\right.$
\uparrow torsion free.

Torus case

Sphere case

Browner: a per. homed of S^{2} is conj to Eucl. rot.

In higher genus, it is complicated to list all periodic ells (number thy).
examples

$4 g+2$
not realizable by rotation in \mathbb{R}^{3}

Corelli fer $\operatorname{Mod}\left(S_{g}\right) \rightarrow S_{p 2 g} \mathbb{Z}$
The $I\left(s_{g}\right)$ is torsion free.
$\varphi=$ home o of space with isolated fixed pts
Pf. $S_{a y} f \in I\left(S_{g}\right)$ LOG $g \geqslant 2$.
$L(\varphi)=$ sum of degrees of
\leadsto representative φ^{\prime}
pt, ration.
Apply Lefschetz fit.

$$
\begin{aligned}
& L(\varphi)=\sum_{i=0}^{2}(-1)^{i} \operatorname{tr}\left(\varphi_{*}: H_{i}\left(\xi_{g}\right) \rightarrow H_{i}\left(\xi_{j}\right)\right) \\
& 1-2 g+1 \\
& \begin{array}{c}
\text { A fixed pts } \\
>0
\end{array} \\
& =2-2 g<0
\end{aligned}
$$

84(g-1) The
The. $g \geqslant 2, G \leqslant \operatorname{Mod}\left(S_{q}\right)$
$|G|<\infty$
$\Longrightarrow|G| \leq 84(g-1)$

- For G abelian answer: $4 g+4$
- Bound is (not) realized for ∞ many g.
- Realized for $g=3$
- Larson. \{g: bound is realized $\}$ has same frequency in \mathbb{N} as cubes.

Proof usescorbifolds
$X=$ hyp. surface
$G \leq \operatorname{lsom}{ }^{+}(x)$ finite.
$\sim Y=X / G$ orbifold.

Realizing Finite Groups
Thin. $G=$ finite gp
$\exists \mathrm{g}$ st. $G \leqslant \operatorname{Mod}\left(S_{g}\right)$
PF \#1 Build Sg from $\underbrace{\text { Cauley graph for } G}_{\text {vertices: } G}$.

edges: differ by
edges: gmemator \quad Coyle graph by left mut. Yes for cyclic groups.
vertices \longrightarrow tori
edges \longrightarrow annuli
Can replace" $\mathrm{Ig}^{\prime \prime}$
soup.

Generating MCG with torsion
$T_{h m} \operatorname{Mod}(S g)$ is generated Brindle fab: Change of coords: Br y 6 sunetts
on
are need ind by ells of order 2 .
Pf. $\operatorname{Mod}\left(S_{g}\right)$ is perfect.

$$
\begin{aligned}
& {\left[\operatorname{Mod}\left(S_{g}\right), \operatorname{Mod}\left(S_{g}\right)\right]} \\
& \left\langle\left[T_{a}, T_{b}\right]: i(a, b)=1\right\rangle^{S}
\end{aligned}
$$ are ned of 9 . a

Choose involution $s, s(a)=b$.

$$
\begin{aligned}
& {\left[T_{a}, s\right] }=T_{a}\left(s T_{a}^{-1} s^{-1}\right) \\
&=T_{a} T_{b}^{-1} \text { product } \\
& \text { of } 2 e
\end{aligned}
$$

Suffices to write
Similarly
$T_{a}^{-1} T_{b}$
is a product of 2 elts
of order 2

$$
2[T a, \pi]=\text { Prollof of dod } 2
$$

Chap 8 DNB Thm.

$$
G=\text { group }
$$

Inner autos:

$\operatorname{Out}(G)=\operatorname{Aut}(G) / \operatorname{Inn}(G)$
Example \Longrightarrow

Thm. σ is \cong Injectivity: $K(G, 1)$ thery Sujectivity: $K(G, 1)$ theorn: outer auto of $\pi_{1} \rightarrow$ homot. equiv.

Strategy

Let $[\Phi] \in$ Out $\pi,\left(S_{g}\right)$
(1) $\Phi\left(c_{i}\right)$ simple $\forall i . \longleftrightarrow$ all pairs of lifts unlinked at $\partial \|^{2}$
(2) $i\left(\Phi\left(c_{i}\right), \Phi\left(c_{i+1}\right)\right)=1 \Longleftrightarrow$ alittle more complicated.
(3) $i\left(\Phi\left(c_{i}\right), \Phi\left(c_{j}\right)\right)=0 \Longleftrightarrow$ all pairs of lifts unlinked at ∂H^{2} $|i-j|>1$.

To show:
Then Alex. method, change of coords...
里 preserves linking of ∂H^{2}

Cayley graph
$G=\langle S \mid R\rangle$
$\tau_{\text {gen set }}$
vertices: G
edges: $\underset{9}{-} s \in S$
Note GOCayley graph on left
path metric
\leadsto metric on G.

Example: $\mathbb{Z}^{2}=\langle a, b \mid[a, b]=1\rangle$

metric: taxicab.

$$
d\left(a^{m} b^{n}, i d\right)=|m|+|n|
$$

Example

$$
\begin{aligned}
& \mathbb{Z}=\langle 1 \mid\rangle \cdots \\
& \mathbb{Z}=\langle 2,3| \cdots,
\end{aligned}
$$

Quasi-isometries
X, Y metric spaces
$f: X \rightarrow Y$
Isometry: $d(f(x), f(y))=d(x, y)$
Quasi-isometry: $\exists K, C, D$ st.
(1) $\frac{1}{k} d_{x}(x, y)-C$

$$
\leq d_{Y}(f(x), f(y)) \leq K d_{x}(x, y)+C
$$

(2) D-nbd of $f(X)$ is Y
example $\mathbb{Z}^{n} c \mathbb{E}^{n}$

$$
\begin{aligned}
& K=\sqrt{n} \\
& C=1(\text { or } O) .
\end{aligned}
$$

$$
D=1
$$

example $\mathbb{E}^{n} \rightarrow \mathbb{Z}^{n}$ "nearest pt"
Next $\pi_{1}\left(S_{g}\right) \rightarrow H^{2}$
example $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)=k x
$$

or $f(x)= \begin{cases}K_{x} & x \\ \text { irrational } \\ K x+1 & x \\ \text { rational. }\end{cases}$

Milnor - Svarc Lemma
$X=$ proper, geod. metric space $G G X$ prop. disc, by isometries. X/G compact
Then (1) G is finitely generated
(2) G quasi-isom to X via any orbit map

$$
g \longmapsto g \cdot x_{0}
$$

$$
G=\pi_{1}\left(S_{g}\right)
$$

Gen set for $\pi_{1}\left(S_{g}\right)$: ells that take fund dom to an adjacent one.

From Autos to WIs

$$
\begin{aligned}
& G=g p \quad G=\langle S\rangle \quad|S|=\infty \\
& \Phi \in \operatorname{Aut}(G) \\
& \sim \text { quasi-isom of } G . \\
& K=\max \left\{\left\|\Phi^{ \pm 1}(s)\right\|: s \in S\right\} \\
& C=0 \\
& D=0 .
\end{aligned}
$$

So:
$\Phi \in$ Ant $\pi_{1}\left(S_{g}\right)$

quasi - ism of $\pi_{1}\left(S_{g}\right)$

quasi- ism of H^{2} next bor homes of JH^{2} hence, linking preserved

Quasi-isometries of $\pi_{1}(S g)=H^{2}$ preserve linking.

Suppose $\delta, \delta \in \pi$ (Sg) unlinked. (1) Choose $\sqrt{\gg}$ large compared to QI constr. \leadsto orbit pts

$$
\begin{array}{ll}
z^{2} x_{0} & \text { far } \\
\delta^{N i} x_{0} & \frac{\text { far }}{}
\end{array}
$$

(2) Connect orbit pts by paths in $\pi_{1}\left(S_{g}\right)$
(3) If $\Phi(z), \Phi(\delta)$ linked,

$$
\Phi\left(P_{\gamma}\right), \Phi\left(P_{\delta}\right) \text { cross } \Rightarrow \cos T \text {. }
$$

Gromor hyperbolic: Ff st. For any triangle, side $3 \subseteq 8$-abd of side? u side 2 a

Chap 9 Braid groups
$B_{n}=$ braid gp on n strands.

Def \#1

n strands in $\mathbb{R}^{2} \times[0,1]$ monotonic in $[0,1]$ dir. considered up to isotopy in \mathbb{R}^{3}

Multiplication: stack (\& scale vertical).

id: III
Generators: $\left.\left|\left.\right|_{1} ^{12} \cdots\right|^{i+1} \ldots\right|^{n}$

Defn\#2

$$
\begin{aligned}
& \text { Confn }\left(\mathbb{R}^{2}\right)=\begin{array}{c}
\text { space of n lyabled } \\
\text { pts in } \mathbb{R}^{2}
\end{array} \\
& B_{n} \cong \underbrace{\pi_{1} \text { Confr }}_{\text {"dance" }} \mathbb{R}^{2}
\end{aligned}
$$

basept:

In this defn: σ_{i} is 苗童

> | $\cdot \cdot \curvearrowleft \cdot \cdot$ |
| :---: |
| $P C_{\text {onf }} \mathbb{R}^{2}=\left(\mathbb{R}^{2}\right)^{n} /$ big diagonal. |
| Confr $_{n} \mathbb{R}^{2}=P C_{\text {onf }} \mathbb{R}^{2} / \Sigma_{n}$ |
| Fact. Confr \mathbb{R}^{2} is a $K(G, 1)$ |

$\Longrightarrow B_{n}$ is torsion free. (torsion $\Rightarrow \infty$-dim $K(G, 1))$.

