LIGHTNING TALKS II TECH TOPOLOGY CONFERENCE December 9, 2017

Fillings of Iterated Planar Contact Manifolds

Bahar Acu

Northwestern University

Lightning Talks Session I Tech Topology Conference December 8, 2017

Main objects of study

Contact manifolds

 $(M^{2n+1}, \xi = \ker \lambda)$ where $\xi = \max$ maximally nonintegrable hyperplane field satisfying $\lambda \wedge (d\lambda)^n \neq 0$.

- $\lambda := \text{contact form}$
- $\xi := \text{contact structure}$

イロト イポト イヨト イヨト

Main objects of study

Contact manifolds

 $(M^{2n+1}, \xi = \ker \lambda)$ where $\xi = \max$ maximally nonintegrable hyperplane field satisfying $\lambda \wedge (d\lambda)^n \neq 0$.

 $\lambda := \text{contact form}$ $\xi := \text{contact structure}$

Image: A matrix

Main objects of study

Contact manifolds

 $(M^{2n+1}, \xi = \ker \lambda)$ where $\xi = \max$ maximally nonintegrable hyperplane field satisfying $\lambda \wedge (d\lambda)^n \neq 0$.

$$\begin{split} \lambda &:= \text{contact form} \\ \xi &:= \text{contact structure} \end{split}$$

Symplectic manifolds

 (W^{2n},ω) where ω is a closed nondegenerate $(\omega^n \neq 0)$ 2-form on W.

 $\omega := {\rm symplectic\ structure}$

イロト イポト イヨト イヨト

To study **symplectic fillings** of certain higher-dimensional contact manifolds and, by using this result, prove a higher-dimensional **symplectic capping** result for that class.

Image: 1 million of the second sec

FILLING

æ

<ロ> (日) (日) (日) (日) (日)

In any given dimension,

Fact

$\{\textit{Stein}\} = \{\textit{Weinstein}\} \subset \{\textit{Exact}\} \subset \{\textit{Strong}\} \subset \{\textit{Weak}\} \subset \{\textit{Tight}\}$

イロト イヨト イヨト

Does every contact manifold M admit symplectic caps?

< 日 > < 同 >

Does every contact manifold M admit symplectic caps?

Answer

Yes,

- if M^{2n+1} has a Stein filling (Lisca-Matić).
- if dim M = 3 then M has infinitely many distinct symplectic caps (Etnyre-Honda).

Image: A matrix and a matrix

Does every symplectic manifold with boundary M embed as a domain into a closed symplectic manifold? i.e. can M be symplectically capped off?

Does every symplectic manifold with boundary M embed as a domain into a closed symplectic manifold? i.e. can M be symplectically capped off?

< 口 > < 同 >

Does every symplectic manifold with boundary M embed as a domain into a closed symplectic manifold? i.e. can M be symplectically capped off?

Answer

Yes,

- if M is Stein fillable (Lisca-Matić).
- if dim M = 3 and M is weakly fillable (Eliashberg, Etnyre).

< □ > < 同 >

Can we do the same thing in higher dimensions?

< □ > < 同 >

Can we do the same thing in higher dimensions?

Answer

Not easy!

One needs to know symplectic mapping class group of the capped page.

< □ > < 同 >

Can we do the same thing in higher dimensions?

Answer

Not easy!

One needs to know symplectic mapping class group of the capped page.

Potential Remedy

Iterated planar Lefschetz fibrations/open books.

Idea: carry 3-dimensional symplectic capping result by Eliashberg-Etnyre to higher dimensions inductively!

< □ > < 同 > <

The fruit of the attempt

 M^{2n+1} : contact manifold F^{2n} : page of the supporting open book of M B^{2n-1} : binding of the supporting open book of M

Conjeorem (Acu-Etnyre-Ozbagci)

If B has an exact symplectic cobordism to B', call X where $\partial X = -B \cup B'$, then there exists an **exact** symplectic cobordism

$$Y = M \times [0,1] \bigcup_{\partial X \times D^2 = B \times \{1\} \times D^2} X \times D^2$$

from M to a (2n + 1)-dimensional contact manifold M' supported by an open book whose binding is B' and page is $F \cup X$.

