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Concordance of knots

Definition
Knots Kj, K1 — S3 are concordant if
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Definition
Knots Ky, K1 < S are concordant if there is an annulus
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Concordance of knots

Definition
Knots Ky, K1 < S are concordant if there is an annulus
A: St x| S3 x| with 9A= —Ky x {0} U K x {1}.

Warning! Whether we require a smooth or just topological(ly flat)
embedding of A matters!
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A concordance from T,3# — Ta3 to...
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A concordance from T,3# — T, 3 to the unknot!
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The concordance set

Definition }

C. := {knots in S*}/ ~,, where * = sm, top
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The concordance set monoid
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The concordance set monoid

Definition J

C. := {knots in S*}/ ~,, where * = sm, top

OB &L

Theorem (Fox-Milnor)
The map [K] + [J] := [K#J] is well-defined on C.. J
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The concordance set meneid group!
Definition J

C. := {knots in S*}/ ~,, where * = sm, top

& @ L

Theorem (Fox-Milnor)

The map [K] + [J] := [K#J] is well-defined on C... Moreover, it
induces the structure of an abelian group!

Known: C* contains a Z5° & Z*-summand.
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The concordance set meneid group!
Definition J

C. := {knots in S*}/ ~,, where * = sm, top

DD HD

Theorem (Fox-Milnor)

The map [K] + [J] := [K#J] is well-defined on C... Moreover, it
induces the structure of an abelian group!

Known: C* contains a Z5° & Z*-summand.

Unknown: Q — C,? Z, — C,, n > 27
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The satellite construction

Any P: S' < D? x S! defines a map on the set of knots in S3:
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Satellites induce maps on concordance

Proposition

Let P be any pattern and Ky and K be concordant knots.
Then P(Ky) and P(Ky) are concordant.
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Satellites induce maps on concordance

Proposition

Let P be any pattern and Ky and K be concordant knots.
Then P(Ky) and P(Ky) are concordant.

Proof.

Let A: S! x | — S3 x | be a concordance from K; to Kj.
Consider

SUx | B (D2 x SV x 1= D2 x (§' x 1) 2 y(A) C §3 x I,

and observe that this is a concordance from P(Kp) to P(Ki)! O

v
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Satellites and concordance

Motivating question: What can we say about P: C — C?
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Satellites and concordance

Motivating question: What can we say about P: C — C?
© When does P induce a surjection? injection? bijection?

© When does P induce a group homomorphism?
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Winding number
Definition

Given a pattern P, we have [P] = k[{pt} x S'] € Hy(D? x S?) for
some k € Z. We call k =: w(P) the winding number of P.
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Winding number
Definition
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Satellite maps and surjectivity

Proposition (Folklore)
If P has w(P) # =£1, then P does not induce a surjection.

Proof.

“Easy”: Uses classical invariants, e.g. Tristram-Levine signatures. [

4
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Satellite maps and surjectivity

Proposition (Folklore)
If P has w(P) # =£1, then P does not induce a surjection.

Proof.

“Easy”: Uses classical invariants, e.g. Tristram-Levine signatures. [

4

Theorem (Levine, 2014)

The Mazur pattern does not induce a surjection on Cqpy,.

Proof.
Difficult: Uses (bordered) Heegaard Floer theory! O
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Satellite maps and injectivity
Proposition (M., 2018)

For each n € N, there exist winding number 0 patterns P which
induce nonzero maps on C but for which there are at least n distinct
concordance classes Ki, . .., K, such that P(K;) is slice for all i.
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Satellite maps and injectivity
Proposition (M., 2018)

For each n € N, there exist winding number 0 patterns P which
induce nonzero maps on C but for which there are at least n distinct
concordance classes Ki, . .., K, such that P(K;) is slice for all i.

w(P)==+1 ||w(P)>1| w(P)=0

Surjective? || Not always (sm). Never Never
Sometimes.
Injective? Sometimes. 77777 Not always.

Always? 777 Ever?
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Satellite maps and injectivity
Proposition (M., 2018)

For each n € N, there exist winding number 0 patterns P which

induce nonzero maps on C but for which there are at least n distinct

concordance classes Ki, . .., K, such that P(K;) is slice for all i.
w(P) = +£1 lw(P)|>1| w(P)=0
Surjective? || Not always (sm). Never Never
Sometimes.
Injective? Sometimes. 77777 Not always.
Always? 777 Ever?

e But boring:
? |
Bijective patterns? Yes! K — K#J.
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Satellite maps and bijectivity

Theorem (M.-Piccirillo 2017)

There exist patterns P which induce bijective maps
on Cqy, and do not act by connected sum.
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Proof.

Step 1: Show that any “dualizable” P has an
inverse. [See also Gompf-Miyazaki 95].

Step 2: Compute some HF d-invariants of the dbcs
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Satellite maps and bijectivity

Theorem (M.-Piccirillo 2017)

There exist patterns P which induce bijective maps
on Cs,, and do not act by connected sum.

Proof.

Step 1: Show that any “dualizable” P has an
inverse. [See also Gompf-Miyazaki 95].

