Conway mutation and alternating links

Josh Greene
Tech Topology Conference
Georgia Tech

December 11, 2011

Mutation was invented by John Horton Conway.

Mutation was invented by John Horton Conway.

Mutation was invented by John Horton Conway.

It is a basic operation for transforming one link $L \subset S^{3}$ into another $L^{\prime} \subset S^{3}$.

Josh Greene
Conway mutation and alternating links

Locate a Conway sphere $C \subset S^{3}$, i.e. $C \pitchfork L,|C \cap L|=4$.

Locate a Conway sphere $C \subset S^{3}$, i.e. $C \pitchfork L,|C \cap L|=4$.

Locate a Conway sphere $C \subset S^{3}$, i.e. $C \pitchfork L,|C \cap L|=4$.

Cut along C, rotate 180° about an axis disjoint from $C \cap L$ that preserves $C \cap L$ setwise, and reglue to produce a new link L^{\prime}.

Locate a Conway sphere $C \subset S^{3}$, i.e. $C \pitchfork L,|C \cap L|=4$.

Cut along C, rotate 180° about an axis disjoint from $C \cap L$ that preserves $C \cap L$ setwise, and reglue to produce a new link L^{\prime}.

Locate a Conway sphere $C \subset S^{3}$, i.e. $C \pitchfork L,|C \cap L|=4$.

Cut along C, rotate 180° about an axis disjoint from $C \cap L$ that preserves $C \cap L$ setwise, and reglue to produce a new link L^{\prime}.

Mutation preserves a number of well-known link invariants:

- the HOMFLY polynomial;
- the signature (for knots);
- hyperbolicity / hyperbolic volume (Ruberman);
- the odd Khovanov homology (Bloom);
- the homeomorphism type of $\Sigma(L)$, the double-cover of S^{3} branched along L (Viro).

There do exist non-mutant links with homeomorphic branched double-covers, e.g. $P(-2,3,7)$ and $T(3,7)$ (distinct HOMFLY polynomials).

Theorem 1 (G)

Given a pair of connected, reduced alternating diagrams D, D^{\prime} for a pair of links L, L^{\prime}, the following assertions are equivalent:

Theorem 1 (G)

Given a pair of connected, reduced alternating diagrams D, D^{\prime} for a pair of links L, L^{\prime}, the following assertions are equivalent:

1. D and D^{\prime} are mutants;

Theorem 1 (G)

Given a pair of connected, reduced alternating diagrams D, D^{\prime} for a pair of links L, L^{\prime}, the following assertions are equivalent:

1. D and D^{\prime} are mutants;
2. L and L^{\prime} are mutants;

Theorem 1 (G)

Given a pair of connected, reduced alternating diagrams D, D^{\prime} for a pair of links L, L^{\prime}, the following assertions are equivalent:

1. D and D^{\prime} are mutants;
2. L and L^{\prime} are mutants;
3. $\Sigma(L) \cong \Sigma\left(L^{\prime}\right) ;$ and

Theorem 1 (G)

Given a pair of connected, reduced alternating diagrams D, D^{\prime} for a pair of links L, L^{\prime}, the following assertions are equivalent:

1. D and D^{\prime} are mutants;
2. L and L^{\prime} are mutants;
3. $\Sigma(L) \cong \Sigma\left(L^{\prime}\right) ;$ and
4. $\Sigma(L)$ and $\Sigma\left(L^{\prime}\right)$ have the same Heegaard Floer d-invariants.

Theorem 1 (G)

Given a pair of connected, reduced alternating diagrams D, D^{\prime} for a pair of links L, L^{\prime}, the following assertions are equivalent:

1. D and D^{\prime} are mutants;
2. L and L^{\prime} are mutants;
3. $\Sigma(L) \cong \Sigma\left(L^{\prime}\right) ;$ and
4. $\Sigma(L)$ and $\Sigma\left(L^{\prime}\right)$ have the same Heegaard Floer d-invariants.

Note. 1. $\Longrightarrow 2 . \Longrightarrow 3 . \Longrightarrow 4$. are immediate;
$2 . \Longrightarrow 1$. follows from work of Menasco; previously known to hold for two-bridge links (Reidemeister, Schubert).

An alternating diagram D gives rise to a Tait graph G :

An alternating diagram D gives rise to a Tait graph G :

An alternating diagram D gives rise to a Tait graph G :

An alternating diagram D gives rise to a Tait graph G :

An alternating diagram D gives rise to a Tait graph G :

Mutating D has a corresponding effect on G.