Defn\#3
disk with n
$B_{n} \cong \operatorname{Mod}\left(D_{n}\right)$ marked in interior
Pf of \cong is BES, forgetting n pts
$\operatorname{Mod}\left(D_{n}\right) \longrightarrow B_{n}$
Given $[\varphi] \in \operatorname{Mod}\left(D_{n}\right)$ any homotopy φ to id (ignoring marked pts) restricts to a bop in π_{1} Conf $f_{n} \mathbb{R}^{2}$.
instead of 1 .
in interior.

$$
\mathrm{Homeo}^{+}\left(D^{2},\{n p B\}\right) \longrightarrow \text { Homo }^{+}\left(D^{2}\right)
$$

filter bundle. \sim LES
$\operatorname{Conf} \mathrm{D}^{2} \simeq \operatorname{Con} f_{n} \mathbb{R}^{2}$
$\sigma_{i}:$

Alg. Structure

$$
\left.\begin{array}{rl}
B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right| & \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
& \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \quad|i-j|>1
\end{array}\right\rangle
$$

braid rel: R3 moves
$\sigma_{i} \sigma_{i}^{-1}=i d: R 2$ moves S_{i}^{\prime}

$$
\begin{gathered}
B_{n}^{a b}=H_{1}\left(B_{n} ; \mathbb{Z}\right) \cong \mathbb{Z} \\
L_{:} B_{n} \longrightarrow \mathbb{Z} \\
\sigma_{i} \longmapsto 1
\end{gathered}
$$

codim 1
"length homom"

$$
\begin{align*}
& Z\left(B_{n}\right)=\left\langle T_{\partial}\right\rangle \tag{417}\\
& T_{\partial}=\left(\sigma_{1} \cdots \sigma_{n-1}\right)^{n}
\end{align*}
$$

Pure baidgps $P B_{n}$

$$
1 \rightarrow P B_{n} \rightarrow B_{n} \rightarrow \Sigma_{n} \rightarrow 1
$$

- PBrgen by $a_{i j} \quad\binom{n}{2}$

- Resentation (McCammond-M)

$$
P B_{n}=\langle\text { convex } D \text { Dhn }
$$ twists | disjointress, lantem> Cf. Biman-Ko-the

$$
\text { - } Z\left(P B_{n}\right)=Z\left(B_{n}\right)=\left\langle T_{3}\right\rangle
$$

$\left(a_{12} \cdots a_{1 n}\right)\left(a_{23} \cdots a_{2 n}\right) \cdots\left(a_{n-1, n}\right)$

$$
\begin{aligned}
& \cdot P B_{n} \cong P B_{n} \mid Z\left(P B_{n}\right) \times Z \\
& 1 \rightarrow \mathbb{Z} \underset{Z}{\rightleftarrows} P B_{n} \xrightarrow{C a q} P B_{n} / Z\left(P B_{n}\right) \rightarrow 1 \\
& 1 \leftrightarrows a_{12} \\
& 0 \rightleftarrows a_{i j} \\
& \\
& \text { splitting }
\end{aligned}
$$

More on $P B_{n}$

- Combing decomp:

$$
P B_{n} \cong F_{n-1} \times P B_{n-1} \quad P B_{2}
$$

Herating:

$$
\begin{aligned}
& \text { Herating: } \\
& P B_{n} \cong F_{n-1} \times F_{n-2} \times \cdots \times F_{2} \times \mathbb{Z}
\end{aligned}
$$

- Abelianization:

$$
\begin{aligned}
& \text { elianization: } \\
& H_{1}\left(P B_{n} ; \mathbb{Z}\right) \cong \mathbb{Z}^{\binom{n}{2}}
\end{aligned}
$$

Need $\binom{n}{2}$ maps $P B_{n} \rightarrow \mathbb{Z}$
$\binom{n}{2} \underset{\substack{\text { ropget } \\ \text { maps }}}{P B_{n}} \longrightarrow P B_{2} \cong \mathbb{Z}$

Church-Farb. $H_{1}\left(P_{B} ; Z\right)$ is rep. stable: As E_{n} reps

$$
H_{1}\left(P B_{n} ; \mathbb{Z}\right)=\underbrace{0 \oplus \square}_{\substack{\text { Stdrep. }}} \begin{gathered}
\text { trivial } \\
\text { rep. }
\end{gathered}
$$

cf. Farb sumal ICM

Birman-Hilden theory survey
$\sigma_{i} \longmapsto T_{c_{i}}$

Braid relns \& chain relns come directly from

- braid rel in B_{n}
- writing center of B_{n} in terms of σ_{i}
BH the, Injective.

$$
\begin{gathered}
i(a, b)>0 \\
\hat{\imath}(a, b)=0 \\
{\left[T_{a}, T_{b}\right] \in I\left(S_{g}\right)} \\
+ \\
i d
\end{gathered}
$$

Parts II \& III

space of hyp metrics on $S /$ isotopy

This action tells us about both Mod (S)
for example:

- 1 som $\operatorname{Teich}(S) \cong \operatorname{Mod}^{ \pm}(S)$
- Nielsen-Thurston classification for elements of $\operatorname{Mod}(S)$

This is geometric gp thy.
\& Teich(S)
Teich(s) Teich metric.

Moduli space

$$
\begin{aligned}
X(S) & <0 \\
M(S) & =\{\text { hyp metrics }\} / \text { isometry } \\
& =\{\text { complex str's }\} / \sim \\
& =\{\text { algebraic strs }\} / \sim \\
& =\{\text { conformal strs }\} / \sim
\end{aligned}
$$

$M\left(T^{2}\right)=$ \{unit area Encl. metrics $\} /$ ism

Teichmüller space (orbifold) univ. cover
of $M(S)$.

$$
\begin{aligned}
\text { Teich }(S)= & \{\text { hyp. metrics }\} / \text { isotopy } \\
= & \{\text { hyp. metrics }\} / \text { Diff. }(S) \\
& \text { (action is pullback) } \text { isotopic } \\
= & \{(X, \varphi): X \text { hyp surf. }
\end{aligned}
$$

marked surface

$$
S=\text { top surface, } \frac{\varphi_{1}}{\varphi_{2}} \stackrel{\rho}{\varphi_{2}}
$$

$$
\begin{aligned}
& \text { top surface, } \varphi_{2} \\
& \text { fixed forever } \xrightarrow{\longrightarrow} X_{2}
\end{aligned}
$$

$$
\varphi \in \operatorname{Diff}_{0}\left(T^{2}\right)
$$

$$
\varphi^{*}(\mu) \text { is a different }
$$

Encl. metric on T^{2}, isometric to μ via φ.

$$
\left(x_{1}, \varphi_{1}\right) \sim\left(x_{2}, \varphi_{2}\right) \text { if }
$$

\exists isometry $I: X_{1} \rightarrow X_{2}$
sit

commute up to isotopy.

The torus

$$
\begin{aligned}
& \text { Reich }\left(T^{2}\right)=\{\text { Excl. metrics }\} / \text { scale } \\
& \text { isomet } \\
&=\{(X, \varphi)\} / \sim
\end{aligned}
$$

Prop. Teich $\left(T^{2}\right) \longleftrightarrow \mathbb{H}^{2}$
Pf. Reich $\left(T^{2}\right)(\leftrightarrow \operatorname{marked}$ in latices $)$
\longleftrightarrow marked parallelograms / scale ismetin
Why? $x=\underset{1}{\square} \underset{\sim}{\text { wtopen } b}$

a

Scale so $a=1 \in \mathbb{C}$
reflect over \mathbb{R} so in $b>0$.

Prop \sim topology on Teich (T^{2}).

Well see: Reich metric is hyp metric.

