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Brady 2001, Brady-McCammond 2010:

The braid group acts geometrically on the dual braid complex.

Conjecture: The dual braid complex is CAT(0).

Idea: Understand the curvature of large subcomplexes

1



Brady 2001, Brady-McCammond 2010:

The braid group acts geometrically on the dual braid complex.

Conjecture: The dual braid complex is CAT(0).

Idea: Understand the curvature of large subcomplexes

1



Brady 2001, Brady-McCammond 2010:

The braid group acts geometrically on the dual braid complex.

Conjecture: The dual braid complex is CAT(0).

Idea: Understand the curvature of large subcomplexes

1



Braidn is the fundamental group of a configuration space
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Fixed strands
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strand is fixed ↔ ∃ a braid isotopy to the constant path
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Thm: (D-McCammond-Witzel)

Fixed strands can be fixed simultaneously.

Choose k strands to fix ; subgroup of Braidn

; subcomplex of Cplx(Braidn)

Thm: (Brady-McCammond 2010)

The corresponding subcomplex is Cplx(Braidn−k).
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Generalization: Strands which stay in the boundary
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Thm: (D-McCammond-Witzel)

Boundary-parallel strands are simultaneously boundary-parallel.

Choose k strands ; subset of Braidn

; subcomplex of Cplx(Braidn)

Thm: (D-McCammond-Witzel)

The corresponding subcomplex is Cplx(Braidn−k) ×∆k−1
×R.
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The Infinite Twist

For many link homology theories (Khovanov, Khovanov-Rozansky,
HOMFLY, certain ‘colored’ versions), the infinite twist on n
strands is frequently studied.
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Why?

1 Jones-Wenzl projector Pn ⇒ quantum invariants of 3-mflds

2 Jones polynomial of infinite twist ‘builds’ Pn

3 Categorify it (Khovanov sl2)

4 Allow other Lie groups (Khovanov-Rozansky sln) ⇒ categorify
highest weight projectors from representation theory (Rose,
Cautis, Hogancamp)
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Why?

When we close large twists in the usual way, we get torus links.
Then the infinite twist looks at the stable link homologies of torus
links as the twisting goes to infinity.

Link homologies of torus links have also been studied and
computed extensively (Stošić, Elias, Hogancamp, Mellit) and
conjecturally relate to several other fields of mathematics (Gorsky,
Oblomkov, Rasmussen, Shende, etc).
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The Question

What about other positive infinite braids?
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The Answer

Theorem (Abel,W.)

For any of the sln and HOMFLY link homologies (including certain
‘colored’ versions), any complete, positive, infinite braid B∞ on n
strands gives the same stable limiting homology groups as the
infinite twist H∗(B∞) ∼= H∗(T ∞).

Here, complete means every positive braid group generator appears
infinitely often (no crossings stop appearing).
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Overview of Proof

Idea is to compare larger and larger finite sub-braid B` to finite
twists T k for larger and larger k.

C ∗(B`) =
(
C ∗(T k)→ C ∗(Errors)

)
Show that the C ∗(Errors) terms get pushed out ‘further and
further to the right’ (larger and larger homological degree) as
` and k grow

Limit as ` and k go to infinity together
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But How?

Step 1: Find which crossings ‘contribute to T k ’, and regard the
others as error terms:
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But How?

Step 2: Resolve the ‘error’ crossings ⇒ general sln and HOMFLY
constructions show that C ∗(Errors) will involve diagrams with
‘ladders’:
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constructions show that C ∗(Errors) will involve diagrams with
‘ladders’:
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But How?

Step 3: Pull ‘ladders’ through the contributing crossings (need a
lot of them):

Homological shifts due to different colors then push these ‘error’
diagrams into larger and larger homological degrees. Done!
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End!