Step 2: Compute some HF d-invariants of the dbcs
of P(P~1(U)) and P~L(U)#P(U). O

Hard problem:
Do any winding number 1 patterns not act by connected sum on Cy,,?

19/30




Satellite maps and group structure on C

Question: Can a pattern induce a homomorphism on C?

20/30



Satellite maps and group structure on C

Question: Can a pattern induce a homomorphism on C?
Answer: Yes!

20/30



Satellite maps and group structure on C

Question: Can a pattern induce a homomorphism on C?

Answer: Yes!

20/30



Satellite maps and group structure on C

Question: Can a pattern induce a homomorphism on C?

Answer: Yes!

20/30



Satellite maps and group structure on C

Question: Can a pattern induce a homomorphism on C?

Answer: Yes!

K— U K— K K— K

20/30



Satellite maps and group structure on C

Question: Can a pattern induce a homomorphism on C?

Answer: Yes!

K— U K— K K— K

Conjecture (Hedden)

If P induces a homomorphism on C, then the induced map must be
K— K, K— U orK— K.
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Initial observations

Conjecture (Hedden)

If P induces a homomorphism on C, then the induced map must be
K— K, K= U, or K— K.

First obstruction:
If P(U) + U, then P does not induce a homomorphism.
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Initial observations

Conjecture (Hedden)

If P induces a homomorphism on C, then the induced map must be
K— K, K= U, or K— K.

First obstruction:
If P(U) + U, then P does not induce a homomorphism.

Proposition
If P(U) ~ U, then P induces a homomorphism on C . J

(i.e., the easily computed invariants— Ak(t), ox(w)— can't help!)
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Some results

Theorem (Gompf; Levine; Hedden)

None of the Whitehead pattern, the Mazur pattern, or the (m,1)
cable Cy,1 for m > 1 induce homomorphisms on Cqp,.
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Some results

Theorem (Gompf; Levine; Hedden)

None of the Whitehead pattern, the Mazur pattern, or the (m,1)
cable Cy,1 for m > 1 induce homomorphisms on Cqp,.

Proof.

Show that P(—T,3) is not smoothly concordant to —P(T,3) via e.g.
the 7-invariant of Heegaard Floer homology. O

v
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Some results

Theorem (Gompf; Levine; Hedden)

None of the Whitehead pattern, the Mazur pattern, or the (m,1)
cable Cy,1 for m > 1 induce homomorphisms on Cqp,.

Proof.

Show that P(—T,3) is not smoothly concordant to —P(T,3) via e.g.
the T-invariant of Heegaard Floer homology. ]
Problem

Given a pattern P with P(U) slice, find an obstruction to P inducing
a homomorphism on Cop.
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Winding number 0 case

Proposition (M.—Pinzén-Caicedo)

For any knot J, let P, be the winding number 0 pattern shown. Then
P,(U) ~ U. Also, if o,(€2>"'/3) 0, then P, does not induce a
homomorphism on Ciqp.
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Winding number 0 case

Proposition (M.—Pinzén-Caicedo)

For any knot J, let P, be the winding number 0 pattern shown. Then
P,(U) ~ U. Also, if o,(e?"/3) 0, then P, does not induce a
homomorphism on Ciqp.

)0

]

K

The knot P,(K) with a genus 1

Seifert surface.

Proof.
Q P,(U) ~ U: blue curve.
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Winding number 0 case

Proposition (M.—Pinzén-Caicedo)

For any knot J, let P, be the winding number 0 pattern shown. Then
P,(U) ~ U. Also, if o,(e?"/3) 0, then P, does not induce a
homomorphism on Ciqp.

)0

]

K

The knot P,(K) with a genus 1

Seifert surface.

Proof.
Q P,(U) ~ U: blue curve.
@ P,(J) ~ U: red curve.

Q@ Py(#"J) £ U for n>>0:
Casson-Gordon signatures.

[

vy
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Casson-Gordon signatures

( X: H1€<Z((—!>()§3—> Lo )
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Casson-Gordon signatures

K < S3 5/3_(\/K)
(x: Hﬂt(K)HZm) B
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Casson-Gordon signatures

Ko S3 S3(K) w )
| = —of |
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Casson-Gordon signatures

—_——

K — 53 Sg’(K) W )
_ E =l |
( x: H(E(K)) = Z ) ( SS%K) ) ( "

Theorem (Casson-Gordon)

The quantity o(K, x) := a(W) — o(W) is an invariant of (K, x). J
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Casson-Gordon signatures
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(X:Hl(Z(K))—>Zm>_> 4 a(jv)

Theorem (Casson-Gordon)

The quantity o(K, x) := a(W) — o(W) is an invariant of (K, x)
Moreover, if K is slice then for ‘many’ x we have o(K, x) = 0.
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Casson-Gordon signatures

K 53 SS(K) W
(X:Hl(z%)%ZJ% ! a(jv)

Theorem (Casson-Gordon)

The quantity o(K, x) := (W) — o(W) is an invariant of (K, x).
Moreover, if K is slice then for ‘many’ x we have (K, x) = 0.