Theorem (Acu-Etnyre-Ozbagci)

Y is a strong symplectic cobordism.

< □ > < 同 > <

Symplectic caps of iterated contact 5-manifolds

Iterated planar contact 5-manifold := contact manifold with planar contact binding

Symplectic caps of iterated contact 5-manifolds

Iterated planar contact 5-manifold := contact manifold with planar contact binding

If the Conjeorem is true, then we have:

Corollary

Every iterated planar contact 5-manifold can be symplectically capped off.

Idea: come up with an exact cobordism from M to S^5 and then cap off S^5 since planar open books have exact cobordisms to $S^3(=$ binding of $S^5)$.

10 / 11

Thank you!

æ

イロト イヨト イヨト イヨト

LIGHTNING TALKS II TECH TOPOLOGY CONFERENCE December 9, 2017

Generalized Alexander's Theorem

Sudipta Kolay

School of Mathematics Georgia Institute of Technology

December 9, 2017

Sudipta Kolay

Generalized Alexander's Theorem

December 9, 2017

< 3 >

Introduction

Closing up the ends of a braid gives a link, called a *closed braid*.

Question

Is every link a closed braid?

Introduction

Closing up the ends of a braid gives a link, called a *closed braid*.

Alexander's Theorem (1923)

Every oriented link in \mathbb{R}^3 is isotopic to a closed braid.

Closed Braids

Definition

We say f(M) is a *closed braid* if it misses ℓ and the composition

is an oriented branched covering map.

Isotoping to a closed braid

P.L. Generalized Alexander's Theorem

Any closed oriented p.l. (n-2)-link in \mathbb{R}^n can be p.l. isotoped to be a closed braid for $3 \le n \le 5$.

- n = 3, Alexander (1923).
- smooth ribbon surfaces in \mathbb{R}^4 , Rudolph (1983).
- ▶ *n* = 4, Viro (1990), Kamada (1994).
- ▶ *n* = 5, K. (*2017*).

Dimension 3: an example

Sudipta Kolay

Generalized Alexander's Theorem

December 9, 2017

Dimension 3: Proof

Alexander's Theorem

Every oriented link in \mathbb{R}^3 is isotopic to a closed braid.

- ► Claim 1. If a clockwise simplex has only over-crossings, then we can find an embedded triangle crossing ℓ by going sufficiently over.
- Claim 2. The result of a cellular move along such a triangle is that a clockwise simplex is replaced by counterclockwise simplices.

() Can every smooth link in \mathbb{R}^5 be isotoped to be a closed braid?

Theorem (Etnyre-Furukawa, 2017)

If "yes", then smooth every embedding $M^3 \hookrightarrow S^5$ can be isotoped to be a transverse contact embedding.

2 What happens in higher dimensions (p.l. and smooth)?

() Can every smooth link in \mathbb{R}^5 be isotoped to be a closed braid?

Theorem (Etnyre-Furukawa, 2017)

If "yes", then smooth every embedding $M^3 \hookrightarrow S^5$ can be isotoped to be a transverse contact embedding.

What happens in higher dimensions (p.l. and smooth)?

Thank You!

LIGHTNING TALKS II TECH TOPOLOGY CONFERENCE December 9, 2017

An Excursion in Gluing Maps

Ryan Leigon

Joint with Federico Salmoiraghi Tech Topology Conference 2017

Sutured Floer Homology

• Heegaard Floer theory assigns chain complexes to 3-manifolds:

• What happens to SFH when we glue two manifolds together?

The Honda-Kazez-Matic Map

• We view the process of gluing as an inclusion:

The Honda-Kazez-Matic Map

• We view the process of gluing as an inclusion:

- The HKM map depends on the contact structure ξ

Computing HKM

HKM is impossible to explicitly compute, even in most elementary cases:

Problem: Constructing HKM requires "padding"
Zarev's Gluing Map

Zarev's map is a pairing:

Features:

- Formal algebraic map
- No padding needed
- No contact geometry involved
- Complexity is captured by the underlying algebra

<u>Theorem(with Salmoiraghi; Zarev):</u>

When properly interpreted, the HKM gluing map is equivalent to Zarev's map gluing.