Thank you!!
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∃ a	flat	𝐹 ⊂ 𝑀% such	that	𝜕'𝐹 is	a	non-trivial	knot	in	𝜕'𝑀% ≅ 𝕊*

then	M	cannot	have	a	Riemannian	smoothing.
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𝑀E =	Riemannian	manifold,	𝜅 ≤ 0
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∃ flats	𝐹+E, … , 𝐹.E 	⊂ 𝑀%Esuch	that	𝜕'𝐹+E, … , 𝜕'𝐹.E is	isotopic	to	the	link	𝐿
(Hruska-Kleiner – using	Isolated	flats)

(flat	torus	theorem)

For		𝑝 ∈ 𝑀% ,	geodesic	retraction	

𝕊* ≅ 𝜕'𝑀′L 					⟶ 					 𝑇O𝑀′L ≅ 𝕊* (unit	tangent	space)	

𝐿						 ⟼ 𝑇O𝐹+E, … , 𝑇O𝐹.E

homeo

local

global

But!

(great	circle	link)

𝐿	 ≠ great	circle	link
→←

Thank	you!

If		𝑀 homotopy	equivalent	to			
𝑀E =	Riemannian	manifold,	𝜅 ≤ 0
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Background
Compiling

Skein algebras
Chebyshev homomorphism
Center of skein algebra

Let Σ be a surface with boundary and punctures, and let
R = C[q±1/2].

Definition (Przytycki,Turaev)

The Kauffman bracket skein module Sq(Σ) of Σ is the
R-module freely spanned by homotopy classes of framed links in
Σ× (−1, 1) (including ∅), modulo the usual skein relation and
trivial loop relation.

=q -1

Sq(Σ) is also an R-algebra. α · β is defined to be the link α ∪ β
obtained by rescaling α to lie in (−1, 0) and β to lie in (0, 1). We
will consider q to be a root of unity.
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Background
Compiling

Skein algebras
Chebyshev homomorphism
Center of skein algebra

Theorem (Bonahon, Wong)

Suppose ξ4 is a primitive Nth root of unity. Let ε = ξN
2
. Then

there is a unique C-algebra homomorphism Ch : Sε(Σ)→ Sξ(Σ)
such that for any framed link L = K1 ∪ · · · ∪ Km ⊂ M,

Ch(L) = TN(K1) ∪ · · · ∪ TN(Km).

Ch is called the Chebyshev homomorphism.

Remark

ε is a 4th root of unity. TN is the Nth Chebyshev polynomial of
the first type.
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Background
Compiling

Skein algebras
Chebyshev homomorphism
Center of skein algebra

Theorem (Frohman, Kania-Bartoszynska, Lê)

Let ∂ be the set of knots surrounding a puncture, and n the order
of ξ. If n 6= 0 mod 4, the center Zξ(Σ) of Sξ(Σ) is generated by
the image of Ch : Sε(Σ)→ Sξ(Σ) and ∂.

Remark

If n = 0 mod 4, Zξ(Σ) is generated by Ch of a particular
subalgebra of Sε(Σ) and ∂.
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Background
Compiling

Skein algebras
Chebyshev homomorphism
Center of skein algebra

Theorem (Frohman, Kania-Bartoszynska, Lê)

Sξ(Σ) is finitely generated as a module over its center.

Remark

The representation theory of algebras which are finitely generated
as a module over their center is well understood.
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Background
Compiling

Topological quantum compiling
Relation to center

A quantum program is a (unitary) matrix U.

A topological quantum computer essentially implements a
quantum representation ρ of the mapping class group of Σ.

Topological quantum compiling is finding a “minimum
complexity” mapping class group element x such that
‖ρ(x)− U‖ < ε.

Mapping class groups act on skein algebras. Skein algebra
representations thus induce mapping class group
representations. We wish to study mapping class group
representations via skein algebra representations.
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Background
Compiling

Topological quantum compiling
Relation to center

Let {αi} be skeins with integer coefficients that generate Sξ(Σ)
over Zξ(Σ), ρ : Sξ(Σ)→ Aut(V ), U ∈ Aut(V ). Write U as

U =
∑
i

ziρ(αi ), zi ∈ C

Use the characterization of Zξ(Σ) as the image of Ch to find
minimimum complexity central elements ci with integer coefficients
such that ρ(ci ) ≈ zi . This essentially involves studying how the
Chebyshev polynomials act on cyclotomic fields. Use this
information to “compile” in the induced quantum mapping class
group representation.
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