Mutating D has a corresponding effect on G.

Here the isomorphism type of the Tait graph has not changed, while its planar embedding has.

Here the isomorphism type of the Tait graph has changed.

Here the isomorphism type of the Tait graph has changed.

However, its 2-isomorphism type has not.

A 2-isomorphism between graphs G, G^{\prime} is a cycle-preserving bijection $E(G) \xrightarrow{\sim} E\left(G^{\prime}\right)$.

A 2-isomorphism between graphs G, G^{\prime} is a cycle-preserving bijection $E(G) \xrightarrow{\sim} E\left(G^{\prime}\right)$.

A 2-isomorphism between graphs G, G^{\prime} is a cycle-preserving bijection $E(G) \xrightarrow{\sim} E\left(G^{\prime}\right)$.

The highlighted cycles clearly get sent to one another since they are supported within the two individual "halves".

This one is more interesting since it crosses the 2 -vertex cutset.

Proposition 1

The Tait graph construction establishes a bijection
$\frac{\text { \{alternating link diagrams }\}}{\text { mutation }} \xrightarrow[\rightarrow]{\sim} \frac{\{\text { planar graphs }\}}{2 \text {-isomorphism }}$.

Proposition 1

The Tait graph construction establishes a bijection

$$
\frac{\{\text { alternating link diagrams }\}}{\text { mutation }} \xrightarrow[\rightarrow]{\sim} \frac{\{\text { planar graphs }\}}{2 \text {-isomorphism }} .
$$

Proof sketch.

- Elementary mutations in diagrams effect flips and switches in the Tait graphs, and vice versa.
- A pair of plane drawings of a planar graph are related by flips (Whitney, Mohar-Thomassen).
- A pair of 2-isomorphic graphs are related by
 switches (Whitney).

A graph G gives rise to a flow lattice $\mathcal{F}(G)$:

A graph G gives rise to a flow lattice $\mathcal{F}(G)$:

- orient $E(G)$ arbitrarily;

A graph G gives rise to a flow lattice $\mathcal{F}(G)$:

- orient $E(G)$ arbitrarily;
- form the chain complex $0 \rightarrow C_{1}(G ; \mathbb{Z}) \xrightarrow{\partial} C_{0}(G ; \mathbb{Z}) \rightarrow 0 ;$

A graph G gives rise to a flow lattice $\mathcal{F}(G)$:

- orient $E(G)$ arbitrarily;
- form the chain complex $0 \rightarrow C_{1}(G ; \mathbb{Z}) \xrightarrow{\partial} C_{0}(G ; \mathbb{Z}) \rightarrow 0$;
- declare $E(G)$ to form an orthonormal basis of $C_{1}(G ; \mathbb{Z})$;

A graph G gives rise to a flow lattice $\mathcal{F}(G)$:

- orient $E(G)$ arbitrarily;
- form the chain complex $0 \rightarrow C_{1}(G ; \mathbb{Z}) \xrightarrow{\partial} C_{0}(G ; \mathbb{Z}) \rightarrow 0$;
- declare $E(G)$ to form an orthonormal basis of $C_{1}(G ; \mathbb{Z})$;
- set $\mathcal{F}(G)=\operatorname{ker}(\partial)$.

A graph G gives rise to a flow lattice $\mathcal{F}(G)$:

- orient $E(G)$ arbitrarily;
- form the chain complex $0 \rightarrow C_{1}(G ; \mathbb{Z}) \xrightarrow{\partial} C_{0}(G ; \mathbb{Z}) \rightarrow 0$;
- declare $E(G)$ to form an orthonormal basis of $C_{1}(G ; \mathbb{Z})$;
- set $\mathcal{F}(G)=\operatorname{ker}(\partial)$.

$$
\begin{aligned}
& x \quad \in \mathcal{F}(G) \\
& |x|=4
\end{aligned}
$$

A graph G gives rise to a flow lattice $\mathcal{F}(G)$:

- orient $E(G)$ arbitrarily;
- form the chain complex $0 \rightarrow C_{1}(G ; \mathbb{Z}) \xrightarrow{\partial} C_{0}(G ; \mathbb{Z}) \rightarrow 0$;
- declare $E(G)$ to form an orthonormal basis of $C_{1}(G ; \mathbb{Z})$;
- set $\mathcal{F}(G)=\operatorname{ker}(\partial)$.

