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Mutation was invented by John Horton Conway.

It is a basic operation for transforming one link L ⊂ S3 into
another L′ ⊂ S3.
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L

C

Cut along C, rotate 180◦ about an axis disjoint from C ∩L that
preserves C ∩ L setwise, and reglue to produce a new link L′.
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Locate a Conway sphere C ⊂ S3, i.e. C t L, |C ∩ L| = 4.
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Locate a Conway sphere C ⊂ S3, i.e. C t L, |C ∩ L| = 4.

L

C

π

Cut along C, rotate 180◦ about an axis disjoint from C ∩L that
preserves C ∩ L setwise, and reglue to produce a new link L′.
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Locate a Conway sphere C ⊂ S3, i.e. C t L, |C ∩ L| = 4.

L

C

π

µz

L′

Cut along C, rotate 180◦ about an axis disjoint from C ∩L that
preserves C ∩ L setwise, and reglue to produce a new link L′.
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Mutation preserves a number of well-known link invariants:

I the HOMFLY polynomial;
I the signature (for knots);
I hyperbolicity / hyperbolic volume (Ruberman);
I the odd Khovanov homology (Bloom);
I the homeomorphism type of Σ(L), the double-cover of S3

branched along L (Viro).

There do exist non-mutant links with homeomorphic branched
double-covers, e.g. P (−2, 3, 7) and T (3, 7) (distinct HOMFLY
polynomials).
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Theorem 1 (G)

Given a pair of connected, reduced alternating diagrams D,D′

for a pair of links L,L′, the following assertions are equivalent:

1. D and D′ are mutants;
2. L and L′ are mutants;
3. Σ(L) ∼= Σ(L′); and
4. Σ(L) and Σ(L′) have the same Heegaard Floer d-invariants.

Note. 1. =⇒ 2. =⇒ 3. =⇒ 4. are immediate;
2. =⇒ 1. follows from work of Menasco;
previously known to hold for two-bridge links
(Reidemeister, Schubert).
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An alternating diagram D gives rise to a Tait graph G:

D
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An alternating diagram D gives rise to a Tait graph G:

D G
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Mutating D has a corresponding effect on G.

Here the isomorphism type of the Tait graph has not changed,
while its planar embedding has.
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Here the isomorphism type of the Tait graph has changed.

However, its 2-isomorphism type has not.
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A 2-isomorphism between graphs G,G′ is a cycle-preserving
bijection E(G) ∼→ E(G′).

G G′
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A 2-isomorphism between graphs G,G′ is a cycle-preserving
bijection E(G) ∼→ E(G′).

G
JohnBenson

Dan
Pallavi

Kate

Lenny

Bulent

Shelly

Ana

Eamonn

Matt

Peter

G′

John′Benson′

Dan′

Pallavi′

Kate′

Lenny′

Eamonn′

Matt′

Ana′

Bulent′

Shelly′

Peter′

Josh Greene

Conway mutation and alternating links



The highlighted cycles clearly get sent to one another since they
are supported within the two individual “halves”.
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This one is more interesting since it crosses the 2-vertex cutset.

G
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Pallavi
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Bulent
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Ana
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Matt

Peter
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Proposition 1

The Tait graph construction establishes a bijection

{alternating link diagrams}
mutation

∼→ {planar graphs}
2-isomorphism

.

Proof sketch.

I Elementary mutations in diagrams effect flips
and switches in the Tait graphs, and vice
versa.

I A pair of plane drawings of a planar graph are
related by flips (Whitney, Mohar-Thomassen).

I A pair of 2-isomorphic graphs are related by
switches (Whitney).
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A graph G gives rise to a flow lattice F(G):

I orient E(G) arbitrarily;

I form the chain complex 0→ C1(G; Z) ∂→ C0(G; Z)→ 0;
I declare E(G) to form an orthonormal basis of C1(G; Z);
I set F(G) = ker(∂).
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A graph G gives rise to a flow lattice F(G):

I orient E(G) arbitrarily;

I form the chain complex 0→ C1(G; Z) ∂→ C0(G; Z)→ 0;
I declare E(G) to form an orthonormal basis of C1(G; Z);
I set F(G) = ker(∂).

x ∈ F(G)

|x| = 4
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A graph G gives rise to a flow lattice F(G):