Example tori
(2) $n i$ vs i / n
(1) i vs. $i+1$

 isometric via $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
(3) i vs $i+\varepsilon$

Same pt in M(S) different in Reich (S)

$$
\ell_{i}(b)=1 \quad \ell_{i+1}(b)=\sqrt{2}
$$

Some points in Reich $\left(S_{2}\right)$

Marked octagons/is isometry of \mathbb{H}^{2}

Length functions
For a curve (isotopy class) in S:

\[

\]

(no such map for $M(S)$).
Let $\mathcal{A}=\{$ curves in S\}/isotopy
Will show: $\ell:$ Teich $(S) \longrightarrow \mathbb{R}^{\&}$ injective. (actually: $6 \mathrm{~g}-5$ coves determine the metric)

The algebraic topology Have:

$$
\begin{aligned}
& D F\left(\pi_{1}\left(S_{g}\right), P S L_{2} \mathbb{R}\right) \\
& \text { " } \\
& \text { discrete faithful reps } \\
& \pi_{1}\left(S_{g}\right) \longrightarrow P S L_{2} \mathbb{R}
\end{aligned}
$$

cor space actions

$$
\begin{aligned}
& \text { Cor space actions } \\
& \pi_{1}\left(s_{9}\right) \longrightarrow I_{\text {som }}{ }^{+} H^{2}
\end{aligned}
$$

Like torus case:
Reich $\left(T^{2}\right) \leftrightarrow \operatorname{DF}\left(\mathbb{Z}^{2},\left.\right|_{\text {som }} \mathbb{E}^{2}\right) /\left.\right|_{\text {som }} \mathbb{E}^{2} \mathbb{E}^{2}$

$\operatorname{DF}\left(\pi_{1}\left(S_{9}\right), P S L_{2} \mathbb{R}\right) / P G L_{2} \mathbb{R}$ has a natural topology from $\left(\mathrm{PSL}_{2} \mathbb{R}\right)^{29}$
10. Teich Space.

$$
=\{(x, y)\} / \sim
$$

$$
T_{\text {hap surf }}
$$

$$
\varphi: S \rightarrow X
$$

$$
=\operatorname{DF}\left(\pi_{1}\left(S_{g}\right), P S L_{2} \mathbb{R}\right) / P G L_{2} \mathbb{R}
$$

Note: Terch(s) can intuitively be seen to be a manifold. Which is it?

Dimension count
$+6 g$: choosing $\rho\left(f_{1}\right), \ldots, \rho\left(f_{2 g}\right)$ in $P S L_{2} \mathbb{R}$
-3 : surface relation.

- 3: conjugation
$\log -6$

Pants

The. The map

$$
\begin{aligned}
\operatorname{Teich}(p) & \longrightarrow \mathbb{R}^{3} \\
x & \longmapsto\left(l_{x}(\alpha), l_{x}(\beta), l_{x}(\gamma)\right)
\end{aligned}
$$

is a homed.
Setup A right -angled
Setup: A marked hyp. hexagon

a, b, c counterclockwise
$H=$ set of these / marked isometry.

Lemma. The map $H \in \mathbb{R}^{3}$

$$
H \longmapsto\left(l_{H}(a), \ell_{H}(b), \ell_{H}(c)\right)
$$

is a bijection.
Pf.

Start with

$$
\left(x_{1}, x_{2}, x_{3}\right)
$$

$$
\text { in } \mathbb{R}^{3}
$$

Increase to until get right hexagon

(INT)

Pants

The. The map

$$
\begin{aligned}
\operatorname{Teich}(p) & \longrightarrow \mathbb{R}^{3} \\
x & \longmapsto\left(l_{x}(\alpha), l_{x}(\beta), l_{x}(f)\right)
\end{aligned}
$$

is a homed.
Pf. Draw the geodesics connecting components of P

Also, components of ∂P are cut exactly in half. (by Lemma). Continuity

Also: $\operatorname{Teich}\left(S_{0,3}\right)=*$

Fenchel - Nielsen Cords

The $\operatorname{Terch}\left(S_{g}\right) \cong \mathbb{R}^{69-6}$
$3 g-3$ length params
$3_{g}-3$ twist params.
Setup:
$f_{1}, \ldots, f_{3 g-3}$ pants decomp
$\begin{array}{ll}\beta_{1}, \ldots, \beta_{n} & \text { seams: } \\ & \left(\cup \beta_{i}\right) \cap \text { one pants }\end{array}$ $=3$ distinct ares

Length params: $l_{x}\left(g_{i}\right)$
these tell us the metric on each pants (by last Thy)
Twist params: harder. how the pants are glued together.

Twist parameters
Given

For an are α^{*} in $X \in$ Teich (P) \leadsto twisting about $\partial_{i} X \quad *$ homotepy

twisting $=2 \pi+\varepsilon$

If you twist before gluing, get different metrics on S_{0}^{4}
Similar:

Get different try if ya twist (length spectrum)
Given $X \in \operatorname{Teich}(S g) \& i \in\{1, \ldots, 3 g-3\}$
Choose seam β_{j} crossing f_{i}
\sim twisting on left/right of g_{i}

$$
\theta_{i}(x)=2 \pi \frac{t_{L}-t_{R}}{\ell\left(t_{i}\right)}
$$

Pf of The
Given $l_{1}, \ldots, l_{3 g-3}$

$$
\theta_{1}, \ldots, \theta_{3 g-3} .
$$

Want to construct unique X with those coords.
Step 1. Make disj union of pairs of pants according to l_{i}.
Step 2. Draw seams according to Θ_{i}
Step 3 Glue pants so seams match up. $\sim X$

Step 4. Build marking $\varphi: S \rightarrow X$ by change of coords.

The $9 g-9$ The
The $\exists\left\{\delta_{1}, \ldots, \delta_{g-9}\right\}$ st.

$$
\begin{aligned}
& \text { Reich }_{\left(S_{g}\right)} \longrightarrow \mathbb{R}^{9 g-9} \\
& X \longmapsto\left(\ell_{X}\left(\delta_{i}\right)\right)
\end{aligned}
$$

is infective.
Prop. Let X_{s} be a 1 -param family in Reich $\left(S_{g}\right)$ given by changing $i^{\text {th }}$ twist param. \& $b=$ curve crossing fi_{i}

Then the fo $\mathbb{R} \rightarrow \mathbb{R}_{+}$

$$
s \mapsto \ell_{x_{s}}(b)
$$

is strictly convex.
 this twist cord
Pf. The 9g-9 cures are:

$$
f_{1}, \ldots, f_{3 g-3}
$$

$\alpha_{1}, \ldots, \alpha_{39-3}$ any cures with

$$
i\left(\alpha_{i}, \partial_{j}\right) \neq 0 \leftrightarrow i=j
$$

$\beta_{1}, \ldots, \beta_{3 g-3}$
$\beta_{i}=T_{i}\left(\alpha_{i}\right)$

Pf. The 9g-9 cures are:
$f_{1}, \ldots, f_{3 g-3}$
$\alpha_{1}, \ldots, \alpha_{3 g-3}$ any curves with

$$
i\left(\alpha_{i}, \partial_{j}\right) \neq 0 \Leftrightarrow i=j
$$

$\beta_{1}, \ldots, \beta_{3 g-3}$

$$
\beta_{i}=T_{\gamma_{i}}\left(\alpha_{i}\right)
$$

By design:

$$
l_{x_{s}}\left(\alpha_{i}\right)=l_{x_{s+2 \pi}}\left(\beta_{i}\right)
$$

$X_{s}=$ family corresponding to Ji_{i}

Chapter 11. Teich geom.
Basic question: $X, Y \in \operatorname{Teich}(s)$

What is the best map?
Idea: Measure distortion

$$
\begin{array}{r}
\text { "dilatation" } \\
(\text { at a pt) }
\end{array}
$$

\leadsto metric on Teich(s)
Take sup of dilatation over X
Take inf over f. Take log.
Teichmuller the: existence \& uniqueness of infimal f.

Complex structures
A complex structure on S consists of:
atlas of charts to \mathbb{C} with holomorphic transition maps.

Riemann surface: S with complex structure.

Example of Riemann surface

9 charts: "middle" identity map 6 edge charts: id on half -disk tron on other translation on other half disk.
2 good comercharts: translation 1 bad corner chart: apply $Z^{1 / 3}$ + translation.

Complex str's rs $N_{\text {up }}$ strs. $\quad x(s)<0$.
$\{$ hyp stars on $S\} \rightleftarrows\{$ complex stirs on $S\}$
\longrightarrow isometries of \mathbb{H}^{2} are holomorphic. (Mobiustr)

+ Cartan-Hadamard: only simply conn. complete surface with $k=-1$ is \mathbb{H}^{2}.
\longleftarrow uniformization the: only simply conn Riemsurf's are $H^{2}, \mathbb{C}, \hat{\mathbb{C}}$.

Linear maps of \mathbb{R}^{2} via \mathbb{C}-analysis

$$
U, V \subseteq \mathbb{C} \text { open }
$$

$$
f: U \rightarrow V \text { smooth }
$$

$$
D f_{p}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad a, b, c, d \in \mathbb{R}
$$

Can write as:

$$
\begin{aligned}
& D F_{p}(z)=\alpha z+\beta \bar{z} \\
& \alpha=\frac{(a+i c)-i(b+i d)}{2} \\
& \beta=\frac{(a+i c)+i(b+i d)}{2}
\end{aligned}
$$

$$
1 \in \mathbb{C} \leftrightarrow(1,0) \in \mathbb{R}^{2} \quad \text { i } \in \mathbb{C} \leftrightarrow(0,1) \in \mathbb{R}^{2}
$$

Check $D f_{p}(1)=a+i c$

$$
D f_{p}(i)=b+i d
$$

$$
\alpha, \beta \text { called } f_{z}, f_{\bar{z}}
$$

$D f_{p}(z)=f_{z} z+f_{\bar{z}} \bar{z}$
Complex dilatation:
$\mu_{f}=f_{\bar{z}} / f_{z}$
$\mu_{f}=0 \stackrel{f_{z}}{\Longleftrightarrow} f$ holomorphic.

