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A concordance from T2,3#− T2,3 to...
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A concordance from T2,3#− T2,3 to...
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A concordance from T2,3#− T2,3 to the unknot!
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The concordance set

Definition

C∗ := {knots in S3}/ ∼∗, where ∗ = sm, top
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The concordance set monoid

Definition

C∗ := {knots in S3}/ ∼∗, where ∗ = sm, top

Theorem (Fox-Milnor)

The map [K ] + [J] := [K#J] is well-defined on C∗.
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The concordance set monoid group!

Definition

C∗ := {knots in S3}/ ∼∗, where ∗ = sm, top

Theorem (Fox-Milnor)

The map [K ] + [J] := [K#J] is well-defined on C∗. Moreover, it
induces the structure of an abelian group!

Known: C∗ contains a Z∞2 ⊕ Z∞-summand.

Unknown: Q ↪→ C∗? Zn ↪→ C∗, n > 2?
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The satellite construction

Any P : S1 ↪→ D2 × S1 defines a map on the set of knots in S3:

P : K 7→ P(K )
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Satellites induce maps on concordance

Proposition
Let P be any pattern and K0 and K1 be concordant knots.
Then P(K0) and P(K1) are concordant.

Proof.
Let A : S1 × I ↪→ S3 × I be a concordance from K0 to K1.
Consider

S1 × I
P×Id−−−→ (D2 × S1)× I = D2 × (S1 × I ) ∼= ν(A) ⊂ S3 × I ,

and observe that this is a concordance from P(K0) to P(K1)!
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Satellites and concordance

Motivating question: What can we say about P : C → C?

1 When does P induce a surjection? injection? bijection?

2 When does P induce a group homomorphism?
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Winding number

Definition
Given a pattern P , we have [P] = k[{pt} × S1] ∈ H1(D2 × S1) for
some k ∈ Z. We call k =: w(P) the winding number of P .

w(P) = 0 w(P) = 1 w(P) = 2
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Satellite maps and surjectivity

Proposition (Folklore)

If P has w(P) 6= ±1, then P does not induce a surjection.

Proof.
“Easy”: Uses classical invariants, e.g. Tristram-Levine signatures.

Theorem (Levine, 2014)

The Mazur pattern does not induce a surjection on Csm.

Proof.
Difficult: Uses (bordered) Heegaard Floer theory!
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Satellite maps and injectivity

Proposition (M., 2018)

For each n ∈ N, there exist winding number 0 patterns P which
induce nonzero maps on C but for which there are at least n distinct
concordance classes K1, . . . ,Kn such that P(Ki) is slice for all i .

w(P) = ±1 |w(P)| > 1 w(P) = 0
Surjective? Not always (sm). Never Never

Sometimes.
Injective? Sometimes. ????? Not always.

Always? ???? Ever?

Bijective patterns? Yes!
But boring:
K 7→ K#J .
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Satellite maps and bijectivity

Theorem (M.-Piccirillo 2017)

There exist patterns P which induce bijective maps
on Csm and do not act by connected sum.

Proof.
Step 1: Show that any “dualizable” P has an
inverse. [See also Gompf-Miyazaki 95].
Step 2: Compute some HF d-invariants of the dbcs
of P(P−1(U)) and P−1(U)#P(U).

Hard problem:
Do any winding number 1 patterns not act by connected sum on Ctop?
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Satellite maps and group structure on C

Question: Can a pattern induce a homomorphism on C?

Answer: Yes!

K 7→ U K 7→ K K 7→ K rev

Conjecture (Hedden)

If P induces a homomorphism on C, then the induced map must be
K 7→ K, K 7→ U, or K 7→ K rev .
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Initial observations

Conjecture (Hedden)

If P induces a homomorphism on C, then the induced map must be
K 7→ K, K 7→ U, or K 7→ K rev .

First obstruction:
If P(U) 6∼ U , then P does not induce a homomorphism.

Proposition

If P(U) ∼ U, then P induces a homomorphism on Calg .

(i.e., the easily computed invariants– ∆K (t), σK (ω)– can’t help!)
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Some results

Theorem (Gompf; Levine; Hedden)

None of the Whitehead pattern, the Mazur pattern, or the (m,1)
cable Cm,1 for m > 1 induce homomorphisms on Csm.