<u>Theorem(with Salmoiraghi; Zarev):</u>

When properly interpreted, the HKM gluing map is equivalent to Zarev's map gluing.

<u>Cor</u>: HKM can be redefined without the padding.

<u>Theorem(with Salmoiraghi; Zarev):</u>

When properly interpreted, the HKM gluing map is equivalent to Zarev's map gluing.

Cor: HKM can be redefined without the padding.

Proof Idea:

1. Sufficient to prove for 1-and 2-handle attachments

2. Decompose the HKM construction into simple pieces

3. Show that maps corresponding to the simple pieces are Zarev maps (easy for 1-handle, difficult for 2-handle)

LIGHTNING TALKS II TECH TOPOLOGY CONFERENCE December 9, 2017

Essential embeddings and immersions of surfaces in a 3-manifold.

Aamir Rasheed

Florida State University

December 9, 2017

Aamir Rasheed (Florida State University) Essential embeddings and immersions of surfa

In this talk we will describe how:

- Fundamental groups of essential embedded surfaces (surface groups) are in some sense maximal.
- These surfaces can be orientable, non-orientable with or without boundary.
- Further we will show that fundamental groups of immersed surfaces are either maximal or can be realized by a covering map.

Fundamental group of an embedded torus is maximal

The following is a well known fact.

Theorem (Hempel)

Let *M* be an orientable Haken manifold such that $f : T \to M$ is an embedded essential (π_1 - injective and not boundary parallel) torus. Given a subgroup $G = Z \times Z$ of $\pi_1(M)$ such that $f_*(\pi_1 T) \subset G$, then it must be the case that $f_*(\pi_1 T) = G$.

In particular, given two essential embeddings of a torus $f : T \to M$ and $g : T \to M$ with $f_*(\pi_1 T) \subset g_*(\pi_1 T)$ then we must have $f_*(\pi_1 T) = g_*(\pi_1 T)$ Does this generalize to higher genus surfaces? The answer is yes.

(人間) システン イラン

Theorem

Let M be a Haken manifold such that $f_1 : F_1 \to M$ and $f_2 : F_2 \to M$ are essential embeddings of closed surfaces. Further assume that the given embeddings are 2-sided. Suppose that $f_{1*}(\pi_1F_1) \subset f_{2*}(\pi_1F_2)$ then it must be the case that $f_{1*}(\pi_1F_1) = f_{2*}(\pi_1F_2)$. In fact we can conclude that f_1 and f_2 are isotopic.

Note that the surfaces in the above theorem may be non-orientable.

Here is an extension of the previous theorem, where we consider non-closed essential embedded surfaces in a 3-manifold.

Theorem

Let M be a Haken manifold such that $f_1 : F_1 \to M$ and $f_2 : F_2 \to M$ are essential proper embeddings of surfaces. Suppose that $f_{1*}(\pi_1F_1) \subset f_{2*}(\pi_1F_2)$ and $\partial F_1 \subset \partial F_2$. Further assume that every boundary component of both surfaces lies in the same connected component of the boundary of M, then it must be the case that $f_{1*}(\pi_1F_1) = f_{2*}(\pi_1F_2)$. In fact we can conclude that f_1 and f_2 are isotopic.

Fundamental groups of immersed surfaces are maximal

Next, we deal with immersed surfaces and show that here an analogous theorem holds as well.

Theorem

Let M be a compact, connected, orientable, irreducible manifold such that $f_1 : F_1 \to M$ and $f_2 : F_2 \to M$ are essential immersions of closed surfaces. Suppose that $f_{1*}(\pi_1F_1) \subset f_{2*}(\pi_1F_2)$ then either f_1 and f_2 are homotopic and hence $f_{1*}(\pi_1F_1) = f_{2*}(\pi_1F_2)$ or f_1 is homotopic to a covering map onto $f_2(F_2)$.

