Three theorems about generating mapping class groups

Justin Lanier Georgia Tech (joint with Dan Margalit) Three theorems about generating mapping class groups: the shock, the hope, and the hunt

Justin Lanier Georgia Tech (joint with Dan Margalit)

Act 1: the shock

Dehn twist

Dehn twist

Dehn twist

reducible, nonperiodic

reducible, periodic

Theorem (Dehn, 1938)

Dehn twists generate $Mod(S_g)$.

Theorem (Dehn, 1938)

Dehn twists generate $Mod(S_g)$.

Theorem (Humphries, 1979)

For $g \geq 2$, 2g + 1 Dehn twists generate $Mod(S_g)$, and this is sharp.

We conclude this chapter with the following curious theorem of Feng Luo [132]. By an *involution* in a group we simply mean any element of order 2.

THEOREM 7.16 For $g \geq 3$, the group $\operatorname{Mod}(S_g)$ is generated by finitely many involutions.

We conclude this chapter with the following curious theorem of Feng Luo [132]. By an *involution* in a group we simply mean any element of order 2.

THEOREM 7.16 For $g \geq 3$, the group $\operatorname{Mod}(S_g)$ is generated by finitely many involutions!?

We conclude this chapter with the following curious theorem of Feng Luo [132]. By an *involution* in a group we simply mean any element of order 2.

THEOREM 7.16 For $g \geq 3$, the group $Mod(S_g)$ is generated by finitely many involutions!?

Every mapping class group is generated by 6 involutions

Tara Brendle and Benson Farb

We conclude this chapter with the following curious theorem of Feng Luo [132]. By an *involution* in a group we simply mean any element of order 2.

THEOREM 7.16 For $g \geq 3$, the group $Mod(S_g)$ is generated by finitely many involutions!?

Every mapping class group is generated by 6 involutions!!??

Tara Brendle and Benson Farb

There are numbers bigger than 2.

Problem: For k > 2, can $Mod(S_g)$ be generated by elements of order k? How few?

	Order of elements	Number of elements	Genus
Brendle-Farb	2	6	$g \ge 3$
Kassabov	2	4	$g \ge 7$

	Order of elements	Number of elements	Genus
Brendle-Farb	2	6	$g \ge 3$
Kassabov	2	4	$g \ge 7$
Monden	3	3	$g \ge 3$
	4	4	$g \ge 3$

	Order of elements	Number of elements	Genus
Brendle-Farb	2	6	$g \ge 3$
Kassabov	2	4	$g \ge 7$
Monden	3	3	$g \ge 3$
	4	4	$g \ge 3$
Yoshihara	6	3	<i>g</i> ≥ 10
	6	4	<i>g</i> ≥ 5

Obstacle: When do higher-order elements even exist in $Mod(S_a)$?

Orders of torsion elements in $Mod(S_3)$:

1, 2, 3, 4, 6, 7, 8, 9, 12, 14

Number theoretic conditions for the existence of torsion elements in $Mod(S_a)$

- (i) (the Hurwitz formula) $2(g-1)/n = 2(g'-1) + \sum_{i=1}^{l} (1-1/\lambda_i)$.
- (ii) (Nielsen [Ni1, (4.6)]) $\sum_{i=1}^{l} \sigma_i / \lambda_i$ is an integer.
- (iii) (Wiman [W]) $n \le 4g + 2$.
- (iv) (Harvey [H]) Assume $g \ge 2$. Set $M = \text{lcm}(\lambda_1, \dots, \lambda_l)$. Then we have:
 - (1) $\operatorname{lcm}(\lambda_1, \dots, \widehat{\lambda_i}, \dots, \lambda_l) = M$ for all i, where $\widehat{\lambda_i}$ denotes the omission of λ_i .
 - (2) M divides n, and if g' = 0, then M = n.
 - (3) $l \neq 1$, and, if g' = 0, then $l \geq 3$.
 - (4) If 2|M, the number of $\lambda_1, \ldots, \lambda_l$ which are divisible by the maximal power of 2 dividing M is even.

(Ashikaga and Ishizaka)

Theorem (L., 2017)

Let $k \ge 6$ and $g \ge (k-1)^2 + 1$. Then $\text{Mod}(S_g)$ is generated by three elements of order k.

Also, $\operatorname{Mod}(S_g)$ is generated by four elements of order 5 when $g \geq 8$.

Strategy: (Luo, Brendle-Farb)

- 1) Find some order 2 elements.
- 2) Write a Dehn twist as a product in these.
- 3) Show that the order 2 elements generate a subgroup that puts all the Humphries curves in the same orbit.

Strategy:

(Luo, Brendle-Farb)

- 1) Find some order 2 elements.
- 2) Write a Dehn twist as a product in these.
- 3) Show that the order 2 elements generate a subgroup that puts all the Humphries curves in the same orbit.

(Luo)

$$T_d = (T_x T_a^{-1})(T_y T_b^{-1})(T_z T_c^{-1})$$

(Luo)

$$T_d = (T_x T_a^{-1})(T_y T_b^{-1})(T_z T_c^{-1})$$

$$T_x T_{a}^{-1} = T_x (f T_x^{-1} f^{-1}) = (T_x f T_x^{-1}) f^{-1}$$

(Brendle-Farb)

Fig. 4. A generating set for $Mod_{g,b}$.

