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Mapping class groups

Sg – closed orientable surface of genus g

Mod(Sg ) = Homeo+(Sg )/isotopy

Theorem (Nielsen–Thurston classification)

Every f 2 Mod(Sg ) is either finite order, reducible or

pseudo-Anosov.

Finite order

Dehn twist

Pseudo-Anosov



Penner’s construction

A = {a
1

, . . . , an}, B = {b
1

, . . . , bm} filling multicurves. Any

product of Tai and T

�1

bj
containing each of these Dehn twists at

least once is pA.

a

1

a

2

b

1

b

2



Conjecture (Penner, 1988)

Every pseudo-Anosov mapping class has a power arising from

Penner’s construction.

Theorem (Shin-S.)

Penner’s conjecture is false for Sg ,n when 3g + n � 5.

Theorem (Shin-S.)

Galois conjugates of Penner stretch factors all lie o↵ the unit circle.
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Theorem (Shin-S.)

Galois conjugates of Penner stretch factors all lie o↵ the unit circle.

Sketch of the proof.

1. Every Dehn twist in Penner’s construction can be described by

a matrix. =) Every Penner pA can be described by a matrix.

2. Need to show that such matrices cannot have eigenvalues on

the unit circle.

3. I.e., they cannot act on 2-dimensional invariant subspaces by

rotations.

4. Construct a height function that is increasing after every

iteration.
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An increasing height function: h(x , y) = xy .
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The “cobordism distance” between two knots K and J is

d(K , J) = min
�
g(⌃) | ⌃ sm. emb. in S

3 ⇥ [0, 1], @⌃ = K t rJ

 

d(K , unknot) = g4(K )

triangle inequality: d(K , J) � |g4(K )� g4(J)|
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If d(K , J) = |g4(K )� g4(J)|, a cobordism realizing this distance is
“optimal”

Q: When do optimal cobordisms exist?
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Suppose Vf is the zero set of a polynomial f : C2 ! C.
Then K = Vf \ S

3
r is generically a knot or link in S

3.
And K bounds the surface ⌃K = Vf \ B

4
r

(Rudolph, Boileau–Orevkov): K is a ”quasipositive” knot
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Thom conjecture (proven by Kronheimer and Mrowka) plus work of
Rudolph: g4(K ) = g(⌃K ).

i.e., algebraic curves are minimal genus surfaces.

If K = Vf \ S

3
r and J = Vf \ S

3
R , then Vf provides an optimal

cobordism from K to J.
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Theorem
Suppose K and J are quasipositive knots; K has braid index m, and J is

the closure of a QP n-braid which contains k full twists. Then

d(K , J) � g4(K )� g4(J) + k(n �m).
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Corollary

If an algebraic cobordism exists between two knots, the one with bigger

genus cannot have smaller braid index.

Corollary (Franks-Williams)

If a link L is the closure of a positive n-braid with a full twist, then n is the

braid index of L.

Corollary

If a knot K is the closure of a quasipositive n-braid with a full twist, then

n is the braid index of K .
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Proof of theorem uses Upsilon invariant from Heegaard Floer homology
(Ozsváth - Stipsicz - Szabó), and the fact that for quasipositive knots, the
slice–Bennequin inequality is sharp
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Thank you!

Krcatovich (Rice) Optimal cobordisms between knots 6th December 2015





Nontrivial examples of bridge trisection of knotted

surfaces in S4

Bo-hyun Kwon

Department of Mathematics

University of Georgia, Athens

bortire74@gmail.com

December 6, 2015



Definitions

Definition (by J.Gay and Kirby)

Let X be a closed, connected, oriented, smooth 4-manifold. A

(g , k
1

, k
2

, k
3

)-trisection of X is a decomposition X = X
1

[X
2

[X
3

,

such that

1 Xi ⌘ \ki (S1 ⇥ B3

),

2 Hij = Xi \ Xj is a genus g handlebody, and

3

⌃ = X
1

\ X
2

\ X
3

is a closed surface of genus g

Definition

The 0-trisection of S4

is a decomposition S4

= X
1

[ X
2

[ X
3

, such

that

1 Xi is a 4-ball,

2 Bij = Xi \ Xj = @Xi \ @Xj is a 3-ball and

3

⌃ = X
1

\ X
2

\ X
3

= B
12

\ B
23

\ B
31

is a 2-sphere.

B. Kwon



Definitions

A trivial c-disk system is a pair (X ,D) where X is a 4-ball and

D ⇢ X is a collection of c properly embedded disks D which are

simultaneously isotopic into the boundary of X .

Definition (by J. Meier and A. Zupan)

A (b; c
1

, c
2

, c
3

)� bridge trisection T of a knotted surface K ⇢ S4

is a decomposition of the form

(S4,K) = (X
1

,D
1

) [ (X
2

,D
2

) [ (X
3

,D
3

) such that

1 S4

= X
1

[ X
2

[ X
3

is the standard genus zero trisection of S4

,

2

(Xi ,Di ) is a trivial ci�disk system, and

3

(Bij ,↵ij) = (Xi ,Di ) \ (Xj ,Dj) is a b�strand trivial tangle.