Dilatation of f

$$
\begin{aligned}
K_{f}(p) & =\frac{\left|f_{z}(p)\right|+\left|f_{\bar{z}}(p)\right|}{\left|f_{z}(p)\right|-\left|f_{\bar{z}}(p)\right|}=\frac{1+\left|M_{f}(p)\right|}{1-\left|M_{f}(p)\right|}=d_{\mathbb{H}}\left(\mu_{f}(p), 0\right) . \\
& =\text { eccentricity of } \quad D f_{p}\left(S^{1}\right) \quad K_{f}=\sup _{p} K_{f}(p)
\end{aligned}
$$

© to prove, write S^{\prime} as $e^{i \theta}$, apply $D f_{p}$

$$
\begin{gathered}
\left|f_{z}(p) e^{i \theta}+f_{z}(p) e^{-i \theta}\right| \\
1-\left|\mu_{f}(p)\right| \leq\left|e^{i \theta}\right|\left|f_{z}(p)\right|\left|1+\mu_{f}(p) e^{-2 i \theta}\right| \leq 1+\left|\mu_{f}(p)\right|
\end{gathered}
$$

Quasi-conformal maps
f is g.c. if $K_{f}<\infty$.
Holomorphic \Rightarrow 1-q.e.
Note: ge makes sense for Rem. surfaces since transitions maps are holomorphic-
We only consider maps that are smooth outside a finite set.

Fact. X, Y Rem surfs.
The set of ge maps $X \rightarrow Y$ forms a group
pf. $K_{f o g} \leq K_{f} K_{g}$ $K_{f^{-1}}=K_{f}$

Teichmiller's extremal problem
Fix $f: X \rightarrow Y$ homeo. Is this inf realized?

$$
\inf \left\{K_{h}: h \sim f, h g c\right\}
$$

If so, what is min. map?

Teichmuller: existence \& uniqueness.

$$
\leadsto d_{\text {Tech }}(X, Y)=\frac{1}{2} \log K_{h}
$$

Earlier, Grotzch did this for rectangles:

Extemal map is the obvious one \& it is unique.

Measured foliations
Sing. foliation on S_{g} locally:

Prop. (Euler - Poincare formula)

$$
x(s)=\sum_{\operatorname{sing}}\left(1-\frac{k_{i}}{2}\right)
$$

Special case: No singularities

$$
\longleftrightarrow \chi(s)=0 .
$$

Pf (assuming foliation is orientable)
(W.Thurston)

Assume no singularities.
Triangulate

Chap 11. Reich geom.
Reich this: Given $X, Y \in$ Teich (S)
\exists unique map $h: X \rightarrow Y$
homos. to id that minimizes
dilatation K

$$
0 \xrightarrow{\mathrm{Dh}} 0
$$

The map is locally:
need to make sense of horiz/vert. on S.

$$
\left(\begin{array}{cc}
\sqrt{k} & 0 \\
0 & 1 / \sqrt{k}
\end{array}\right)
$$

Measured foliations

$$
\mu(f)=\mu\left(f^{\prime}\right)
$$

transverse foliations

These allow us to do Teich maps as above.

3 constructions
(1) Polygons

(2) Curves

measure: Endidean, 1 to Foliation
(3) Branched covers

Lift a foliation from tomes

Quadratic differentials
Single, complex analytic object that packages: complex str.

2 transv. Foliations with measures.

In a chart:

$$
q=\varphi(z) d z^{2}
$$

φ holomorphic.
so that...

Invariant under transition maps:

$$
\begin{aligned}
& z_{\alpha}: U_{\alpha} \rightarrow \mathbb{C} \\
& z_{\beta}: U_{\beta} \rightarrow \mathbb{C} \\
& q= \varphi_{\alpha}(z) d z_{\alpha}^{2} \text { or } \varphi_{\beta}(z) d z_{\beta}^{2} \text { in charts } \\
& \varphi_{\beta}\left(z_{\beta}\right)\left(\frac{d z_{\beta}}{d z_{\alpha}}\right)^{2}=\varphi_{\alpha}\left(z_{\alpha}\right)
\end{aligned}
$$

q lats tangent vectors, gives complumex

$$
\begin{aligned}
q(v) & =\varphi(p)^{2} \\
& =\varphi(p) v^{2}
\end{aligned}
$$

$$
\subseteq \mathbb{1}
$$

From QD's to foliations

In a chart:

$$
q=\varphi(z) d z^{2}
$$

Horiz. Foliation: $q>0$
Vert. Foliation: $q<0$.
example $q=\varphi(z) d z^{2}=1 \cdot d z^{2}$

example $q=\alpha d z^{2} \quad \alpha \in \mathbb{C}$

example $q=z d z^{2}$

\ldots and the measures
Every q has natural coords where it is $z^{k} d z^{2}$
So: away from zeros,
measure is $|d x|,|d y|$

z

$\eta \circ z$

Say: $z: U \rightarrow \mathbb{C}$ chart

$$
\eta(z)=\int_{0}^{z} \sqrt{\varphi(\omega)} d \omega
$$

$\underset{\text { choose a }}{\substack{\text { dummy } \\ \text { variable }}}$
Check: in these coords, a way from Zeros of $q, \quad q=1 \cdot d z^{2}$.

Example
In z-chart

$$
q=1 d z^{2} \quad \varphi_{z}(z)=1 \quad q=\alpha d z^{2}
$$

In w-chart

$$
q=\varphi_{w}(z) d z^{2}=9 z^{4} d z^{2} \quad q=\alpha 9 z^{4} d z^{2}
$$

Change of coords from w to z : \sim foliations rotated $b_{y} \arg \alpha$.

$$
\begin{aligned}
\varphi_{z}(z)\left(\frac{d z}{d w}\right)^{2} & =\varphi_{w}(z) \\
1 \cdot\left(3 z^{2}\right)^{2} & =\varphi_{w}(z)
\end{aligned}
$$

Statement of Teich Thms
(2) At nonzero pts of q_{x} :
X, Y Riem surf's

$$
f(x+i y)=\sqrt{k} x+\frac{1}{\sqrt{k}} y
$$

A homeo $f: X \rightarrow Y$
is a Teich map if
\exists qd's q_{x} initial differeatial
in natural coords

$$
\begin{aligned}
& q_{y} \text { torminal. } \\
& \text { \& } k \in(0, \infty) \\
& \text { s.t. } \\
& \text { (1) } \\
& f\left(\text { zeros of } q_{x}\right) \\
& =\text { zeros of } q y \\
& \text { TET. X,Y Riem surfs } \\
& f: X \rightarrow Y \text { homeo } \\
& \text { Then } \exists \text { Teich map homotopic to } f \text {. } \\
& \text { TuT. } \\
& h: X \rightarrow Y \text { Teich map } \\
& f \sim h \Rightarrow K_{f} \geqslant K_{h} \\
& \text { Equality } \Longleftrightarrow \text { foh }^{-1} \text { conformal } l=h
\end{aligned}
$$

Terch Thms
TUT. $h: X \rightarrow Y$ Teich map
TET. X,Y Riemsurfs
$f: X \rightarrow Y$ homeo

$$
\Rightarrow K_{f} \geqslant K_{h}
$$

7 Teich map $h \sim f$.
\& equality $\Longleftrightarrow f=h \quad(g \geqslant 2)$
example.

Grotzch's Problem
The rectangle case of TUT

The. Given

$$
1 \frac{x}{a} \xrightarrow{f} \frac{\sqrt{Y}}{k_{a}}
$$

or. pres, side pres, almost
Smooth (smooth outside finite ert)
Then $K_{f} \geqslant K$
\& equality $\Leftrightarrow F$ is the obriousmap.

The. Given

Then $K_{f} \geqslant K$
Pf. $K_{f}(x, y)=$ dill. at (x, y)

$j_{f}(x, y)=j a c o b$. of $f e(x, y)$
Claim 1. $\left|f_{x}(x, y)\right|^{2} \leqslant K_{f}(x, y)$ jp (x, y)
pf.

$$
M / w x \cdot M_{p h}
$$

$$
\begin{aligned}
& \text { \& integrate over } Y \text {. } \\
& \text { Now: }\left(K_{\text {Area }(X))^{2}}^{2(2)}\left(\int_{x}\left|f_{x}(x, y)\right| d A\right)^{2}\right. \\
& \leq\left(\int_{x} \sqrt{K_{f}(x, y)} \sqrt{\left.j_{f f(x, y)}\right)}\right)^{2} d A \\
& \leq \leq \int_{x} K_{f}(x, y) d A \int_{x} j f(x, y) d A \\
& \leqslant K_{f} \text { Area }(X) \text { Area }(Y) \\
& =K_{f} K \text { Area }(X)^{2}
\end{aligned}
$$

For TUT, need a version of Claim 2. But: Leaves might not be closed ...