$$
\begin{aligned}
& y \in \mathcal{F}(G) \\
& \quad|y|=5
\end{aligned}
$$

A graph G gives rise to a flow lattice $\mathcal{F}(G)$:

- orient $E(G)$ arbitrarily;
- form the chain complex $0 \rightarrow C_{1}(G ; \mathbb{Z}) \xrightarrow{\partial} C_{0}(G ; \mathbb{Z}) \rightarrow 0$;
- declare $E(G)$ to form an orthonormal basis of $C_{1}(G ; \mathbb{Z})$;
- set $\mathcal{F}(G)=\operatorname{ker}(\partial)$.

$$
\begin{gathered}
x, y \in \mathcal{F}(G) \\
|x|=4,|y|=5 \\
\langle x, y\rangle=3
\end{gathered}
$$

A positive definite, integral lattice Λ gives rise to a d-invariant:

A positive definite, integral lattice Λ gives rise to a d-invariant:

- \langle,$\rangle , the pairing; |\lambda|:=\langle\lambda, \lambda\rangle$, the norm;

A positive definite, integral lattice Λ gives rise to a d-invariant:

- \langle,$\rangle , the pairing; |\lambda|:=\langle\lambda, \lambda\rangle$, the norm;
- $\Lambda^{*}=\operatorname{Hom}(\Lambda, \mathbb{Z}) \subset \Lambda \otimes \mathbb{Q}$, the dual lattice;

A positive definite, integral lattice Λ gives rise to a d-invariant:
$-\langle$,$\rangle , the pairing; |\lambda|:=\langle\lambda, \lambda\rangle$, the norm;

- $\Lambda^{*}=\operatorname{Hom}(\Lambda, \mathbb{Z}) \subset \Lambda \otimes \mathbb{Q}$, the dual lattice;
- $\bar{\Lambda}=\Lambda^{*} / \Lambda$, the discriminant group;

A positive definite, integral lattice Λ gives rise to a d-invariant:
$-\langle$,$\rangle , the pairing; |\lambda|:=\langle\lambda, \lambda\rangle$, the norm;

- $\Lambda^{*}=\operatorname{Hom}(\Lambda, \mathbb{Z}) \subset \Lambda \otimes \mathbb{Q}$, the dual lattice;
- $\bar{\Lambda}=\Lambda^{*} / \Lambda$, the discriminant group;
- $\operatorname{Char}(\Lambda) \subset \Lambda^{*}$, the characteristic coset:

$$
\operatorname{Char}(\Lambda)=\left\{\chi \in \Lambda^{*}|\langle\chi, \lambda\rangle \equiv| \lambda \mid(\bmod 2), \forall \lambda \in \Lambda\right\}
$$

A positive definite, integral lattice Λ gives rise to a d-invariant:
$-\langle$,$\rangle , the pairing; |\lambda|:=\langle\lambda, \lambda\rangle$, the norm;

- $\Lambda^{*}=\operatorname{Hom}(\Lambda, \mathbb{Z}) \subset \Lambda \otimes \mathbb{Q}$, the dual lattice;
- $\bar{\Lambda}=\Lambda^{*} / \Lambda$, the discriminant group;
- $\operatorname{Char}(\Lambda) \subset \Lambda^{*}$, the characteristic coset:

$$
\operatorname{Char}(\Lambda)=\left\{\chi \in \Lambda^{*}|\langle\chi, \lambda\rangle \equiv| \lambda \mid(\bmod 2), \forall \lambda \in \Lambda\right\}
$$

- $C(\Lambda)=\operatorname{Char}(\Lambda)(\bmod 2 \Lambda)$, a torsor over $\bar{\Lambda}$;

A positive definite, integral lattice Λ gives rise to a d-invariant:
$-\langle$,$\rangle , the pairing; |\lambda|:=\langle\lambda, \lambda\rangle$, the norm;

- $\Lambda^{*}=\operatorname{Hom}(\Lambda, \mathbb{Z}) \subset \Lambda \otimes \mathbb{Q}$, the dual lattice;
- $\bar{\Lambda}=\Lambda^{*} / \Lambda$, the discriminant group;
- $\operatorname{Char}(\Lambda) \subset \Lambda^{*}$, the characteristic coset:

$$
\operatorname{Char}(\Lambda)=\left\{\chi \in \Lambda^{*}|\langle\chi, \lambda\rangle \equiv| \lambda \mid(\bmod 2), \forall \lambda \in \Lambda\right\}
$$

- $C(\Lambda)=\operatorname{Char}(\Lambda)(\bmod 2 \Lambda)$, a torsor over $\bar{\Lambda}$;
- $d(\chi+2 \Lambda):=\frac{1}{4} \min \left\{\left|\chi^{\prime}\right|-\operatorname{rk}(\Lambda) \mid \chi^{\prime} \in \chi+2 \Lambda\right\} \in \mathbb{Q}$.