I orient E(G) arbitrarily;

I form the chain complex 0→ C1(G; Z) ∂→ C0(G; Z)→ 0;
I declare E(G) to form an orthonormal basis of C1(G; Z);
I set F(G) = ker(∂).

y ∈ F(G)

|y| = 5
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A graph G gives rise to a flow lattice F(G):

I orient E(G) arbitrarily;

I form the chain complex 0→ C1(G; Z) ∂→ C0(G; Z)→ 0;
I declare E(G) to form an orthonormal basis of C1(G; Z);
I set F(G) = ker(∂).

x, y ∈ F(G)

|x| = 4, |y| = 5

〈x, y〉 = 3
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A positive definite, integral lattice Λ gives rise to a d-invariant:

I 〈 , 〉, the pairing; |λ| := 〈λ, λ〉, the norm;
I Λ∗ = Hom(Λ,Z) ⊂ Λ⊗Q, the dual lattice;
I Λ = Λ∗/Λ, the discriminant group;
I Char(Λ) ⊂ Λ∗, the characteristic coset:

Char(Λ) = {χ ∈ Λ∗ | 〈χ, λ〉 ≡ |λ| (mod 2),∀λ ∈ Λ}

I C(Λ) = Char(Λ) (mod 2Λ), a torsor over Λ;
I d(χ+ 2Λ) := 1

4 min{ |χ′| − rk(Λ) | χ′ ∈ χ+ 2Λ} ∈ Q.

The pair (C(Λ), d) is the d-invariant of Λ. In short, it records
the minimal norms of characteristic covectors in the various
equivalence classes (mod 2Λ).
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Let D denote an alternating diagram, L the link it presents, G
its Tait graph, and X the double-cover of D4 branched along a
push-in of the black spanning surface for D.

I ∂X ∼= Σ(L);
I (H2(X; Z), QX) ∼= F(G);
I Spinc(X) ∼→ Char(F(G));
I Spinc(Σ(L)) ∼→ C(F(G)).

Theorem 2 (Ozsváth-Szabó)

The space Σ(L) is an L-space, and

(Spinc(Σ(L)), d) ∼→ (C(F(G)),−d).

Note. For an L-space Y , (Spinc(Y ), d) determines ĤF (Y ) as an
absolutely graded, relatively spinc-graded group.
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absolutely graded, relatively spinc-graded group.

Josh Greene

Conway mutation and alternating links



Let D denote an alternating diagram, L the link it presents, G
its Tait graph, and X the double-cover of D4 branched along a
push-in of the black spanning surface for D.

I ∂X ∼= Σ(L);
I (H2(X; Z), QX) ∼= F(G);
I Spinc(X) ∼→ Char(F(G));

I Spinc(Σ(L)) ∼→ C(F(G)).

Theorem 2 (Ozsváth-Szabó)
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The space Σ(L) is an L-space, and

(Spinc(Σ(L)), d) ∼→ (C(F(G)),−d).

Note. For an L-space Y , (Spinc(Y ), d) determines ĤF (Y ) as an
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Question

Given a pair of graphs G,G′ (not necessarily planar), when is it
the case that (C(F(G)), d) ∼→ (C(F(G′), d′)?

Theorem 3 (G)

Let G,G′ denote a pair of graphs. The following assertions are
equivalent:

1. (C(F(G)), d) ∼→ (C(F(G′)), d′).
2. F(G) ∼= F(G′);
3. G and G′ are 2-isomorphic;

Note. 3. =⇒ 2. (Bacher-de la Harpe-Nagnibeda)
2. =⇒ 3. analogue of the Torelli theorem for a finite
graph (Artamkin, Caporaso-Viviani, Su-Wagner)
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Proof of Theorem 1.

It stands to establish 4. =⇒ 1.

I Suppose (Spinc(Σ(L)), d) ∼→ (Spinc(Σ(L′)), d′).
I (C(F(G)), d) ∼→ (C(F(G′), d′) (Thm.2).
I G and G′ are 2-isomorphic (Thm.3).
I D and D′ are mutants (Prop.1).
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Proof of Theorem 3.

I The sublattice F(G) ⊂ C1(G; Z) is complementary to C(G),
the lattice of integral cuts on G.