Lemma. $g_{Y} \in Q D(Y)$
$f: Y \rightarrow Y \quad$ f~id. geodesic.
$\exists M$ sit. \forall horiz. $\operatorname{ares} \alpha$

$$
\ell_{q_{Y}}(f(\alpha)) \geqslant l_{q_{Y}}(\alpha)-M
$$

Pf. $M=2 \cdot \max$ distance a pt moves under homotupy f to id.
α geodesic

$$
\Rightarrow \quad l(f(\alpha))+M \geqslant \ell(\alpha)
$$

Next: Analog of Claim 2 using this Lemma.

Prop. $h: X \rightarrow Y$ Tech map init diff q_{x} term diff q_{y} hor stretch $K, f \sim h$ almost s moth
Then $\int_{x}\left|f_{x}\right| d A \geqslant K$ Area $\left(q_{x}\right)$
Pf. Define $\delta: X \times \mathbb{R} \geqslant 0 \rightarrow \mathbb{R} \geqslant 0$
$\delta(p, L)=\int_{-L}^{L}\left|f_{x}\right| d x$

$$
=l_{q_{\gamma}} f\left(\alpha_{p, L}\right)
$$

$\alpha_{p, L}=$ hor. are length $2 L$ thru p.
Also: $\operatorname{lqv}\left(h\left(\alpha_{p, 1}\right)\right)=2 K L$

So:

$$
\int_{x} \delta(p, L) d A=\int_{x} \ell_{q_{x}}\left(f\left(\alpha_{p, L}\right)\right) d A
$$

$$
\geqslant \int_{x}(2 K L-M) d A
$$

$$
=(2 K L-M) A_{r e a}(X)
$$

Fubini:

$$
\int_{x} \delta(\rho, L) d A=\int_{x}\left(\int_{-L}^{L}\left|f_{x}\right| d x\right) d A
$$

$$
=2 L \int_{x}\left|f_{x}\right| d A
$$

So: $\int_{x}\left|f_{x}\right| d A \geqslant\left(k-\frac{M}{2 L}\right)$ Area X $\forall L$.
PF of TUT. Repeat Grözch argument \square

Proof of TET
$x \in \operatorname{Teich}(s)$
$Q D(X)=$ vector space
\mathbb{R}^{-}
$\operatorname{dim}_{\text {dm }}=6 \mathrm{~g}-6 \quad$ (Riemann-Roch)
Define $\|q\|=\int_{x}|\varphi|=$ area

$$
q=\varphi(z) d z^{2}
$$

$Q D_{1}(x)=$ open unit ball.

$$
\leadsto K=\frac{1+\|q\|}{1-\|q\|}
$$

$\leadsto Y \in \operatorname{Terch}(s)$
\& Reich map $h: X \rightarrow Y$.
example.

So $Q D(x) \longleftrightarrow T_{x} T_{\text {rich }}(S)$
line in Teich (S) "exponential map"
$\sim \Omega: Q D_{1}(X) \rightarrow$ Reich (s).
$T E T \Longleftrightarrow \Omega$ surjective.

Prop. Ω continuous hard part!

Prop. Ω proper.
Also: Ω ind by TUT
$\& \operatorname{dim} Q D_{1}=6 g-6$

Brovwers Inv. of Domain:
Any proper, ing contin. map

$$
\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

is a homed.

Continuity uses Beltrami differentials PDÉs.

Teichmiller metric

$$
d_{\text {Reich }}(X, Y)=\frac{1}{2} \log K
$$

where K is dilatation of
Teich map $h: X \rightarrow Y$.
Prop. $d_{\text {Reich }}$ is a complete metric.

Prop. Teich lines above are geodesics in $d_{\text {reich. }}$ (TUT)

Prop. Teich(S) is a geodesic metric
space (TET + prev. prop)
Prop. $d_{\text {Tech }}$ for T^{2} is hyp metric on \mathbb{H}^{2}. (up to multiple).

Chap 12. Moduli space

$$
M(S)=\{\text { hyp } / \text { complex } /
$$ alg/conformal Structures on $S\} / \sim$

different in Tech
same in M
$\operatorname{Mod}(S) G \operatorname{Teich}(S)$
by pulling back metrics...
In terms of markings:

$$
[\psi] \cdot(X, \varphi)=\left(X, \varphi \circ \psi^{-1}\right)
$$

- Action is by isometries.
- $\operatorname{Stab}(X)=1 \mathrm{scm}^{+}(X)$ finite
- Kernel is $\left\{\begin{array}{cl}7 / 2 & g=1,2 \leftarrow \text { hus. inv. } \\ 1 & g \geqslant 3\end{array}\right.$

$$
l_{x}\left(F^{-c}(c)\right)=l_{f \cdot x}(c)=l_{x}(c) \quad \forall c
$$

$$
M(s)=\operatorname{Teich}(S) / \operatorname{Mod}(S)
$$

The torus
$\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$
Prop. The action of $\operatorname{Mod}\left(T^{2}\right)=S L_{2} \mathbb{Z}$

$$
\text { on } \operatorname{Teich}\left(T^{2}\right)=\mathbb{H}^{2}
$$

$\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right): \stackrel{b}{b} \underset{a}{{ }^{\tau} / \theta} \stackrel{\text { Nc a action }}{\longmapsto}$
as a mapping
class: $a \rightarrow b$
$b \rightarrow-a$
is by Möbius transf.

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \longmapsto \frac{a z-b}{c z+d}
$$

Pf. Check on generators.

lo put latter in std form, divide $b_{y}-\tau \simeq-\frac{1}{\tau}$ in H^{2}. agrees with:

$$
\frac{0 z-1}{1 z+0}=-\frac{1}{z}
$$

Fund domain:

$P L_{2} \mathbb{Z} \cong T / 2 * \mathbb{Z} / 3$

Proper Discontinuity
GGX prop disc if
\forall compact $K \subseteq X$
$*\{g \in G: g K \cap K \neq \phi\}<\infty$.
The (Fricke) Mod $\left(S_{g}\right)$ G Reich $\left(S_{g}\right)$ is prop. disc.
The + Teich metric \Longrightarrow metric on $M(s)$. (inf of dist. b/w lifts).

Tool: Raw length spectrum.

$$
r \operatorname{ls}(X)=\left\{\ell_{x}(c)\right\} \subseteq \mathbb{R}
$$

Lemma. X, Reich $(s) . \forall L$
Then $\#\left\{c: l_{x}(c) \leq L\right\}<\infty$
In partic, $r_{s}(X)$ closed, discrete in \mathbb{R}.
Pf. Prop. disc. of $\pi_{1}(s) \cup H^{2}$.

Wolport's Lemma
X_{1}, X_{2} hyp surfaces
$\varphi: X_{1} \rightarrow X_{2}$ quasi-conf homes $(k<\infty)$.
For all c :

$$
\frac{1}{k} l_{x_{1}}(c) \leq l_{x_{2}}(\varphi(c)) \leq K l_{x_{1}}(c)
$$

"curves get stretched by at most K."
Pf. $f_{1}, g_{2} \in \operatorname{som}^{+}\left(\mathbb{H}^{2}\right)$

$$
\begin{array}{cc}
\downarrow & \downarrow \\
c \subseteq x_{1} & \varphi(c) \subseteq x_{2}
\end{array}
$$

A_{i} is conformally equiv. to a unique* std annulus

φ lifts to $\tilde{\varphi}: A_{1} \rightarrow A_{2}$
(lifting criterion)
same ge const.

$$
\text { Grotzch } \Rightarrow \frac{m_{1}}{K} \leq m_{2} \leq K m_{1}
$$

$$
\Rightarrow \text { Coma }
$$

Proof of PD $d(X, Y)=\frac{1}{2} \log K$
$B \subseteq$ Tech (S_{g}) compact
$X \in B$ arbitrary.
$D=\operatorname{diam} B$.
c_{1}, c_{2} curves that fill S_{g}.
$L=\max \left\{\ell_{x}\left(c_{1}\right), \ell_{x}\left(C_{2}\right)\right\}$
Say $f \cdot B \cap B \neq \varnothing$.
(wIS finitely many such f)
$F \cdot B \cap B \neq \phi$

$$
\begin{aligned}
& \Rightarrow d(X, f \cdot x) \leq 2 D \\
& \text { Wolpert } \Rightarrow l_{f \cdot x}\left(c_{i}\right) \leq K L
\end{aligned}
$$

where. $K=e^{4 D}$

$$
\Rightarrow l_{x}\left(f^{-1}\left(c_{i}\right)\right) \leq K L
$$

$L_{\text {Lemma }} \Rightarrow$ finitely many chocs for $f\left(c_{1}\right) \& f\left(c_{2}\right)$.
Alex method \Rightarrow finitely many choices for f.