Fig. 5. Two involutions generating R_g .

Strategy:

- 1) Find some order *k* elements.
- 2) Write a Dehn twist as a product in these.
- 3) Show that the order *k* elements generate a subgroup that puts all the Humphries curves in the same orbit.

k = 5

$$T_d = (T_x T_a^{-1})(T_y T_b^{-1})(T_z T_c^{-1})$$

$$T_x T_{a}^{-1} = T_x (f T_x^{-1} f^{-1}) = (T_x f T_x^{-1}) f^{-1}$$

Other groups?

Sharpening these results?

Other periodic elements?

Act 2: the hope

For $g \geq 3$ and $k \geq 3$, if a mapping class can be realized as a rotation of S_g embedded in \mathbf{R}^3 , it and three of its conjugates generate $\text{Mod}(S_g)$.

For $g \geq 3$ and $k \geq 3$, if a mapping class can be realized as a rotation of S_g embedded in \mathbf{R}^3 , it *normally generates* $\operatorname{Mod}(S_g)$.

For $g \geq 3$ and $k \geq 3$, if a mapping class can be realized as a rotation of S_g embedded in \mathbf{R}^3 , it *normally generates* $\operatorname{Mod}(S_g)$.

normal closure
$$\langle\langle g\rangle\rangle := \langle \text{ conjugates of } g \rangle$$

normal generator $\langle \langle g \rangle \rangle = G$

$$\langle\langle\rangle\rangle\rangle = \langle\langle\rangle\rangle\rangle = C_3$$

$$\langle\langle\rangle\rangle\rangle = \langle\langle\rangle\rangle\rangle = D_3$$

$$\langle\langle\rangle\rangle\rangle = D_3$$

Some normal generators

symmetric groups: transpositions braid groups: Artin generators orthogonal groups: reflections Problem: Characterize the mapping classes that normally generate $Mod(S_g)$.

reducible elements

$$\langle \langle T_c \rangle \rangle = \operatorname{Mod}(S_g)$$

$$\langle \langle T_d \rangle \rangle \neq \operatorname{Mod}(S_g)$$

reducible elements

$$\langle \langle T_c \rangle \rangle = \operatorname{Mod}(S_g)$$

$$\langle \langle T_d \rangle \rangle \neq \operatorname{Mod}(S_g)$$

$$\langle \langle T_e T_f^{-1} \rangle \rangle \neq \operatorname{Mod}(S_g)$$

periodic elements

(Korkmaz, 2005)

periodic elements

"Let's be more bold: if g > 2 and f is any element of finite order in $Mod(S_g)$, then the normal closure $\langle \langle f \rangle \rangle$ is $Mod(S_g)$. In particular, $Mod(S_g)$ is generated by elements of order |f|."

hyperelliptic involution

Obstacle:

How can you even get a handle on all the periodic elements?

- (i) (the Hurwitz formula) $2(g-1)/n = 2(g'-1) + \sum_{i=1}^{l} (1-1/\lambda_i)$.
- (ii) (Nielsen [Ni1, (4.6)]) $\sum_{i=1}^{l} \sigma_i / \lambda_i$ is an integer.
- (iii) (Wiman [W]) $n \le 4g + 2$.
- (iv) (Harvey [H]) Assume $g \ge 2$. Set $M = \text{lcm}(\lambda_1, \dots, \lambda_l)$. Then we have:
 - (1) $\operatorname{lcm}(\lambda_1, \ldots, \widehat{\lambda_i}, \ldots, \lambda_l) = M$ for all i, where $\widehat{\lambda_i}$ denotes the omission of λ_i .
 - (2) M divides n, and if g' = 0, then M = n.
 - (3) $l \neq 1$, and, if q' = 0, then $l \geq 3$.
 - (4) If 2|M, the number of $\lambda_1, \ldots, \lambda_l$ which are divisible by the maximal power of 2 dividing M is even.

Well-suited curve criteria

Well-suited curve criteria

Theorem (L.-Margalit, 2017)

For $g \geq 3$, every periodic mapping class that is not a hyperelliptic involution normally generates $\text{Mod}(S_g)$. Proof sketch

periodic elements

free action on S_g

has a non-identity power that fixes a point in S_g

Proof periodic elements sketch order 2 free action on S_g has a non-identity power that fixes a point in S_g

(Kulkarni, 1997)

periodic element with a fixed point \Longrightarrow polygon rotation representative

(Kulkarni, 1997)

periodic element with a fixed point \Longrightarrow polygon rotation representative

Consequences:

1) A new proof that the Torelli group is torsion-free!

In fact:

- 2) Every normal subgroup that does not contain the Torelli subgroup is torsion-free.
- 3) A new proof that a homomorphism between different mapping class groups must be trivial!

Theorem (Harvey-Korkmaz, 2005) Suppose $g \geq 3$ and let $0 \leq h < g$. Any homomorphism $\operatorname{Mod}(S_g) \to \operatorname{Mod}(S_h)$ has trivial image.