B. Kwon



Theorem (Meier, Zupan)

Every knotted surface K in S4 admits a bridge trisection.

Figure: The seven standard bridge trisections:

(1, 1) : S2, (2, 1), (2, 1) : RP2, (3, 1), (3, 1), (3, 1), (3, 1) : T2

B. Kwon



Any trisection obtained as the connected sum of some number of

these standard trisections, or any stabilization thereof, will also be

called standard .

Theorem (Meier, Zupan)

Every knotted surface K with b(K)  3 is unknotted and any
bridge trisection of K is standard.

Theorem (Meier, Zupan)

Any two bridge trisections of a given pair (S4,K) become
equivalent after a sequence of stabilizations and destabilizations.

Theorem (Meier, Zupan)

Any two tri-plane diagrams for a given knontted surface are related
by a finite sequence of tri-plane moves. (Reidemeister move,
mutual braid transpositions, stabilization/destabilization.)

B. Kwon



Figure: A (4, 2)-bridge trisection: Spun Trefoil

Figure: A (6, 2)-bridge trisection: Spun Torus from Trefoil Knot

B. Kwon



Propostion[Meier, Zupan]

If K is orientable and admits a (b; c
1

, 1, c
3

)-bridge trisection, then

K is topologically unknotted.

Question

Can a surface admitting a (b; c
1

, 1, c
3

)-bridge trisection be

smoothly knotted?.

B. Kwon



Interesting examples

Figure: A (4, 1)-bridge trisection: RP2

#RP2

#RP2

Figure: A (5, 1, 2, 2)-bridge trisection: T2

or RP2

#RP2

B. Kwon
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Talk Outline / Result

1. Link maps, link homotopy

2. Kirk’s � invariant

3. Open problem: does � = 0 ) link nullhomotopic?

4. Result: � = 0 ) get “clean” Whitney discs

) +ve evidence to a�rmative answer



Classifying link maps

Link map:

f : Sp

+

[ Sq

� ! Sn, f (Sp

+

) \ f (Sq

�) = ?

Link homotopy = homotopy through link maps

(the two spheres stay disjoint but may self-intersect)

LMn

p,q = set of link maps S

p
+ [ S

q
� ! S

n
mod link homotopy
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Classifying link maps

LM3

1,1
linking #�!⇠

=

Z

LM4

2,2

(�
+

, ��).�!
(Kirk)

Z[t]� Z[t]

(Trivial link map: two embedded 2-spheres bounding disjoint 3-balls)

Q: Does �(f ) = (0, 0) ) f link homotopic to embedding?

(Bartels-Teichner ’99)



Classifying link maps

LM3

1,1
linking #�!⇠

=

Z

LM4

2,2

(�
+

, ��).�!
(Kirk)

Z[t]� Z[t]

(Trivial link map: two embedded 2-spheres bounding disjoint 3-balls)

Q: Does �(f ) = (0, 0) ) f link homotopic to embedding?

(Bartels-Teichner ’99)



Classifying link maps

LM3

1,1
linking #�!⇠

=

Z

LM4

2,2

(�
+

, ��).�!
(Kirk)

Z[t]� Z[t]

Q: Does �(f ) = (0, 0) ) f link homotopically trivial?

(Trivial link map: two embedded 2-spheres bounding disjoint 3-balls)

Q: Does �(f ) = (0, 0) ) f link homotopic to embedding?

(Bartels-Teichner ’99)



Classifying link maps

LM3

1,1
linking #�!⇠

=

Z

LM4

2,2

(�
+

, ��).�!
(Kirk)

Z[t]� Z[t]

Q: Does �(f ) = (0, 0) ) f link homotopically trivial?

(Trivial link map: two embedded 2-spheres bounding disjoint 3-balls)

Q: Does �(f ) = (0, 0) ) f link homotopic to embedding?

(Bartels-Teichner ’99)



Kirk’s invariant � = (�
+

, ��)

Given f : S

2
+ [ S

2
� ! S

4
,

�±(f ) obstructs homotoping f |S2
±
: S

2
± ! S

4 \ f (S2
⌥) to embedding

via the “Whitney trick”:

Example:

f (S

2
+)

f (S

2
�)

�+(f ) = �t + t = 0

��(f ) = 0
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Other results and questions

• Theorem: Let f : S

2
+ [ S

2
� ! S

4
be a link map. After a link

homotopy, the Schneiderman-Teichner ⌧ -invariant applied to f |S2
+

is Z2-valued and vanishes if �(f ) = (0, 0).

•
New proof of the image of �.

• Theorem: There is a link map f with ��(f ) = 0, !�(f ) = 0 but

�+(f ) 6= 0.

• Question: is LM4
2,2 an abelian group with respect to connect sum?

• Question: Is � injective?

• Question: Can a secondary invariant for LM

4
2,2,2 be defined? Is it

stronger than �?

• Question: Can ! be related to invariants of links?
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