References

- Francis Bonahan, Geometric structures on 3-manifolds, in Handbook of Geometric Topology (R. Daverman, R. Sher, Editors), Elsevier (2002), 93-164.
- Allen Hatcher, Notes on basic 3-manifold topology, Course notes, September 2000.
- Wolfgang Heil, On irreducible 3-manifolds which do not contain projective planes, 1970.
- John Hempel, 3-manifolds, Annals of Mathematics Studies, Princeton University Press, 1976.

References

- William Jaco, Lectures on three- manifold topology, Regional conference series in Mathematics 43, American Math. Soc. 1980.
- Klaus Johannson, Homotopoy equivalences of 3-manifolds with boundary, Lecture notes in Mathematics 761, Springer 1979.
- Peter Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487.
- Friedhelm Waldhausen, On irreducible manifolds which are sufficiently large, Annals of Mathematics, Second Series, Vol. 87, No. 1, 1968, pp. 56-88.

LIGHTNING TALKS II TECH TOPOLOGY CONFERENCE December 9, 2017

Unoriented Cobordism Maps on Link Floer Homology

Haofei Fan

Department of Mathematics University of California, Los Angeles

Tech Topology Conference 2017

Haofei Fan (UCLA)

・ロト ・回ト ・ヨト ・ヨト

Ξ.

 HFL^* is an invariant for oriented links in three-manifolds. It is a Maslov graded, Alexander filtered $\mathbb{Z}_2[U]$ -module.

 HFL^* is an invariant for oriented links in three-manifolds. It is a Maslov graded, Alexander filtered $\mathbb{Z}_2[U]$ -module.

• It is constructed from a Heegaard diagram with *n w*-basepoints and *n z*-basepoints.

 HFL^* is an invariant for oriented links in three-manifolds. It is a Maslov graded, Alexander filtered $\mathbb{Z}_2[U]$ -module.

- It is constructed from a Heegaard diagram with *n w*-basepoints and *n z*-basepoints.
- The differential counts certain holomorphic disks (a variable *U* for each *w*-basepoint).

 HFL^* is an invariant for oriented links in three-manifolds. It is a Maslov graded, Alexander filtered $\mathbb{Z}_2[U]$ -module.

- It is constructed from a Heegaard diagram with *n w*-basepoints and *n z*-basepoints.
- The differential counts certain holomorphic disks (a variable *U* for each *w*-basepoint).

Unoriented Link Floer Homology (Ozsváth, Stipsciz and Szabó)

HFL' is an invariant for unoriented links in three-manifold. It is an $\delta\text{-graded}$ $\mathbb{Z}_2[U]\text{-module}.$

 HFL^* is an invariant for oriented links in three-manifolds. It is a Maslov graded, Alexander filtered $\mathbb{Z}_2[U]$ -module.

- It is constructed from a Heegaard diagram with *n w*-basepoints and *n z*-basepoints.
- The differential counts certain holomorphic disks (a variable *U* for each *w*-basepoint).

Unoriented Link Floer Homology (Ozsváth, Stipsciz and Szabó)

HFL' is an invariant for unoriented links in three-manifold. It is an δ -graded $\mathbb{Z}_2[U]$ -module.

• We treated all *w*, *z*-basepoints the same type (a single variable *U* for each basepoint).

Whether an oriented (or unoriented resp.) link cobordism (W, F) from L_0 to L_1 induces a map on link Floer homology (or unoriented link Floer homology resp.).

Whether an oriented (or unoriented resp.) link cobordism (W, F) from L_0 to L_1 induces a map on link Floer homology (or unoriented link Floer homology resp.).

Whether an oriented (or unoriented resp.) link cobordism (W, F) from L_0 to L_1 induces a map on link Floer homology (or unoriented link Floer homology resp.).

Answer. Yes.

 Juhász (2016) showed that a decorated link cobordism induces a map on sutured Floer homology.

Whether an oriented (or unoriented resp.) link cobordism (W, F) from L_0 to L_1 induces a map on link Floer homology (or unoriented link Floer homology resp.).

- Juhász (2016) showed that a decorated link cobordism induces a map on sutured Floer homology.
- Zemke (2016) constructed oriented link cobordism maps on link Floer homology and showed the invariance.