Proof: Where can the order 4g element go?

Act 3: the hunt

Question. Can the normal closure of a (pseudo-)Anosov map ever be all of M_g ? (Long, 1986)

Question. Can the normal closure of a (pseudo-)Anosov map ever be all of M_g ? (Long, 1986)

Answer:

Question. Can the normal closure of a (pseudo-)Anosov map ever be all of M_g ? (Long, 1986)

Answer: Yes!

(Penner, 1988)

Theorem (L.-Margalit, 2017)

For $g \geq 3$, every pseudo-Anosov element with stretch factor less than 1.1 normally generates $\text{Mod}(S_g)$.

Theorem (L.-Margalit, 2017)

For $g \geq 3$, every pseudo-Anosov element with stretch factor less than 1.1 normally generates $\text{Mod}(S_g)$.

Theorem (Farb-Leininger-Margalit, 2011)

If a pseudo-Anosov lies in the Torelli group, then its stretch fact is at least 1.2. $\frac{f \text{ with stretch factor}}{\text{less than } 3/2} \implies \frac{\text{short curve } c}{\text{with } i(c, f(c)) \le 2}$

(Farb-Leininger-Margalit, 2011)

(Farb-Leininger-Margalit, 2011)

(Farb-Leininger-Margalit, 2011)

(Farb-Leininger-Margalit, 2011)

$$i(c, f(c)) \le 2$$

$$i(c, f(c)) = 0$$
, union nonseparating $i(c, f(c)) = 0$, union separating $i(c, f(c)) = 1$ $i(c, f(c)) = 2$

$$i(c, f(c)) = 0$$
$$i(c, f(c)) = 2$$

$$i(c, f(c)) \le 2$$

$$i(c, f(c)) = 0$$
, union nonseparating $i(c, f(c)) = 0$, union separating $i(c, f(c)) = 1$ $i(c, f(c)) = 2$

$$i(c, f(c)) = 0$$
$$i(c, f(c)) = 2$$

$$i(c, f(c)) \le 2$$

c nonseparating:
$$i(c, f(c)) = 0, \text{ union nonsepar}$$

$$i(c, f(c)) = 0, \text{ union ser}$$

$$i(c, f(c)) = 0, \text{ union ser}$$

$$i(c, f(c)) = 1$$

$$i(c, f(c)) = 0$$

$$i(c, f(c)) = 0$$

 $i(c, f(c)) = 2$

c nonseparating: i(c, f(c)) = 0, union separating

c nonseparating: i(c, f(c)) = 0, union separating

$$i(c, f(c)) \le 2$$

$$i(c, f(c)) = 0$$
, union nonseparating $i(c, f(c)) = 0$, union separating $i(c, f(c)) = 1$ $i(c, f(c)) = 2$

$$i(c, f(c)) = 0$$
$$i(c, f(c)) = 2$$

$$i(c, f(c)) \le 2$$

$$i(c, f(c)) = 0$$
, union nonseparating $i(c, f(c)) = 0$, union separating $i(c, f(c)) = 1$

c separating:

i(c, f(c)) = 2

$$i(c, f(c)) = 0$$

$$i(c, f(c)) = 2$$

$$i(c, f(c)) \le 2$$

$$i(c, f(c)) = 0$$
, union nonseparating

$$i(c, f(c)) = 0$$
, union separating

$$i(c, f(c)) = 1$$

$$i(c, f(c)) = 2$$

Obstacle

$$\underline{i}(c, f(c)) = 0$$

$$i(c, f(c)) = 0$$

$$i(c, f(c)) = 2$$

Case 3:

$$i(c, f(c)) = 2$$
$$|\hat{i}|(c, f(c)) = 0$$
$$[c] \neq [f(c)]$$

Take $f^2(c)$.

Theorem (L.-Margalit, 2017)

For $g \geq 3$, every pseudo-Anosov element with stretch factor less than 1.1 normally generates $\text{Mod}(S_g)$.

Theorem (Dahmani-Guirardel-Osin, 2017)

There exist pseudo-Anosovs whose normal closures are infinitely-generated, all pseudo-Anosov free groups.

Theorem (Dahmani-Guirardel-Osin, 2017)

There exist pseudo-Anosovs whose normal closures are infinitely-generated, all pseudo-Anosov free groups.

Theorem (Dahmani-Guirardel-Osin, 2017)

There exist pseudo-Anosovs whose normal closures are infinitely-generated, all pseudo-Anosov free groups.

Normal generators for mapping class groups are abundant.

Theorem (L., 2017)

Let $k \ge 6$ and $g \ge (k-1)^2 + 1$. Then $Mod(S_g)$ is generated by three elements of order k.

Also, $\operatorname{Mod}(S_g)$ is generated by four elements of order 5 when $g \geq 8$.

Theorem (L.-Margalit, 2017)

For $g \geq 3$, every periodic mapping class that is not a hyperelliptic involution normally generates $\text{Mod}(S_q)$.

Theorem (L.-Margalit, 2017)

For $g \geq 3$, every pseudo-Anosov element with stretch factor less than 1.1 normally generates $\text{Mod}(S_q)$.

Thanks.