A positive definite, integral lattice Λ gives rise to a d-invariant:

- \langle,$\rangle , the pairing; |\lambda|:=\langle\lambda, \lambda\rangle$, the norm;
- $\Lambda^{*}=\operatorname{Hom}(\Lambda, \mathbb{Z}) \subset \Lambda \otimes \mathbb{Q}$, the dual lattice;
- $\bar{\Lambda}=\Lambda^{*} / \Lambda$, the discriminant group;
- $\operatorname{Char}(\Lambda) \subset \Lambda^{*}$, the characteristic coset:

$$
\operatorname{Char}(\Lambda)=\left\{\chi \in \Lambda^{*}|\langle\chi, \lambda\rangle \equiv| \lambda \mid(\bmod 2), \forall \lambda \in \Lambda\right\}
$$

- $C(\Lambda)=\operatorname{Char}(\Lambda)(\bmod 2 \Lambda)$, a torsor over $\bar{\Lambda}$;
- $d(\chi+2 \Lambda):=\frac{1}{4} \min \left\{\left|\chi^{\prime}\right|-\operatorname{rk}(\Lambda) \mid \chi^{\prime} \in \chi+2 \Lambda\right\} \in \mathbb{Q}$.

The pair $(C(\Lambda), d)$ is the d-invariant of Λ. In short, it records the minimal norms of characteristic covectors in the various equivalence classes $(\bmod 2 \Lambda)$.

Let D denote an alternating diagram, L the link it presents, G its Tait graph, and X the double-cover of D^{4} branched along a push-in of the black spanning surface for D.

Let D denote an alternating diagram, L the link it presents, G its Tait graph, and X the double-cover of D^{4} branched along a push-in of the black spanning surface for D.

- $\partial X \cong \Sigma(L) ;$

Let D denote an alternating diagram, L the link it presents, G its Tait graph, and X the double-cover of D^{4} branched along a push-in of the black spanning surface for D.

- $\partial X \cong \Sigma(L)$;
- $\left(H_{2}(X ; \mathbb{Z}), Q_{X}\right) \cong \mathcal{F}(G) ;$

Let D denote an alternating diagram, L the link it presents, G its Tait graph, and X the double-cover of D^{4} branched along a push-in of the black spanning surface for D.

- $\partial X \cong \Sigma(L)$;
- $\left(H_{2}(X ; \mathbb{Z}), Q_{X}\right) \cong \mathcal{F}(G)$;
- $\operatorname{Spin}^{\mathrm{c}}(X) \xrightarrow{\sim} \operatorname{Char}(\mathcal{F}(G))$;

Let D denote an alternating diagram, L the link it presents, G its Tait graph, and X the double-cover of D^{4} branched along a push-in of the black spanning surface for D.

- $\partial X \cong \Sigma(L)$;
- $\left(H_{2}(X ; \mathbb{Z}), Q_{X}\right) \cong \mathcal{F}(G)$;
- $\operatorname{Spin}^{\mathrm{c}}(X) \xrightarrow{\sim} \operatorname{Char}(\mathcal{F}(G))$;
- $\operatorname{Spin}^{\mathrm{c}}(\Sigma(L)) \xrightarrow{\sim} C(\mathcal{F}(G))$.

Let D denote an alternating diagram, L the link it presents, G its Tait graph, and X the double-cover of D^{4} branched along a push-in of the black spanning surface for D.

- $\partial X \cong \Sigma(L)$;
- $\left(H_{2}(X ; \mathbb{Z}), Q_{X}\right) \cong \mathcal{F}(G) ;$
- $\operatorname{Spin}^{\mathrm{c}}(X) \xrightarrow{\sim} \operatorname{Char}(\mathcal{F}(G))$;
- $\operatorname{Spin}^{c}(\Sigma(L)) \xrightarrow{\sim} C(\mathcal{F}(G))$.