Whether an oriented (or unoriented resp.) link cobordism (W, F) from L_0 to L_1 induces a map on link Floer homology (or unoriented link Floer homology resp.).

- Juhász (2016) showed that a decorated link cobordism induces a map on sutured Floer homology.
- Zemke (2016) constructed oriented link cobordism maps on link Floer homology and showed the invariance.
- Fan (2017) provided a construction for unoriented link cobordisms and showed the invariance.

Whether an oriented (or unoriented resp.) link cobordism (W, F) from L_0 to L_1 induces a map on link Floer homology (or unoriented link Floer homology resp.).

- Juhász (2016) showed that a decorated link cobordism induces a map on sutured Floer homology.
- Zemke (2016) constructed oriented link cobordism maps on link Floer homology and showed the invariance.
- Fan (2017) provided a construction for unoriented link cobordisms and showed the invariance.
- **Remark.** All the above constructions need extra data on the surface *F*.

・ロト ・回ト ・ヨト ・

2

Figure: Bipartite Link

Figure: Bipartite Link

Figure: Bipartite Link

Figure: Disoriented Link

Figure: Bipartite Disoriented Link $(\mathcal{L}, \mathbf{O})$.

< □ > < ^[] >

Figure: Bipartite Disoriented Link Cobordism

 Red curves: Tracks the motion of basepoints

Figure: Bipartite Disoriented Link Cobordism

Figure: Bipartite Disoriented Link Cobordism

- Red curves: Tracks the motion of basepoints
- Blue curves (oriented): Tracks the motion of index zero and three critical points.

Main Theorem

Haofei Fan (UCLA)

イロト イヨト イヨト イヨト

2
Theorem (H. Fan)

Let \mathfrak{W}^1 be a bipartite disoriented link cobordism from $(\mathcal{L}^0, \mathbf{O}^0)$ to $(\mathcal{L}^1, \mathbf{O}^1)$ (For simplicity, we consider F in $S^3 \times I$). Then we can define a \mathbb{Z} -filtered chain map:

 $F_{\mathfrak{W}}: HFL'(\mathcal{L}^0, \mathbf{O}^0) \to HFL'(\mathcal{L}^1, \mathbf{O}^1),$

which is an invariant of \mathfrak{W}^1 . Furthermore, if \mathfrak{W}^2 is a bipartite disoriented link cobordism from $(\mathcal{L}^1, \mathbf{O}^1)$ to $(\mathcal{L}^2, \mathbf{O}^2)$ in S^3 , we have:

 $F_{\mathfrak{W}^2} \circ F_{\mathfrak{W}^1} = F_{\mathfrak{W}^2 \circ \mathfrak{W}^1}$

Theorem (H. Fan)

Let \mathfrak{W}^1 be a bipartite disoriented link cobordism from $(\mathcal{L}^0, \mathbf{O}^0)$ to $(\mathcal{L}^1, \mathbf{O}^1)$ (For simplicity, we consider F in $S^3 \times I$). Then we can define a \mathbb{Z} -filtered chain map:

 $F_{\mathfrak{W}}: HFL'(\mathcal{L}^0, \mathbf{O}^0) \to HFL'(\mathcal{L}^1, \mathbf{O}^1),$

which is an invariant of \mathfrak{W}^1 . Furthermore, if \mathfrak{W}^2 is a bipartite disoriented link cobordism from $(\mathcal{L}^1, \mathbf{O}^1)$ to $(\mathcal{L}^2, \mathbf{O}^2)$ in S^3 , we have:

$$F_{\mathfrak{W}^2} \circ F_{\mathfrak{W}^1} = F_{\mathfrak{W}^2 \circ \mathfrak{W}^1}$$

• This theorem can be extended to bipartite disoriented link cobordism with the surface *F* homologically trivial and torsion Spin^c-structure.