Moduli space

$$
\begin{aligned}
& M(s)=\left\{h_{\text {up }} . s t r\right\} / \text { isometry. } \\
& A l_{\text {so: }}: M(s)=\operatorname{Teich}(s) / \operatorname{Mod}(s)
\end{aligned}
$$

$\operatorname{Mod}(S)$ acts by pullback:

$$
[\varphi] \cdot X=\left(\varphi^{-1}\right)^{*} X
$$

Torus case "A
Action of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2} \mathbb{Z}=\operatorname{Mod}\left(T^{2}\right)$ on lattice $\Lambda \cong \mathbb{Z}^{2} \in \operatorname{Teich}\left(T^{2}\right)$ matrix $M=M_{2} \mathbb{R}$

Action is by Mobius trans

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \longmapsto \frac{a z-b}{-c z+d}
$$

\mathbb{R} Motive trans act on
 this 2-complex. $S L_{2} \mathbb{L}$ acts trans. on Δ^{\prime} 's Stab of \triangle rotates

Mumford's Compactness Criterion $M(S)$ is not compact because

Bers constant
The. $x(s)<0 \quad$ Maple $\partial S \neq \varnothing$. (1) $\exists L_{0}=L_{0}(s)$ st.
$\forall X \in M(s)$ A cove in X of length \leq Lo.
(2) $\exists L=L(s)$ st. $\forall X$ \exists pants decamp. of length $\leq L$.
Pf. (1) \Rightarrow (2) by induction on \# curves (cut open)

Given X find largest radius disk D with interior embedded \& disjoint from ∂X.
D is a hyperbolic disk. radius r.

$$
\begin{aligned}
\text { Area } D & =2 \pi(\cosh (r)-1) \\
& \leq \text { Area } X=-2 \pi X(s)
\end{aligned}
$$

If ∂D taches itself \Rightarrow short cure. If ∂D taches ∂X, it taches in at least two points \Rightarrow short arc \Rightarrow short cine. One of these 2 situations must hanson \square

Define $M_{\varepsilon}(s)=\{x \in M(s): \ell(x) \geqslant \varepsilon\}$ Bess: Each X_{i} has pants decamp where " ε-thick part" curves have length in $[\varepsilon, L]$.

The. $\forall \varepsilon, M_{\varepsilon}(S)$ compact.
Pf. $M(s)$ metrizable. \Rightarrow enough to show seq. compact.

$$
\left(x_{i}\right) \subseteq M_{\varepsilon}(s)
$$

We will find lifts to
Teich(s) lying in closed cube in FN cords.

Pass to subseg so these parts decamps are topologically equivalent.
Choose lifts to Teich(S) where a specific pants decamp. has length in $[\varepsilon, L]$.
So length parcums in $[\varepsilon, L]$.
Can modify twist params to be in $[0,1]$ (Den twists)

The end of moduli space
$Z=$ connected, locally compact space
Z has one end if $Z \backslash K$ has one componenent \forall compact K. or if \exists exhaustion $K_{0} \subseteq K_{1} \subseteq \cdots \cdot$ by compact sets so $Z \backslash K_{i}$ connected $i \gg 0$. one end: $\mathbb{R}^{n} \quad n \geqslant 2$.
not one end: $\mathbb{R}^{n} n \leq 1$.
∞ many ends Cantor set.

Th m. M(s) has one end.
Pf. $M_{\varepsilon}(s)$ form an exhaustion by compact sets

To show $M \backslash M_{\varepsilon}$ connected $\forall \varepsilon$.
Let $X, Y \in M \backslash M_{\varepsilon}$
Lift to $\tilde{X}, \tilde{Y} \in$ Reich.
T shortcuned.
shortconvec
Connect c, d in $C(S) \ldots$
pinch cosec. awes one at a time...

Theorem 2. Modulus space is simply-connected.
Proof. It is proved in [4] that each element of finite order in $M\left(K_{g}\right)$ has a fixed point in $T\left(K_{g}\right)$, so that, by Theorem $1, M\left(K_{g}\right)$ is generated by elements which have fixed points. Also $M\left(K_{\imath}\right)$ is a properly discontinuous group of homeomorphisms of a space homeomorphic to R^{60-6}. Furthermore, the stabiliser of a point $[\phi]$ of $T\left(K_{\theta}\right)$ is isomorphic to the group of conformal self-homeomorphisms of the compact Riemann surface $D / \phi\left(K_{\theta}\right)$ and hence is finite. Thus, applying a result of Armstrong [1] we have that $T\left(K_{\imath}\right) / M\left(K_{\imath}\right)$ has trivial fundamental group.

Chap 13. Nielsen-Thurston
Classification.
Thm (Thurston) Every $f \in \operatorname{Mod}(S)$ has a represortative φ S.t.
(1) periodic: $\varphi^{n}=1$
(2) reducible: $\varphi(M)=M$

Some multicurve M
(3) pseudo-Anosov:
\exists transv. meas. fol's \mathcal{F}_{u}, F_{s}
\& $\lambda>1$ s.t. "stretch
$\varphi \cdot F_{u}=\lambda F_{u}$
$\varphi \cdot F_{s}=\frac{1}{\lambda} \mathcal{F}_{s}$
Moreover (3) is exclusive from
(1) \& (2).

per.
\& red.

$$
C R S=\phi
$$

per.
(not. red)

$T_{c} \begin{aligned} & \text { red } \\ & \text { not per. } Q\end{aligned}$

$$
C R S=c
$$

$(0)^{5\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)} p A$
foliations \longleftrightarrow eigenvectors stretch factor \leftrightarrow eigenvalues.

Birman-Lubotzky-McCarthy:
Canonical reduction system $=$ intersection of max reduction systems.

Restatement of NTC: Every mapping class reduces to per \& PA pieces.

Torus case

$$
\begin{aligned}
f \in \operatorname{Mod}\left(T^{2}\right) & \leftrightarrow A \in S L_{2} \mathbb{Z} \\
& \leftrightarrow \tau \in \operatorname{Som}^{+}\left(H^{2}\right)
\end{aligned}
$$

Case 12 complex eigenvals
(Per.)

$$
\leftrightarrow \tau \text { rotation. }
$$

$$
\text { prop disc. } \Rightarrow|t|<\infty \text {. }
$$

Case 3 2 real eigenvals. $\lambda, \frac{1}{\lambda}$
(PA) $\Rightarrow f($ pseudo $)$ Anosov.

Case 2. 1 real eigenval
(id) product of eigeninals $=\operatorname{det}=1$.

$$
\lambda= \pm 1
$$

\Rightarrow eigenviedor rational.
\leadsto fixed curve

$$
\begin{gathered}
x^{2}+x+1=0 \\
(x-1)\left(x^{2}+x+1\right)=0 \\
x^{3}=1
\end{gathered}
$$

3 -manifolds
$f \in \operatorname{Mod}(S) \sim M_{f}=$ mapping torus

Thu (Thurston) $f \in \operatorname{Mod}(S) \quad \chi(s)<0$.
f per $\leftrightarrow M_{f}$ admits metric locally isometric to $H^{2} \times \mathbb{R}$.
$[G]=f . \quad-\quad$ red $\longleftrightarrow M$ contains incompressible torus $L \pi$-ing.

- $\begin{aligned} \mathrm{P} A & \Longleftrightarrow M \text { admits hyperbolic metric. } \\ & \Longrightarrow\end{aligned}$ hard.

Periodic elements "Easy Nielsen (Fenchel)
The. $f \in \operatorname{Mod}(s)$ periodic
$\Longrightarrow f$ has a periodic rep:

$$
\varphi^{n}=1
$$

Pf. To show f has fixed pt in Teich(S).
Indeed:

$$
\begin{aligned}
f \cdot x & =X \\
\varphi^{*} X & \sim X
\end{aligned}
$$

Can change φ by isotopy so fixes X on nose.

Note $\langle f\rangle \cong 74 / m$
Fact. $7 / \mathrm{m}$ cannot act freely on a fin. dim contractible space.
(othenurse quotient is a fin. dim $K(\mathbb{Z} / m, 1)$
\& $H^{k}(\mathcal{L} / \mathrm{m}) \neq 0$ arb. large $\left.k\right)$.
So f^{j} fixes $x \in \operatorname{Teich}(s)$ some j.
Special case. m prime.

$$
f=\left(f^{j}\right)^{k} \text { some } k \Rightarrow f \cdot x=x
$$

Assume now $m=p q \quad p$ prime, q prime.
Note f^{q} has order P.
As above f^{q} fixes $X \in$ Tech (s).

The map

$$
\operatorname{Teich}(\bar{s}) \rightarrow \operatorname{Fix}\left(f^{q}\right)
$$

is: lift complex stwetures.
Injectivity: Teich.U.T. *

$$
\bar{X} \neq \bar{Y} \in \operatorname{Teich}(\bar{S})
$$

\sim Reich map of \bar{S}
\leadsto Reich map of S
between lifts X, Y.

$$
\Rightarrow X \neq Y
$$

Surjectivity: Special case.