Theorem 2 (Ozsváth-Szabó)

The space $\Sigma(L)$ is an L-space, and

$$
\left(\operatorname{Spin}^{\mathrm{c}}(\Sigma(L)), d\right) \xrightarrow{\sim}(C(\mathcal{F}(G)),-d) .
$$

Note. For an L-space $Y,\left(\operatorname{Spin}^{\mathrm{c}}(Y), d\right)$ determines $\widehat{H F}(Y)$ as an absolutely graded, relatively $\operatorname{spin}^{\mathrm{c}}$-graded group

Question

Given a pair of graphs G, G^{\prime} (not necessarily planar), when is it the case that $(C(\mathcal{F}(G)), d) \xrightarrow{\sim}\left(C\left(\mathcal{F}\left(G^{\prime}\right), d^{\prime}\right)\right.$?

Question

Given a pair of graphs G, G^{\prime} (not necessarily planar), when is it the case that $(C(\mathcal{F}(G)), d) \xrightarrow{\sim}\left(C\left(\mathcal{F}\left(G^{\prime}\right), d^{\prime}\right)\right.$?

Theorem 3 (G)

Let G, G^{\prime} denote a pair of graphs. The following assertions are equivalent:

Question

Given a pair of graphs G, G^{\prime} (not necessarily planar), when is it the case that $(C(\mathcal{F}(G)), d) \xrightarrow{\sim}\left(C\left(\mathcal{F}\left(G^{\prime}\right), d^{\prime}\right)\right.$?

Theorem 3 (G)

Let G, G^{\prime} denote a pair of graphs. The following assertions are equivalent:

$$
\text { 1. }(C(\mathcal{F}(G)), d) \xrightarrow{\sim}\left(C\left(\mathcal{F}\left(G^{\prime}\right)\right), d^{\prime}\right) \text {. }
$$

Question

Given a pair of graphs G, G^{\prime} (not necessarily planar), when is it the case that $(C(\mathcal{F}(G)), d) \xrightarrow{\sim}\left(C\left(\mathcal{F}\left(G^{\prime}\right), d^{\prime}\right)\right.$?

Theorem 3 (G)

Let G, G^{\prime} denote a pair of graphs. The following assertions are equivalent:

$$
\begin{aligned}
& \text { 1. }(C(\mathcal{F}(G)), d) \xrightarrow{\sim}\left(C\left(\mathcal{F}\left(G^{\prime}\right)\right), d^{\prime}\right) \text {. } \\
& \text { 2. } \mathcal{F}(G) \cong \mathcal{F}\left(G^{\prime}\right) \text {; }
\end{aligned}
$$

Question

Given a pair of graphs G, G^{\prime} (not necessarily planar), when is it the case that $(C(\mathcal{F}(G)), d) \xrightarrow{\sim}\left(C\left(\mathcal{F}\left(G^{\prime}\right), d^{\prime}\right)\right.$?

Theorem 3 (G)

Let G, G^{\prime} denote a pair of graphs. The following assertions are equivalent:

1. $(C(\mathcal{F}(G)), d) \xrightarrow{\sim}\left(C\left(\mathcal{F}\left(G^{\prime}\right)\right), d^{\prime}\right)$.
2. $\mathcal{F}(G) \cong \mathcal{F}\left(G^{\prime}\right)$;
3. G and G^{\prime} are 2-isomorphic;

Question

Given a pair of graphs G, G^{\prime} (not necessarily planar), when is it the case that $(C(\mathcal{F}(G)), d) \xrightarrow{\sim}\left(C\left(\mathcal{F}\left(G^{\prime}\right), d^{\prime}\right)\right.$?

Theorem 3 (G)

Let G, G^{\prime} denote a pair of graphs. The following assertions are equivalent:

1. $(C(\mathcal{F}(G)), d) \xrightarrow{\sim}\left(C\left(\mathcal{F}\left(G^{\prime}\right)\right), d^{\prime}\right)$.
2. $\mathcal{F}(G) \cong \mathcal{F}\left(G^{\prime}\right)$;
3. G and G^{\prime} are 2-isomorphic;

Note. 3. \Longrightarrow 2. (Bacher-de la Harpe-Nagnibeda)
$2 . \Longrightarrow 3$. analogue of the Torelli theorem for a finite graph (Artamkin, Caporaso-Viviani, Su-Wagner)

Proof of Theorem 1.