Theorem (H. Fan)

Let \mathfrak{W}^1 be a bipartite disoriented link cobordism from $(\mathcal{L}^0, \mathbf{O}^0)$ to $(\mathcal{L}^1, \mathbf{O}^1)$ (For simplicity, we consider F in $S^3 \times I$). Then we can define a \mathbb{Z} -filtered chain map:

 $F_{\mathfrak{W}}: HFL'(\mathcal{L}^0, \mathbf{O}^0) \to HFL'(\mathcal{L}^1, \mathbf{O}^1),$

which is an invariant of \mathfrak{W}^1 . Furthermore, if \mathfrak{W}^2 is a bipartite disoriented link cobordism from $(\mathcal{L}^1, \mathbf{O}^1)$ to $(\mathcal{L}^2, \mathbf{O}^2)$ in S^3 , we have:

$$F_{\mathfrak{W}^2} \circ F_{\mathfrak{W}^1} = F_{\mathfrak{W}^2 \circ \mathfrak{W}^1}$$

- This theorem can be extended to bipartite disoriented link cobordism with the surface *F* homologically trivial and torsion Spin^c-structure.
- Given a band move for links in S³, our construction agrees with Ozsváth, Stipsicz and Szabó's construction via grid diagrams.

Applications

Haofei Fan (UCLA)

・ロト ・回ト ・ヨト ・ヨト

Ξ.

• Hogancamp and Livingston (2017) defined involutive upsilon invariant for knots, which is an knot concordance invariant.

< □ > < ^[] >

- Hogancamp and Livingston (2017) defined involutive upsilon invariant for knots, which is an knot concordance invariant.
- We will extend the involutive upsilon invariant from knots to links and study the relation between involutive upsilon invariant and the unoriented four-ball genus in an upcoming paper.

Thank you!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

LIGHTNING TALKS II TECH TOPOLOGY CONFERENCE December 9, 2017

Twisted rabbits and Hubbard trees Becca Winarski University of Wisconsin-Milwaukee

joint with Jim Belk, Justin Lanier and Dan Margalit

Images courtesy of Bill Floyd https://www.math.vt.edu/netmaps/index.php

 $T_d \circ p_R$

 $f \in Mod(\mathbb{C}, P)$ what is $f \circ p_R$?

1. Topological description of p_R

1. Topological description of $p_R \longrightarrow$ branched covers

1. Topological description of $p_R \longrightarrow$ branched covers

2. Distinguish p_R, p_C, p_A

1. Topological description of $p_R \longrightarrow$ branched covers

2. Distinguish p_R, p_C, p_A — Hubbard trees

- 1. Topological description of $p_R \longrightarrow$ branched covers 2. Distinguish $p_R, p_C, p_A \longrightarrow$ Hubbard trees
- 3. Given f, what is $f \circ p_R$?

- 1. Topological description of $p_R \longrightarrow$ branched covers
- 2. Distinguish p_R, p_C, p_A Hubbard trees
- 3. Given f, what is $f \circ p_R$?
 - following Bartholdi—Nekyrashevych

- edges are contained in Julia set
- leaves are in P

- edges are contained in Julia set
- leaves are in P

- edges are contained in Julia set
- leaves are in P

- edges are contained in Julia set
- leaves are in P

- edges are contained in Julia set
- leaves are in P

- edges are contained in Julia set
- leaves are in P

- edges are contained in (filled) Julia set
- leaves are in P

Hubbard trees as an invariant

 T_A is combinatorially different from T_R and T_C

Hubbard trees as an invariant

 T_A is combinatorially different from T_R and T_C

 AND_{-1}

- p_R^{-1} rotates the edges of T_R clockwise
- p_C^{-1} rotates the edges of T_C counterclockwise

Hubbard trees as an invariant

- T_A is combinatorially different from T_R and T_C
 - AND:
 - p_R^{-1} rotates the edges of T_R clockwise
 - p_C^{-1} rotates the edges of T_C counterclockwise

Proposition (Belk, Lanier, Margalit, W)

The Hubbard tree and its direction of rotation under p^{-1} distinguish p_R, p_C, p_A .

The general conjectures

Conjecture 1: Given a polynomial p and a tree T, $\{p^{-n}(T)\}$ will converge to the Hubbard tree for p.

