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Act 1: the shock
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Mod(S,) = Homeo™ (S,)/homotopy
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Dehn twist

reducible, nonperiodic reducible, periodic



Theorem (Dehn, 1938)

Dehn twists generate Mod(Sy).



Theorem (Dehn, 1938)

Dehn twists generate Mod(Sy).

Theorem (Humphries, 1979)

For g > 2, 2g + 1 Dehn twists generate Mod(.S,),
and this is sharp.
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We conclude this chapter with the following curious theorem of Feng Luo
[132]. By an involution in a group we simply mean any element of order 2.

THEOREM 7.16 For g > 3, the group Mod(Sy) is generated by finitely

many involutions.
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We conclude this chapter with the following curious theorem of Feng Luo
[132]. By an involution in a group we simply mean any element of order 2.
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Every mapping class group 1s generated
by 6 mvolutions
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7.5 GENERATING THE MAPPING CLASS GROUP WITH TORSION

We conclude this chapter with the following curious theorem of Feng Luo
[132]. By an involution in a group we simply mean any element of order 2.

THEOREM 7.16 For g > 3, the group Mod(Sy) is generated by finitely
many involutions?

Every mapping class group 1s generated
by 6 mvolutions!19?

Tara Brendle and Benson Farb



There are numbers bigger than 2.



Problem: For k > 2, can Mod(5,)
be generated by elements of order k7

How few?



Order of Number of Genus

elements elements
Brendle-Farb 2 6 >3
Kassabov 2 4 g=>




Order of Number of Genus
clements clements
Brendle-Farb 2 6 >3
Kassabov 2 4 g>
Monden 3 3 >3
4 4 >3




Order of Number of Genus
clements clements
Brendle-Farb 2 6 >3
Kassabov 2 4 >7
Monden 3 3 >
4 4 >3
Yoshihara 6 3 > 10
6 4 =5




Obstacle:
When do higher-order
elements even exist In

Mod(S,)?




Orders of torsion elements In
Mod(S;):

1,2,3,4,6,7,8,9,12, 14



Number theoretic conditions for
the existence of torsion elements
in Mod(S,)

(i) (the Hurwitz formula) 2(g— 1)/n =2(¢' = 1) + Z§=1(1 — 1/A%).

(i) (Nielsen [Nil, (4.6)) 3 i_,oi/A; is an integer.

(111) (Wiman [W]) n <4g+ 2.

(iv) (Harvey [H]) Assume g>2.8etM =lem()rq, ..., A;) Then we have:
(1) Iem(Aq,... ,A,g A;) = M for all i, where }k denotes the omission of ;.
(2) M divides n, and 1f g =0,then M = n.
(3) I#1,and,if ¢’ =0, then! > 3.
(4) If 2|M, the number of Aq,...,A; which ar¢ divisible by the maximal

power of 2 dividing M is even.

(Ashikaga and Ishizaka)



Theorem (L., 2017)

Let k> 6 and g > (k—1)* + 1.
Then Mod(S,) is generated by
three elements of order k.

Also, Mod(S,) is generated by four
elements of order 5 when g > 8.



Strategy:

(Luo, Brendle-Farb)

1) Find some order 2 elements.

2) Write a Dehn twist as a product 1n these.

3) Show that the order 2 elements generate a subgroup
that puts all the Humphries curves in the same orbit.
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(Luo)
Ty= (T, TH(T, T, (T, T 1)




(Luo)
Ty= (T, TH(T, T, (T, T 1)

Xa

T, T 1= T, (f T3f1) = (T,f T,



(Brendle-Farb)

Fig. 4. A generating set for Mod, .
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(Brendle-Farb)

d/.pz

Fig. 5. Two involutions generating Ry .



Strategy:

1) Find some order k£ elements.

2) Write a Dehn twist as a product 1n these.

3) Show that the order k£ elements generate a subgroup
that puts all the Humphries curves in the same orbit.



genus 5 genus 4






T, = (T, T, (T, T, A(T,T )

T, T 1= T, (f T3f1) = (T,f T,












Other groups?
Sharpening these results?

Other periodic elements?



Act 2: the hope



For g > 3 and £ > 3, if a mapping class can be realized
as a rotation of S, embedded in R?,
it and three of its conjugates generate Mod(S,).




For ¢ > 3 and k > 3, if a mapping class can be realized
as a rotation of S, embedded in R,
it normally generates Mod(S,).




For ¢ > 3 and k > 3, if a mapping class can be realized
as a rotation of S, embedded in R,
it normally generates Mod(S,).

normal closure

({g)) := ( conjugates of g )

normal generator

(9)) =G







Some normal generators

symmetric groups: transpositions
braid groups: Artin generators
orthogonal groups: reflections



Problem: Characterize the mapping classes
that normally generate Mod(S,).



reducible elements
C d

((Tc)) = Mod(Sy)

(T4)) 7 Mod(Sy)



reducible elements

“”
C d

(1)) = Mod(Sy)

((Ta)) # Mod(S,)

(T.T; ) # Mod(Sy)



periodic elements

(McCarthy-Papadopoulos, 1987) (Korkmaz, 2005)



periodic elements

N
G o b o o>
(McCarthy-Papadopoulos, 1987) (Korkmaz, 2005)

“Let's be more bold: if g > 2 and f is any element of finite order in Mod(S,),
then the normal closure ((f)) is Mod(S,). In particular, Mod(S,) is generated
by elements of order |f|.”



hyperelliptic involution




Obstacle:

How can you even get a handle
on all the periodic elements?