(More precisely, there is a subgroup M < Hy(X(K)) such that
@ |M? = |Hi(Z(K))I.

Q@ \: Hi(X(K)) x Hi(X(K)) — Q/Z vanishes on M x M.
Q If x|m =0, then (K, x) =0.)

25 /30



Proof of Step 3.




Proof of Step 3.

We can compute that

(Z\y\\@ Hi(X(P,(K))) = Hi(X(Pu(U))) = Zs(a) & Zs(b),

=K
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Proof of Step 3.

We can compute that

@ Hi(X(P,(K))) = Hi(X(Pu(U))) = Zs(a) & Zs(b),

and for any x we have

a(Ps(K),x) = o(Pu(U), ) + 20_5(e 3X) 4 25, (e TXH)),
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Proof of Step 3.

We can compute that

K

and for any x we have

o(Ps(K), x) = o(Pu(U), x) + 20- J(e 3 X(a)) + 20K(e 3 X(b))
s0 o(Py(#"J),x) = 9(Pu(U), X) = 20,(e3)) + 2n0,("5X*)).

@ Hi(Z(Ps(K))) = Hi(X(Pu(U))) = Zs(a) @ Zs(b),
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Proof of Step 3.

We can compute that
%f Hi(Z(Py(K))) = Hi(X(Pu(V))) = Zs(a) & Zs(b),

and for any x we have

a(Py(K), x) = o(Pu(U), X) + 20_ (e 3X)) 4 20, (5 X(B)),
2mi

s0 o(Py(#7J), X) = o(Pu(U), x) — 20,(eFXD) + 200, (5 10),

So we can choose n >> 0 so that a(P,(#"J), x) = 0 only if
X(b) = 0. But such characters do not vanish on a metabolizer for the
torsion linking form. O
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Nonzero winding number case

Theorem (M.—Pinzén-Caicedo)

For each n # =£1, there exist a pattern P, of winding number n such
that P,(U) ~ U and P, does not induce a homomorphism on Ciop.
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Nonzero winding number case

Theorem (M.—Pinzén-Caicedo)

For each n # =£1, there exist a pattern P, of winding number n such
that P,(U) ~ U and P, does not induce a homomorphism on Ciop.

Proof.

@ For p|n, observe that H,(X,(P,(V))) is
generated by the lifts of 1 to X,(P,(V)).
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Proof.
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Nonzero winding number case

Theorem (M.—Pinzén-Caicedo)

For each n # =£1, there exist a pattern P, of winding number n such
that P,(U) ~ U and P, does not induce a homomorphism on Ciop.

Proof.

@ For p|n, observe that H,(X,(P,(V))) is
generated by the lifts of 1 to X,(P,(V)).

@ o(Pu(K).x) = o(Po(U). 1) + D k(e ™),

© Analyse the linking form and show that
P(K#K) « P(K)#P(K) for some K.
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The concordance set metric space

d([K],[J]) := min{g(E) : T — $3x/ with 9T = —Kx {0} LI Ix{1}}.
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The concordance set metric space

d([K],[J]) := min{g(E) : T — $3x/ with 9T = —Kx {0} LI Ix{1}}.

Question

When do P and Q induce roughly the same action on (C, d)?
i.e. When does there exist C = C(P, Q) such that

d(P(K), Q(K)) < C forall K € C.

When such a C exists, we say P and Q are ‘bounded distance’.



Winding number and metric structure

Proposition (Cochran-Harvey, 2014)
If w(P) = w(Q) then P and Q are bounded distance. J
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Take C = g(F).
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Winding number and metric structure

Proposition (Cochran-Harvey, 2014)
If w(P) = w(Q) then P and Q are bounded distance. J

Proof idea: When w(P) = w(Q), the curves P and Q are
homologous in (S x D?) x | and so cobound some surface F.
Take C = g(F).

, then P and @ are not bounded distance.

Proposition (Cochran-Harvey, 2014)
It lw(P)| # |w(Q) J

Proof idea: Show that d(P(#"T23), Q(#"T23)) — oo via
Tristram-Levine signatures.

29/30



Remaining case

Question

If P has winding number m > 0 and @ has winding number —m, are
P and Q bounded distance?
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Remaining case

Question

If P has winding number m > 0 and @ has winding number —m, are
P and Q bounded distance?

Enough: Consider P = C,1 and Q = C,;i‘{.

Theorem (M. 2018)
Let m > 0. Then for any M > 0 there exists a knot K such that

d(Cna(K), C71(K)) = 8a(Cma(K)# — CF1(K)) > M.
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Remaining case

Question

If P has winding number m > 0 and @ has winding number —m, are

P and @ bounded distance?

Enough: Consider P = C,1 and Q = C,;i‘{.

Theorem (M. 2018)
Let m > 0. Then for any M > 0 there exists a knot K such that

d(Cna(K), C71(K)) = 8a(Cma(K)# — CF1(K)) > M.

Proof.

Idea: Casson-Gordon signatures again!
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