Tree convergence

Images by Jim Belk

The general conjectures

Conjecture 1: Given a polynomial p and a tree T, $\{p^{-n}(T)\}$ will converge to the Hubbard tree for p.

<u>Conjecture 2</u>: Given polynomials p_1, p_2 , the Hubbard trees and direction of rotation under p_1^{-1}, p_2^{-1} are different.

LIGHTNING TALKS II TECH TOPOLOGY CONFERENCE December 9, 2017

Towards a new construction of exotic 4-manifolds

Jonathan Simone University of Virginia

Tech Topology Conference December 9, 2017

The best case scenario is that such a plumbing can be replaced by a 4-manifold with the rational homology of $S^1 \times D^3$.

The best case scenario is that such a plumbing can be replaced by a 4-manifold with the rational homology of $S^1 \times D^3$.

Question: Do such plumbings exist?

The best case scenario is that such a plumbing can be replaced by a 4-manifold with the rational homology of $S^1 \times D^3$.

Question: Do such plumbings exist?

Proposition (S.)

Yes, there exists a way to construct many such plumbings.

The best case scenario is that such a plumbing can be replaced by a 4-manifold with the rational homology of $S^1 \times D^3$.

Question: Do such plumbings exist?

Proposition (S.)

Yes, there exists a way to construct many such plumbings.

Q: Is $X'_{m,n}$ diffeomorphic to $(2m-1)\mathbb{C}P^2 \# n\overline{\mathbb{C}P^2}$?

Q: Is $X'_{m,n}$ diffeomorphic to $(2m-1)\mathbb{C}P^2 \# n\overline{\mathbb{C}P^2}$?

Two possible ways to explore this question:

Q: Is
$$X'_{m,n}$$
 diffeomorphic to $(2m-1)\mathbb{C}P^2 \# n\overline{\mathbb{C}P^2}$?

Two possible ways to explore this question:

• Compute smooth 4-manifold invariants

Q: Is
$$X'_{m,n}$$
 diffeomorphic to $(2m-1)\mathbb{C}P^2 \# n\overline{\mathbb{C}P^2}$?

Two possible ways to explore this question:

• Compute smooth 4-manifold invariants

Theorem (S.)

Under suitable conditions, the Ozsváth-Szabó 4-manifold invariant of X agrees with that of X'.

Q: Is
$$X'_{m,n}$$
 diffeomorphic to $(2m-1)\mathbb{C}P^2 \# n\overline{\mathbb{C}P^2}$?

Two possible ways to explore this question:

• Compute smooth 4-manifold invariants

Theorem (S.)

Under suitable conditions, the Ozsváth-Szabó 4-manifold invariant of X agrees with that of X'.

• If $m \ge 2$, show that $X'_{m,n}$ is symplectic

If $m \ge 2$, then we can circumvent the need for the 4-manifold invariant if $X'_{m,n}$ is symplectic, since $(2m-1)\mathbb{C}P^2 \# n\overline{\mathbb{C}P^2}$ is not symplectic.

If $m \ge 2$, then we can circumvent the need for the 4-manifold invariant if $X'_{m,n}$ is symplectic, since $(2m-1)\mathbb{C}P^2 \# n\overline{\mathbb{C}P^2}$ is not symplectic.

Fact: $X' = (X - C) \cup B$ is symplectic if:

- X is symplectic and C is a symplectic submanifold with convex boundary
- *B* is symplectic with convex boundary
- The contact structures on $\partial B = \partial C$ induced by the symplectic structures are contactomorphic.

Q: How many tight contact structures does ∂P admit?

Q: How many tight contact structures does ∂P admit?

Honda classified the tight contact structures on the boundary of the plumbing depicted below, where $a_i \ge 2$ for all *i* and $a_1 \ge 3$.

Theorem (S.)

Let Y_{\pm} be the boundary of the plumbing below, where $a_i, z_j \ge 2$ for all i, j and $a_1 \ge 3$, then, up to isotopy,

- Y₊ admits exactly (a₁ − 1) · · · (a_n − 1)(z₁ − 1) · · · (z_m − 1)
 Stein fillable contact structures, and
- Y_− admits exactly

 (a₁−1)···(a_n−1)(z₁−1)···(z_m−1) + z₁(z₂−1)···(z_m−1)
 tight contact structures with no Giroux torsion.