It stands to establish $4 . \Longrightarrow 1$.

Proof of Theorem 1.

It stands to establish $4 . \Longrightarrow 1$.

- Suppose $\left(\operatorname{Spin}^{\mathrm{c}}(\Sigma(L)), d\right) \xrightarrow{\sim}\left(\operatorname{Spin}^{\mathrm{c}}\left(\Sigma\left(L^{\prime}\right)\right), d^{\prime}\right)$.

Proof of Theorem 1.

It stands to establish $4 . \Longrightarrow 1$.

- Suppose $\left(\operatorname{Spin}^{\mathrm{c}}(\Sigma(L)), d\right) \xrightarrow{\sim}\left(\operatorname{Spin}^{\mathrm{c}}\left(\Sigma\left(L^{\prime}\right)\right), d^{\prime}\right)$.
- $(C(\mathcal{F}(G)), d) \xrightarrow{\sim}\left(C\left(\mathcal{F}\left(G^{\prime}\right), d^{\prime}\right)\right.$ (Thm.2).

Proof of Theorem 1.

It stands to establish $4 . \Longrightarrow 1$.

- Suppose $\left(\operatorname{Spin}^{\mathrm{c}}(\Sigma(L)), d\right) \xrightarrow{\sim}\left(\operatorname{Spin}^{\mathrm{c}}\left(\Sigma\left(L^{\prime}\right)\right), d^{\prime}\right)$.
- $(C(\mathcal{F}(G)), d) \xrightarrow{\sim}\left(C\left(\mathcal{F}\left(G^{\prime}\right), d^{\prime}\right)\right.$ (Thm.2).
- G and G^{\prime} are 2-isomorphic (Thm.3).

Proof of Theorem 1.

It stands to establish $4 . \Longrightarrow 1$.

- Suppose $\left(\operatorname{Spin}^{\mathrm{c}}(\Sigma(L)), d\right) \xrightarrow{\sim}\left(\operatorname{Spin}^{\mathrm{c}}\left(\Sigma\left(L^{\prime}\right)\right), d^{\prime}\right)$.
- $(C(\mathcal{F}(G)), d) \xrightarrow{\sim}\left(C\left(\mathcal{F}\left(G^{\prime}\right), d^{\prime}\right)\right.$ (Thm.2).
- G and G^{\prime} are 2-isomorphic (Thm.3).
- D and D^{\prime} are mutants (Prop.1).

Proof of Theorem 3.

Josh Greene
Conway mutation and alternating links

Proof of Theorem 3.

- The sublattice $\mathcal{F}(G) \subset C_{1}(G ; \mathbb{Z})$ is complementary to $\mathcal{C}(G)$, the lattice of integral cuts on G.

Proof of Theorem 3.

- The sublattice $\mathcal{F}(G) \subset C_{1}(G ; \mathbb{Z})$ is complementary to $\mathcal{C}(G)$, the lattice of integral cuts on G.
- This implies that $\left(C(\mathcal{F}(G)), d_{\mathcal{F}}\right) \xrightarrow{\sim}\left(C(\mathcal{C}(G)),-d_{\mathcal{C}}\right)$.

Proof of Theorem 3.

- The sublattice $\mathcal{F}(G) \subset C_{1}(G ; \mathbb{Z})$ is complementary to $\mathcal{C}(G)$, the lattice of integral cuts on G.
- This implies that $\left(C(\mathcal{F}(G)), d_{\mathcal{F}}\right) \xrightarrow{\sim}\left(C(\mathcal{C}(G)),-d_{\mathcal{C}}\right)$.
- Now assume that $\left(C(\mathcal{F}(G)), d_{\mathcal{F}}\right) \xrightarrow{\sim}\left(C\left(\mathcal{F}\left(G^{\prime}\right)\right), d_{\mathcal{F}}^{\prime}\right)$.

Proof of Theorem 3.

- The sublattice $\mathcal{F}(G) \subset C_{1}(G ; \mathbb{Z})$ is complementary to $\mathcal{C}(G)$, the lattice of integral cuts on G.
- This implies that $\left(C(\mathcal{F}(G)), d_{\mathcal{F}}\right) \xrightarrow{\sim}\left(C(\mathcal{C}(G)),-d_{\mathcal{C}}\right)$.
- Now assume that $\left(C(\mathcal{F}(G)), d_{\mathcal{F}}\right) \xrightarrow{\sim}\left(C\left(\mathcal{F}\left(G^{\prime}\right)\right), d_{\mathcal{F}}^{\prime}\right)$.
- We obtain a map $\varphi:\left(C(\mathcal{F}(G)), d_{\mathcal{F}}\right) \xrightarrow{\sim}\left(C\left(\mathcal{C}\left(G^{\prime}\right)\right),-d_{\mathcal{C}}^{\prime}\right)$.