Outline of proof of NTC

$$
f \in \operatorname{Mod}(S)
$$

$$
\tau(f)=\inf \left\{x_{\in} T_{\text {Rich }}(s):\right.
$$

$$
d(x, f \cdot x)\}
$$

"translation length"
To show:
$\tau(f)=0$ \& realized $\Leftrightarrow f_{\text {periodic }}$
$\tau(f)$ not realized $\Leftrightarrow f$ reducible
$\tau(f)>0 \&$ realized $\Longleftrightarrow f p A$.

like toms case.

Nielson-Thurston Classification
Them. Every $f \in \operatorname{Mod}(S)$ has a rep φ sit.
(1) periodic: $\varphi^{n}=1$
(2) reducible: $\varphi(M)=M$
(3) pseudo-Anosov:

$$
\begin{aligned}
& \varphi \cdot \mathcal{F}_{u}=\lambda \mathcal{F}_{u} \\
& \varphi \cdot \mathcal{F}_{s}=\frac{1}{\lambda} \mathcal{F}_{s}
\end{aligned}
$$

(3) is exclusive from
(1) \& (2)

Exclusivity: we show in Chap 14 for any curve f

$$
\ell_{x}\left(f^{n}(\eta)\right) \longrightarrow \infty
$$

12

$$
\lambda^{n} \ell(\eta)
$$

Proof. $\quad \tau(f)=\inf _{x} d_{\text {Reich }}(x, f \cdot x)$
"translation length"
elliptic: $\tau(f)=0$, realized $\Rightarrow f$ periodic
parabolic: $\tau(f)$ not realized \Rightarrow freducible
loxodromic: $T(F)>0$, realized $\Rightarrow f p A$

Collar Lemma

Prop. $f=$ sec on hyp $X \Longrightarrow$
r-nd of \mathcal{F} is an embedded annulus
where $r=\sinh ^{-1}\left(\frac{1}{\sinh \frac{1}{2} l(f)}\right)$
Note $r \rightarrow \infty$ as $l(g) \rightarrow 0$.
Cor. $X=$ hyp surf 7δ st.

$$
\begin{aligned}
& \ell(\beta), \ell(\gamma)<\delta \\
& \Longrightarrow i(\beta, \gamma)=0 .
\end{aligned}
$$

Pf. Choose pants decamp $\{f, \ldots\}$
$\leadsto \operatorname{hup}_{\text {pants }} \leadsto$ right angled hexagons
\leadsto right angled pentagons r tang pent formula: $\sinh \varepsilon \sinh \beta=\cosh \alpha$ $\geqslant 1$
$\delta=$ universal $\forall X$ in all Teich(s).

Parabolic \Rightarrow Reducible
Assume $\tau(f)$ not realized.
Choose X_{i} s.t.

$$
d\left(x_{i}, f \cdot x_{i}\right) \rightarrow \tau(f)
$$

Step 1. $\ell\left(X_{i}\right) \rightarrow 0$.
Pf is essentially prop disc. (next)
Step 2. Find reduction curves.
Wolpert Lemma: $d(X, Y) \leq \tau(f)+1$

$$
\Rightarrow l_{X}(c) \leq K \operatorname{lr}(c)
$$

some fixed K.

Choose $X=X_{N}$ st.
(1) $d(x, f \cdot x) \leq \tau(f)+1$
(2) $l(X)<\left(\frac{1}{k}\right)^{3 g-3} \delta \quad(\operatorname{Step} 1)$
from Wop pert I
tcollarlemma cost.
Choose c s.t. $\ell_{x}(c)=l(X)$
Will show $c, f^{-1}(c), f^{2}(c), \ldots, f^{-(39-3}(c)$ is a reduction sustem.
Have $l_{x}\left(f^{-i}(c)\right)=l_{f_{x}}(c) \stackrel{\downarrow}{\leq} K^{i} l(c)^{\ell}<\delta$ So the $c, f^{-1}(c), f^{-2}(c), \ldots, f^{-(3 g-3)}(c)$ are disjoint by collar lemma. Must repeat (only $3 g-3$ disjoint canes)!

Loxodromic $\Rightarrow p A$
Choose X sit.
$d(x, f \cdot x)=\tau(f)>0$.
Let $f=$ Teich geod $x — f(x)$

Claim: $f \cdot z=f$
Claim \Rightarrow

Let $h: X \rightarrow X$ Reich map in homotopy class of f.
Then h^{2} is a Teich map in homotopy class of f^{2}.
We have: Initial \& terminal gd's for h are equal.
If not: $d\left(X, f^{2} \cdot X\right)<2 d(X, f \cdot X)$

$$
0 \xrightarrow{f} 0 \xrightarrow{f} 0 \underset{\substack{\text { if init } \\ \neq \text { tam }}}{\substack{\text { in }}}
$$

Violates
By the yellow box: h, hence f is $p A$ with foliations from initial gd

Picture for $T_{c} \in \operatorname{Mod}_{o d}\left(T^{2}\right)$
" same foliations in T^{2}
\mid initial \neq Terminal \Rightarrow

Loxodromic $\Longrightarrow p A$
Choose X sit.

$$
d(x, f \cdot x)=\tau(f)>0 .
$$

Let $f=$ Reich geod $x \longrightarrow f(x)$

Claim: $f \cdot z=f$
Pf: Must rule out above picture.

violating $d(X, f \cdot X)=\tau(f)$
Indeed: purple path has length

$$
d(x, f \cdot x)
$$

Minimality of $X \Rightarrow f \cdot Y$ lies on f....

Some things about PA's
$f \mathrm{pA}$ with F_{u}, F_{s}, λ.
h commutes with f
$\Longrightarrow h$ preserves $\mathrm{F}_{\mathrm{u}}, \mathrm{F}_{s}$
$\Rightarrow h$ PA with same $\Longrightarrow h$ is a power of
foliations a root of f.
or h periodic (if F_{u}, F_{s}
have symmetries)
Centralizer of f is virtually cyclic.
lan Runnels seminar © 2 Writing assignment Dec 9.

Chap 14. pA Theory.
pseudo - Anosov
$\varphi \cdot \mathcal{F}_{u}=\lambda \mathcal{F}_{u}$
$\varphi \cdot \mathcal{F}_{s}=\lambda^{-1} \mathcal{F}_{s}$
NTC. $f \in \operatorname{Mod}(S)$
(1) periodic
(2) reducible
(3) PA

Today: constructions.
Construction \#1 Branched covers.
$P: M \rightarrow N$ is a branched cover if it is a cover over $N \backslash B, B$ small.
For surfaces: $B=$ finite set.
Example. $G \subset S,|G|<\infty$.

$p: S_{q} \rightarrow X$ branched cover.
Assume $X \approx\left(T^{2}, B\right)$.
Take $\varphi: T^{2} \rightarrow T^{2}$ Anosov.
Up to power, isotopy
φ fixes B. (periodic $\left.\begin{array}{c}\text { pis dense }\end{array}\right)$
Further power: φ lifts to S_{g}.
(lifting criterion)
The lift is $p A$. with
τ_{s}, σ_{u} lifts of foliations
in T^{2}. 娄採 x

Note: All resulting stretch factors are quadratic integers.

Construction \#2 Thurston's construction Pf. From $a, b \leadsto X=$ dual square complex.
The $a, b \subseteq S_{g}$ filling.
\exists sing Eud. structure and

With:
$\left.\rho(f) \quad f^{(i(a, b)} 1\right)$
$\rho(f)$ elliptic $\Leftrightarrow f$ periodic
$\rho(f)$ parabolic $\Leftrightarrow f$ reducible
$\rho(f)$ hyperbolic $\Leftrightarrow f p A$ e.g. $T_{a} T_{b}^{-1}$
Cor \exists pA's in $I\left(s_{g}\right)$. (take a, b sep)
a

$b \quad b \quad b \quad b$
T_{a} acts on End. structure.

$$
\text { by } \quad\left(\begin{array}{cc}
1 & -4 \\
0 & 1
\end{array}\right)
$$

Similar for Tb.
If $\rho(f)$ hyperbolic. \sim eigenvals λ, λ^{-1} 2 foliations
Those are stretch factor, foliations for f.
-There is a version with multicumes A, B.

- All resulting stretch factors totally real.

Tenner's construction
$T_{n m}, A=\left\{a_{1}, \ldots, a_{m}\right\} \quad a_{1}$

$$
B=\left\{b_{1}, \ldots, b_{n}\right\}
$$

filling multicurnes.
Any
$f=$ product of pos. powers of $T_{a i}$ \& neg powers of $T_{b i}$ s.t. each a_{i}, b_{i} appears at least once. is $p A$.

Penned: Do all pA have a power coming from this construction?

Shin-Strenner: No. The Galois conjugates of Tenner stretch factors all on S^{\prime}.