I This implies that (C(F(G)), dF ) ∼→ (C(C(G)),−dC).
I Now assume that (C(F(G)), dF ) ∼→ (C(F(G′)), d′F ).
I We obtain a map ϕ : (C(F(G)), dF ) ∼→ (C(C(G′)),−d′C).
I This enables us to glue F(G) and C(G′):

Λ = F(G)⊕ϕC(G′) := {(x, y) ∈ F(G′)∗⊕C(G)∗ | y = ϕ(x)}.

I Λ is an integral, positive definite, unimodular lattice.
I By construction, its unique d-invariant vanishes.
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Proof of Theorem 3 (contd).

I By a theorem of Elkies, it follows that Λ ∼= Zn

(i.e. Λ admits an orthonormal basis B).

I A combinatorial argument establishes an isometry
C1(G; Z) ∼→ Λ respecting the two embeddings of F(G), and
similarly for C1(G′; Z) w.r.t. C(G′).

I We obtain a composite map f : E(G) ∼→ B ∼→ E(G′).
I Since F(G) and C(G′) are complementary within Λ, it

follows that f is a 2-isomorphism.

Josh Greene

Conway mutation and alternating links



Proof of Theorem 3 (contd).

I By a theorem of Elkies, it follows that Λ ∼= Zn

(i.e. Λ admits an orthonormal basis B).

I A combinatorial argument establishes an isometry
C1(G; Z) ∼→ Λ respecting the two embeddings of F(G), and
similarly for C1(G′; Z) w.r.t. C(G′).

I We obtain a composite map f : E(G) ∼→ B ∼→ E(G′).
I Since F(G) and C(G′) are complementary within Λ, it

follows that f is a 2-isomorphism.

Josh Greene

Conway mutation and alternating links



Proof of Theorem 3 (contd).

I By a theorem of Elkies, it follows that Λ ∼= Zn

(i.e. Λ admits an orthonormal basis B).

I A combinatorial argument establishes an isometry
C1(G; Z) ∼→ Λ respecting the two embeddings of F(G), and
similarly for C1(G′; Z) w.r.t. C(G′).

I We obtain a composite map f : E(G) ∼→ B ∼→ E(G′).
I Since F(G) and C(G′) are complementary within Λ, it

follows that f is a 2-isomorphism.

Josh Greene

Conway mutation and alternating links



Proof of Theorem 3 (contd).

I By a theorem of Elkies, it follows that Λ ∼= Zn

(i.e. Λ admits an orthonormal basis B).

I A combinatorial argument establishes an isometry
C1(G; Z) ∼→ Λ respecting the two embeddings of F(G), and
similarly for C1(G′; Z) w.r.t. C(G′).

I We obtain a composite map f : E(G) ∼→ B ∼→ E(G′).

I Since F(G) and C(G′) are complementary within Λ, it
follows that f is a 2-isomorphism.

Josh Greene

Conway mutation and alternating links



Proof of Theorem 3 (contd).

I By a theorem of Elkies, it follows that Λ ∼= Zn

(i.e. Λ admits an orthonormal basis B).

I A combinatorial argument establishes an isometry
C1(G; Z) ∼→ Λ respecting the two embeddings of F(G), and
similarly for C1(G′; Z) w.r.t. C(G′).

I We obtain a composite map f : E(G) ∼→ B ∼→ E(G′).
I Since F(G) and C(G′) are complementary within Λ, it

follows that f is a 2-isomorphism.

Josh Greene

Conway mutation and alternating links



The main theorem asserts that within the class of alternating
links, the d-invariant of the branched double-cover is a complete
invariant of the mutation type.

Conjecture

If Σ(L) ∼= Σ(L′), then L and L′ are both alternating or both
non-alternating.

Question

Is there an analogous complete invariant of the isotopy type
within the class of alternating links? Combining d(Σ(L)) and
τ(L̃ ⊂ Σ(L)), perhaps?

Cf. the Menasco-Thistlethwaite theorem: two reduced,
alternating diagrams of a link differ by a sequence of flypes.
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Mutation of Conway horned spheres:

µx

µy
µz

Credits: Simon Fraser (Conway), wikipedia (Tait), IAS (Whitney), Mariana Cook (Elkies)
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