Proof.
Show that P(−T2,3) is not smoothly concordant to −P(T2,3) via e.g.
the τ -invariant of Heegaard Floer homology.

Problem
Given a pattern P with P(U) slice, find an obstruction to P inducing
a homomorphism on Ctop.
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Winding number 0 case

Proposition (M.–Pinzón-Caicedo)

For any knot J, let PJ be the winding number 0 pattern shown. Then
PJ(U) ∼ U. Also, if σJ(e2πi/3) 6= 0, then PJ does not induce a
homomorphism on Ctop.

PJ
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homomorphism on Ctop.

The knot PJ(K ) with a genus 1
Seifert surface.

Proof.
1 PJ(U) ∼ U : blue curve.

2 PJ(J) ∼ U : red curve.

3 PJ(#nJ) 6∼ U for n >> 0:
Casson-Gordon signatures.
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Casson-Gordon signatures

(
K ↪→ S3

χ : H1(Σ(K ))→ Zm

)

→

 S̃3
0 (K )
↓

S3
0 (K )

 = ∂

 W̃
↓
W


Theorem (Casson-Gordon)

The quantity σ(K , χ) := σ̃(W )− σ(W ) is an invariant of (K , χ).
Moreover, if K is slice then for ‘many’ χ we have σ(K , χ) = 0.

(More precisely, there is a subgroup M ≤ H1(Σ(K )) such that

1 |M |2 = |H1(Σ(K ))|.
2 λ : H1(Σ(K ))× H1(Σ(K ))→ Q/Z vanishes on M ×M .

3 If χ|M = 0, then σ(K , χ) = 0.)
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Proof of Step 3.

We can compute that

H1(Σ(PJ(K ))) ∼= H1(Σ(PU(U))) ∼= Z3〈a〉 ⊕ Z3〈b〉,

and for any χ we have

σ(PJ(K ), χ) = σ(PU(U), χ) + 2σ−J(e
2πi
3
χ(a)) + 2σK (e

2πi
3
χ(b)),

so σ(PJ(#nJ), χ) = σ(PU(U), χ)− 2σJ(e
2πi
3
χ(a)) + 2nσJ(e

2πi
3
χ(b)).

So we can choose n >> 0 so that σ(PJ(#nJ), χ) = 0 only if
χ(b) = 0. But such characters do not vanish on a metabolizer for the
torsion linking form.
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Nonzero winding number case

Theorem (M.–Pinzón-Caicedo)

For each n 6= ±1, there exist a pattern Pn of winding number n such
that Pn(U) ∼ U and Pn does not induce a homomorphism on Ctop.

Proof.
1 For p|n, observe that H1(Σp(Pn(U))) is

generated by the lifts of η to Σp(Pn(U)).

2 σ(Pn(K ), χ) = σ(Pn(U), χ) +

p∑
i=1

σK (e
2πi
mp
χ(η̃i )).

3 Analyse the linking form and show that
P(K#K ) 6∼ P(K )#P(K ) for some K .
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The concordance set metric space

d([K ], [J]) := min{g(Σ) : Σ ↪→ S3×I with ∂Σ = −K×{0}t J×{1}}.

Question
When do P and Q induce roughly the same action on (C, d)?
i.e. When does there exist C = C (P ,Q) such that

d(P(K ),Q(K )) ≤ C for all K ∈ C.

When such a C exists, we say P and Q are ‘bounded distance’.
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Winding number and metric structure

Proposition (Cochran-Harvey, 2014)

If w(P) = w(Q) then P and Q are bounded distance.

Proof idea: When w(P) = w(Q), the curves P and Q are
homologous in (S1 × D2)× I and so cobound some surface F .
Take C = g(F ).

Proposition (Cochran-Harvey, 2014)

If |w(P)| 6= |w(Q)|, then P and Q are not bounded distance.

Proof idea: Show that d(P(#nT2,3),Q(#nT2,3))→∞ via
Tristram-Levine signatures.
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Remaining case

Question
If P has winding number m > 0 and Q has winding number −m, are
P and Q bounded distance?

Enough: Consider P = Cm,1 and Q = C rev
m,1.

Theorem (M. 2018)

Let m > 0. Then for any M ≥ 0 there exists a knot K such that

d(Cm,1(K ),C rev
m,1(K )) = g4(Cm,1(K )#− C rev

m,1(K )) > M .

Proof.
Idea: Casson-Gordon signatures again!
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