Construction \# 3 Homological criterion.
$A \in S_{P_{2 g} \mathbb{Z}} \Rightarrow$ char poly is manic \& palindromic
Why? roots come in pairs λ, λ^{-1}
So do sub: $x^{9} P\left(\frac{1}{x}\right)$
${ }^{5}$ Why? $A^{\top} \supset A=J \stackrel{A}{\Rightarrow} A^{\top} \sim A^{-1}$
Th mo (Casson-Bleiler, M-Spallone w/Bestrina) If char. poly of $\Psi(f)$ satisfies:
(1) symplectically fred
(2) not cyclotomic
(3) not poly in $t^{k}, k>1$.

Pf. Suppose f not pA.
f periodic $\Longrightarrow \psi(f)$ has root of 1 as eigenval.
\Rightarrow cyclotomic factor, violates 1 or 2 .
f a power.
f reducible, a power fixes a sep ane

Construction \#4 Kra's construction.

$$
\text { Push: } \pi_{1}\left(S_{g}\right) \rightarrow \operatorname{Mod}\left(S_{g .1}\right)
$$

The. Push (g) is $p A$ $\Longleftrightarrow \mathcal{J}$ filling
Pf. Enough to show: ∂ filling \Rightarrow Push(∂) does not fix any cure.

Suppose Push (a) $\stackrel{r^{h o}}{=} a$
Then could lift homotepy

cf. Dowdall's thesis.

Pseudo-Anosov theory
Part I. Stretch factors

Tho. $g \geqslant 2, f \in M_{\text {od }}\left(S_{g}\right) p A$.
$\lambda(f)$ is alg int of $\operatorname{deg} \leq 6 \mathrm{~g}-6$.
Pf. Show $\lambda(f)$ is eigenral. of \mathbb{Z} matrix of size $\leq 6 \mathrm{G}-6$.
Matrix comes from action on
$H_{1}(S, j 7)$ or subspace of
$H_{1}\left(\tilde{S}_{g} ; \mathbb{Z}\right) \quad \tilde{S}_{g}=\begin{gathered}\text { branched double } \\ \text { cover }\end{gathered}$ cover.

Pf. If \mathcal{F}_{u} orientable then $\left(F_{u}, \mu\right)$ is a 1 - form on Sg .

$\varphi \cdot \mathcal{F}_{u}=\lambda \mathcal{F}_{u} \Rightarrow \omega$ is an eigenv. for $\psi(f)$.
If F_{u} not orientable, pass to orient. double cover. \tilde{S}_{g} $\widetilde{S}_{g}=\left\{(p, v): p \in S_{g}, v\right.$ points along $\}$
2 - Fold cover, branched over odd sing. $\tilde{S}_{\text {g }}$ has bounded genus, lift\& apply pere case.
Q. Which alg. degrees occur for given S_{g} ?
Strenner: exactly

$$
\begin{aligned}
& 2,4,6, \ldots, 6 g-6 \\
& 3,5,7, \ldots, 3 g-4 \text { or } 3 g-3
\end{aligned}
$$

Q. What if you fix a subgy such as $I\left(S_{g}\right)$.

Fried's Conjecture. $\lambda \in \mathbb{R}$ is a stretch factor \Longleftrightarrow all alg. conj's have abs val in $(1 / \lambda, \lambda)$ except $\lambda, 1 / \lambda$. Pankau, Kenyon)

Spectrum of $M(S) \quad\{\log \lambda(f): f \in \operatorname{Mod}(S) p A\}$.
The. This is a closed, discrete subset of \mathbb{R}.
Pf. Set of alg. ints of deg $\leq N$ is discrete.
In particular, there is a smallest one.
Q. What is it? Only known $g=1,2$.

Tenner. Smallest $\log \lambda(f)$ in $\operatorname{Mod}\left(S_{g}\right)$ $\rightleftharpoons \frac{1}{g}$.
Farb-Leininger- M Smallest $\log \lambda(f)$ in $I\left(\mathrm{Sg}_{\mathrm{g}}\right) \leftrightharpoons 1$ Lanier-M Any proper

Thm. $\rho=$ any Riem. metric on S.
$\alpha=$ any closed curve.

$$
\lim _{n \rightarrow \infty} \sqrt[n]{l_{\rho}\left(f^{n}(\alpha)\right)}=\lambda
$$

i.e. $l_{\rho}\left(f^{n}(\alpha)\right) \sim \lambda^{n} \quad$ geantin

Thm. a, b any s.c.c. in S

$$
\lim _{n \rightarrow \infty} \sqrt[n]{i\left(f^{n}(a), b\right)}=\lambda \quad \text { i.e. } i\left(f^{n}(a), b\right) \sim \lambda^{n} \quad \text { tupology }
$$

Thm. $\alpha \in \pi_{1}(S)$

$$
\begin{aligned}
& n \rightarrow \infty \\
& \lim _{n \rightarrow \infty} \sqrt[n]{\left|f^{n}(\alpha)\right|}=\lambda \quad \text { i.e. }\left|f^{n}(\alpha)\right|^{b^{\text {word }} \text { length }} \sim \lambda^{n} \quad \begin{array}{l}
\text { group } \\
\text { theoy. }
\end{array} \text { dunamics } .
\end{aligned}
$$

Thmo. $\log \lambda=$ top. entropy of f.

Part II. Foliations

Poincare recurrence for foliations (\mathcal{F}, μ) meas. fol.
$L=\infty$ half leaf.
$\alpha=\operatorname{arc}$ transverse to F
$\alpha \cap L \neq \phi \Rightarrow|\alpha \cap L|=\infty$.
Pf. WLOG $L \& \alpha$ share endpt.

Choose small arc ε along new ∂.
Push along foliation.
\leadsto sweep out rectangle.
Can choose ε small enough So this rectangle never hits a singularity.
\Rightarrow If L never hits ∂ again. can push forever. CONTRAD.

Really using: Can cover S by finitely many charts like

Cor. f $p A \Rightarrow$ every leaf of F_{u} is dense.

Pf. $\tau=$ small are transverse to Fu_{u}

No closed leaves these swept out rectangles eventually return by Paine. rec.

The union of these rectangles is the whole surface (otherwise the ∂ is a reducing curve).

The. Tu is uniquely ergodic i.e. μ is unique up to scale.

Part III. Dynamics.

The. φ pA $\Rightarrow \varphi$ has dense orbit.

Pf. Claim. $U \neq \phi$, open, φ-invt
$\Longrightarrow U$ dense.
Assume WLOG φ fixes sing's...
Choose:

Apply powers of φ.

$$
x \rightarrow s
$$

J gets longer
$\Rightarrow U \varphi^{n}(J)$ dense.

$\Rightarrow \underbrace{\bigcup}_{n} \varphi^{n}(u)$ dense
u.
Now: Take $\left\{u_{i}\right\}$ countable basis for S.
Let $V_{i}=\bigcup_{n \in \mathbb{Z}} \varphi^{n}\left(u_{i}\right)$ satisfies claim. hence dense $\forall i$.
Bare category the $\Rightarrow \cap V_{i}$ dense

$$
\Longrightarrow \cap V_{i} \neq \phi \text {. say } x \in \cap
$$

$\Longrightarrow\left\{f^{i}(x)\right\}$ intersects every u_{i}

The, $\varphi p A \Rightarrow$ periodic pts dense.
Poincare Recurrence. $M=$ Finite meas. $s p$.
$T: M \rightarrow M$ meas pros.
PR. $\Rightarrow \quad \varphi^{n_{i}}(V) \cap V \neq \phi$.

$$
A \subseteq M \text { pos meas. }
$$

Then for are. $x \in A \quad \exists$ inc. seq n_{i} st. $T^{n i}(x) \in \mathcal{A}$.
(ᄌ)A ${ }^{M}$
Pf. Choose std rectangles

Chap 15. Thurston's Proof
Reference. Thurstan's Work on Surfaces.
Fathi, Laudenbach,
Poénoru
NTC. $f \in \operatorname{Mod}(S)$ is
(1) periadic
(2) reducible
(3) pseudo-Ansor

Setup. $\&=\{$ caines in 5$\} /$ istopy

$$
\text { Teich }(s) \hookrightarrow P \mathbb{R}^{8}
$$

$$
\text { fors } A \rightarrow R
$$

$P M F(S) \leftrightharpoons P \mathbb{R}^{d}$
Thm.
$P M F(S) \cong S^{\operatorname{din}-R_{i} h(s)-1}$
Teich $(S) \cup P M F(S)$ is
a closed ball, on which
$M_{o d}(s)$ acts continuosly.

The. $P M F(S) \cong S^{\operatorname{dim} T \text { Tech }(s)-1}$
Teich(S) $\cup P M F(S)$ is a closed ball, on which
$\operatorname{Mod}(S)$ acts continuously.
Pf of NTC. Brouwer $\Rightarrow\{$ fixes some X in the ball.
$X \in \operatorname{Teich}(S) \Longrightarrow f$ periodic.
$X \in$ PMF \& X has closed leaf \Rightarrow reducible. $\& X$ has no closed leaf \& $\lambda=1 \Longrightarrow$ periodic
$\& \lambda>1 \Rightarrow p A$