Proof of Theorem 3.

- The sublattice $\mathcal{F}(G) \subset C_{1}(G ; \mathbb{Z})$ is complementary to $\mathcal{C}(G)$, the lattice of integral cuts on G.
- This implies that $\left(C(\mathcal{F}(G)), d_{\mathcal{F}}\right) \xrightarrow{\sim}\left(C(\mathcal{C}(G)),-d_{\mathcal{C}}\right)$.
- Now assume that $\left(C(\mathcal{F}(G)), d_{\mathcal{F}}\right) \xrightarrow{\sim}\left(C\left(\mathcal{F}\left(G^{\prime}\right)\right), d_{\mathcal{F}}^{\prime}\right)$.
- We obtain a map $\varphi:\left(C(\mathcal{F}(G)), d_{\mathcal{F}}\right) \xrightarrow{\sim}\left(C\left(\mathcal{C}\left(G^{\prime}\right)\right),-d_{\mathcal{C}}^{\prime}\right)$.
- This enables us to glue $\mathcal{F}(G)$ and $\mathcal{C}\left(G^{\prime}\right)$:

$$
\Lambda=\mathcal{F}(G) \oplus_{\varphi} \mathcal{C}\left(G^{\prime}\right):=\left\{(x, y) \in \mathcal{F}\left(G^{\prime}\right)^{*} \oplus \mathcal{C}(G)^{*} \mid \bar{y}=\varphi(\bar{x})\right\}
$$

Proof of Theorem 3.

- The sublattice $\mathcal{F}(G) \subset C_{1}(G ; \mathbb{Z})$ is complementary to $\mathcal{C}(G)$, the lattice of integral cuts on G.
- This implies that $\left(C(\mathcal{F}(G)), d_{\mathcal{F}}\right) \xrightarrow{\sim}\left(C(\mathcal{C}(G)),-d_{\mathcal{C}}\right)$.
- Now assume that $\left(C(\mathcal{F}(G)), d_{\mathcal{F}}\right) \xrightarrow{\sim}\left(C\left(\mathcal{F}\left(G^{\prime}\right)\right), d_{\mathcal{F}}^{\prime}\right)$.
- We obtain a map $\varphi:\left(C(\mathcal{F}(G)), d_{\mathcal{F}}\right) \xrightarrow{\sim}\left(C\left(\mathcal{C}\left(G^{\prime}\right)\right),-d_{\mathcal{C}}^{\prime}\right)$.
- This enables us to glue $\mathcal{F}(G)$ and $\mathcal{C}\left(G^{\prime}\right)$:

$$
\Lambda=\mathcal{F}(G) \oplus_{\varphi} \mathcal{C}\left(G^{\prime}\right):=\left\{(x, y) \in \mathcal{F}\left(G^{\prime}\right)^{*} \oplus \mathcal{C}(G)^{*} \mid \bar{y}=\varphi(\bar{x})\right\}
$$

- Λ is an integral, positive definite, unimodular lattice.

Proof of Theorem 3.

- The sublattice $\mathcal{F}(G) \subset C_{1}(G ; \mathbb{Z})$ is complementary to $\mathcal{C}(G)$, the lattice of integral cuts on G.
- This implies that $\left(C(\mathcal{F}(G)), d_{\mathcal{F}}\right) \xrightarrow{\sim}\left(C(\mathcal{C}(G)),-d_{\mathcal{C}}\right)$.
- Now assume that $\left(C(\mathcal{F}(G)), d_{\mathcal{F}}\right) \xrightarrow{\sim}\left(C\left(\mathcal{F}\left(G^{\prime}\right)\right), d_{\mathcal{F}}^{\prime}\right)$.
- We obtain a map $\varphi:\left(C(\mathcal{F}(G)), d_{\mathcal{F}}\right) \xrightarrow{\sim}\left(C\left(\mathcal{C}\left(G^{\prime}\right)\right),-d_{\mathcal{C}}^{\prime}\right)$.
- This enables us to glue $\mathcal{F}(G)$ and $\mathcal{C}\left(G^{\prime}\right)$:

$$
\Lambda=\mathcal{F}(G) \oplus_{\varphi} \mathcal{C}\left(G^{\prime}\right):=\left\{(x, y) \in \mathcal{F}\left(G^{\prime}\right)^{*} \oplus \mathcal{C}(G)^{*} \mid \bar{y}=\varphi(\bar{x})\right\}
$$

- Λ is an integral, positive definite, unimodular lattice.
- By construction, its unique d-invariant vanishes.