Proving this relies on a generalization of an important result of Lisca-Matic:

Proving this relies on a generalization of an important result of Lisca-Matic:

Theorem (Lisca-Matic)

Let J_1 and J_2 be two Stein structures on a 4-manifold X. If the associated spin^c structures are not isomorphic, then the induced contact structures on ∂X are not isotopic.

Proving this relies on a generalization of an important result of Lisca-Matic:

Theorem (S.)

Suppose (Y, ξ) is a contact manifold and $[\omega] \in H^2(Y; \mathbb{R})$ is an element such that $c(\xi, [\omega])$ is nontrivial. Let (W, J_i) be a Stein cobordism from (Y, ξ) to (Y', ξ_i) for i = 1, 2. If the spin^c structures induced by J_1 and J_2 are not isomorphic, then ξ_1 and ξ_2 are nonisotopic tight contact structures.

Thank you

LIGHTNING TALKS II TECH TOPOLOGY CONFERENCE December 9, 2017
A large abelian quotient of the level 4 braid group

Kevin Kordek joint w/ Dan Margalit Georgia Tech

Kevin Kordek joint w/ Dan Margalit Georgia Tech

A large abelian quotient of the level 4 braid group

• The braid group:

$$B_n = \mathsf{Mod}(\mathbb{D}, p_1, \cdots, p_n)$$

• Integral Burau representation (Burau representation at t = -1):

$$\rho_n: B_n \to \mathrm{GL}_n(\mathbb{Z})$$

Definition (The level *m* braid group)

$$B_n[m] = \ker \left(B_n \xrightarrow{\rho_n} \operatorname{GL}_n(\mathbb{Z}) \to \operatorname{GL}_n(\mathbb{Z}/m\mathbb{Z}) \right)$$

- $B_n[m] < B_n$ finite-index.
- Most structure is mysterious.

Some places where these groups pop up:

- Topology/group theory:
 - braid Torelli groups
 - hyperelliptic Torelli groups
- Algebraic geometry: Fundamental groups of
 - finite ("Kummer") covers of Conf_n(ℂ)
 - finite covers of the hyperelliptic loci in M_g

m = 1

 $B_n[1] = B_n$ (from definition)

m = 2 (Arnol'd, 1968)

 $B_n[2] = PB_n$

- Finite presentations known
- $H^*(-,\mathbb{Q})$ completely determined

m = 4 (Brendle-Margalit, 2014)

 $B_n[4] = \langle squares \ of \ Dehn \ twists \rangle$

Problem

Compute the homology of $B_n[m]$ (especially $B_n[4]$).

Transfer argument: H < G finite-index

$$H_*(H, \mathbb{Q}) \twoheadrightarrow H_*(G, \mathbb{Q})$$

Question

Does $B_n[m]$ have strictly more rational cohomology than B_n ?

Theorem (K.-Margalit)

dim
$$H_1(B_n[4], \mathbb{Q}) = dim \ B_n[4]^{ab} \otimes \mathbb{Q} = 3\binom{n}{4} + 3\binom{n}{3} + \binom{n}{2}$$

for all $n \geq 2$

Compare:

dim
$$H_1(B_n, \mathbb{Q}) = 1$$

dim $H_1(B_n[2], \mathbb{Q}) = \binom{n}{2}$

Question

How does dim $H_1(B_n[m], \mathbb{Q})$ behave as $m \to \infty$?

Kevin Kordek joint w/ Dan Margalit Georgia Tech

Idea of proof:

• Lower bound: abelian quotients of $B_n[4]$ via covering spaces

 $B_3[4] \hookrightarrow PB_5 \to H_1(PB_5, \mathbb{Q})$

• Upper bound: relations in B_n[4]

• Upper and lower bounds agree!

Thank you for your attention!

LIGHTNING TALKS II TECH TOPOLOGY CONFERENCE December 9, 2017