(1)
(i)
(iii)
(iv)

(the Hurwitz formula) 2(¢g—1)/n =2(¢' = 1) + Z§=1(1 = 1/x4).

(Nielsen [Nil, (4.6)]) Y_._,0i/A; is an integer.

(Wiman [W]) n <4g-+ 2.

(Harvey [H]) Assume g > 2. Set M = lcm(Aq, ... , A;). Then we have:

(1) Iem(Aq,... ,i}, ..., N) = M forall i, where ): denotes the omission of A;.

(2) M divides n, and if ¢’ = 0, then M = n.

(3) I# 1,and,if ¢ =0,thenl > 3.

(4) If 2|M, the number of Aq, ..., A; which are divisible by the maximal
power of 2 dividing M is even.



Well-suited curve criteria

c f(e) normal
ot generator

N/




Well-suited curve criteria

@ (by Luo)

¢ f(e) N normal
ot generator
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Theorem (L.-Margalit, 2017)

For g > 3, every periodic mapping class
that is not a hyperelliptic involution
normally generates Mod(S,).



Proof periodic elements

sketch \

free action on S, has a non-identity power
that fixes a point in S,
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(Kulkarni, 1997)

periodic element with a fixed point = polygon rotation representative



Proof periodic elements

sketch / \

order 2 free action on S, has a non-identity power
that fixes a point in S,

(Kulkarni, 1997)

periodic element with a fixed point = polygon rotation representative



Consequences:

1) A new proof that the Torelli group is torsion-free!

In fact:

2) Every normal subgroup that does not contain the Torelli subgroup

1s torsion-free.

3) A new proof that a homomorphism between different mapping class groups

must be triviall
Theorem (Harvey-Korkmaz, 2005)

Suppose g > 3 and let 0 < h < g.
Any homomorphism Mod(S,) — Mod(Sy) has trivial image.

Proof: Where can the order 4g element go?



Act 3: the hunt






Question. Can the normal closure of a (pseudo-)Anosov map ever be all of M,?

(Long, 1986)



Question. Can the normal closure of a (pseudo-)Anosov map ever be all of M,?

(Long, 1986)

Answer:



Question. Can the normal closure of a (pseudo-)Anosov map ever be all of M,?

(Long, 1986)

Answer: Yes!



(Penner, 1988)



Theorem (L.-Margalit, 2017)

For g > 3, every pseudo-Anosov element
with stretch factor less than 1.1
normally generates Mod(S,).



Theorem (L.-Margalit, 2017)

For g > 3, every pseudo-Anosov element
with stretch factor less than 1.1
normally generates Mod(S,).

Theorem (Farb-Leininger-Margalit, 2011)

If a pseudo-Anosov lies in the Torelli group,
then its stretch fact is at least 1.2.



f with stretch factor short curve c

less than 3/2 — with i(c, f(c)) < 2

(Farb-Leininger-Margalit, 2011)
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(Farb-Leininger-Margalit, 2011)
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(Farb-Leininger-Margalit, 2011)



f with stretch factor short curve c
less than 3/2 : with i(c, f(c)) < 2

(Farb-Leininger-Margalit, 2011)
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i(c, f(c)) <2

¢ nonseparating:

1(c, f(c)) = 0, union nonseparating
ﬁ(c, f(c)) = 0, union separating
Vile, f(e) =1

i(c, f(c)) =2

Obstacle
c separating:

Vi(e, f(e)) =0
Vi(e, f(e)) =2






i(c, f*(c)) = 0, i, fP(@) =2 — [il(c, f2(c)) = 2
apply Case 1 to (c, f%(c)) l “3 to 47
[1l(c, f2(c)) =

VN

[d] = [f*(e)], [c] # [f2(c)], :
apply Case 2 to (¢, f2(c)) “3 to 37 i

) and f2(c) are “linked” ) and f?(c) are “unlinked”
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Theorem (L.-Margalit, 2017)

For g > 3, every pseudo-Anosov element
with stretch factor less than 1.1
normally generates Mod(S,).



Theorem (Dahmani-Guirardel-Osin, 2017)

There exist pseudo-Anosovs whose normal closures
are infinitely-generated, all pseudo-Anosov free groups.
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Theorem (Dahmani-Guirardel-Osin, 2017)

There exist pseudo-Anosovs whose normal closures
are infinitely-generated, all pseudo-Anosov free groups.

large
BSOS > stretch factor
pseudo-Anosovs




Normal generators
for mapping class groups
are abundant.



Theorem (L., 2017)

A
o Let k> 6 and g > (k—1)% + 1.
= = Then Mod(S,) is generated by
(7 QS three elements of order k.

Also, Mod(S,) is generated by four
elements of order 5 when g > 8.

Theorem (L.-Margalit, 2017)

For g > 3, every periodic mapping class
that is not a hyperelliptic involution
normally generates Mod(S,).

Theorem (L.-Margalit, 2017)

For g > 3, every pseudo-Anosov element
with stretch tactor less than 1.1

normally generates Mod(S
Thanks
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