Proof of Theorem $3\left(\right.$ cont $\left.^{d}\right)$.

Proof of Theorem $3\left(\right.$ cont $\left.^{d}\right)$.

- By a theorem of Elkies, it follows that $\Lambda \cong \mathbb{Z}^{n}$ (i.e. Λ admits an orthonormal basis \mathcal{B}).

Proof of Theorem $3\left(\operatorname{cont}^{d}\right)$.

- By a theorem of Elkies, it follows that $\Lambda \cong \mathbb{Z}^{n}$ (i.e. Λ admits an orthonormal basis \mathcal{B}).

- A combinatorial argument establishes an isometry $C_{1}(G ; \mathbb{Z}) \xrightarrow{\sim} \Lambda$ respecting the two embeddings of $\mathcal{F}(G)$, and similarly for $C_{1}\left(G^{\prime} ; \mathbb{Z}\right)$ w.r.t. $\mathcal{C}\left(G^{\prime}\right)$.

Proof of Theorem 3 (cont ${ }^{d}$).

- By a theorem of Elkies, it follows that $\Lambda \cong \mathbb{Z}^{n}$ (i.e. Λ admits an orthonormal basis \mathcal{B}).

- A combinatorial argument establishes an isometry $C_{1}(G ; \mathbb{Z}) \xrightarrow{\sim} \Lambda$ respecting the two embeddings of $\mathcal{F}(G)$, and similarly for $C_{1}\left(G^{\prime} ; \mathbb{Z}\right)$ w.r.t. $\mathcal{C}\left(G^{\prime}\right)$.
- We obtain a composite map $f: E(G) \xrightarrow{\sim} \mathcal{B} \xrightarrow{\sim} E\left(G^{\prime}\right)$.

Proof of Theorem 3 (cont ${ }^{d}$).

- By a theorem of Elkies, it follows that $\Lambda \cong \mathbb{Z}^{n}$ (i.e. Λ admits an orthonormal basis \mathcal{B}).

- A combinatorial argument establishes an isometry $C_{1}(G ; \mathbb{Z}) \xrightarrow{\sim} \Lambda$ respecting the two embeddings of $\mathcal{F}(G)$, and similarly for $C_{1}\left(G^{\prime} ; \mathbb{Z}\right)$ w.r.t. $\mathcal{C}\left(G^{\prime}\right)$.
- We obtain a composite map $f: E(G) \xrightarrow{\sim} \mathcal{B} \xrightarrow{\sim} E\left(G^{\prime}\right)$.
- Since $\mathcal{F}(G)$ and $\mathcal{C}\left(G^{\prime}\right)$ are complementary within Λ, it follows that f is a 2 -isomorphism.

The main theorem asserts that within the class of alternating links, the d-invariant of the branched double-cover is a complete invariant of the mutation type.

The main theorem asserts that within the class of alternating links, the d-invariant of the branched double-cover is a complete invariant of the mutation type.

Conjecture

If $\Sigma(L) \cong \Sigma\left(L^{\prime}\right)$, then L and L^{\prime} are both alternating or both non-alternating.

The main theorem asserts that within the class of alternating links, the d-invariant of the branched double-cover is a complete invariant of the mutation type.

Conjecture

If $\Sigma(L) \cong \Sigma\left(L^{\prime}\right)$, then L and L^{\prime} are both alternating or both non-alternating.

Question

Is there an analogous complete invariant of the isotopy type within the class of alternating links? Combining $d(\Sigma(L))$ and $\tau(\widetilde{L} \subset \Sigma(L))$, perhaps?

Cf. the Menasco-Thistlethwaite theorem: two reduced, alternating diagrams of a link differ by a sequence of flypes.

Mutation of Conway horned spheres:

Credits: Simon Fraser (Conway), wikipedia (Tait), IAS (Whitney), Mariana Cook (Elkies)

