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(Chen): labeled points in
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Difficulties:

is not a fibration for



  

Theorem (Chen Gadish L)– –



  

Theorem (Chen Gadish L)– –

For        , the forgetful map

has a continuous section
if and only if         . 



  

Idea of proof:

Classify     -equivariant sections for
                  via cohomology.

Any section for                 yields a 
point on boundary  section.“ ”

Pull back a cohomology class in two 
ways, get two different answers.



  

Things to try:

use other spaces

add more points

classify sections



  

Things to try:

use other spaces

add more points

classify sections

Thanks



Cryptographic Applications of Braids
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Cryptosystems

• Private-key cryptosystem: Alice and Bob have secret key fK , f
�1
K .

Alice wants to send the message m.

Alice sends fK (m)
Bob computes fK � f �1

K (m) = m

• Public-key cryptosystem: Bob makes fB public, keeps f �1
B secret.

Public key fB
Alice sends fB(m)
Bob computes fB � f �1

B = m



Widely used protocol

The Di�e-Hellmann key exchange protocol

• Problem: Given g x mod p for a prime p and x , g 2 Zp, compute
x .

Public key g 2 Zp

Private key Alice x 2 Zp

Private key Bob y 2 Zp

Alice sends g x

Bob sends g y

Alice & Bob computes the key K = (g y )x = (g x)y



Conjugator search problem for braids

Protocols have problems.

• The same method is used for data transfer.

• Future is quantum computers.

For solving such problems, people look for new public cryptosystems.

• New braid-base public cryptosystems are introduced.



Conjugator search problem for braids

Protocols have problems.

• The same method is used for data transfer.

• Future is quantum computers.

For solving such problems, people look for new public cryptosystems.

• New braid-base public cryptosystems are introduced.

Two braids �1, �2 are conjugate if �2 = b�1b�1 for some braid b.

• Conjugator search problem: Given two conjugate braids �1, �2,
find b such that �2 = b�1b�1.



The Anshel-Anshel-Fisher-Goldfeld Scheme

Public key braids {�1,�2, . . . ,�m} ⇢ Bn

Private key Alice a 2< �1,�2, . . . ,�m >
Private key Bob b 2< �1,�2, . . . ,�m >

Alice sends (a�1a�1, . . . , a�ma�1)
Bob sends (b�1b�1, . . . , b�mb�1)

Alice & Bob computes the key K = aba�1b�1



The Di�e-Hellmann like Scheme

• Let LBn =< �1, . . . ,�m�1 >, and UBn =< �m+1, . . . ,�n�1 > with
m = bn/2c.

Public key x 2 Bn

Private key Alice a 2 LBn

Private key Bob b 2 UBn

Alice sends axa�1

Bob sends bxb�1

Alice & Bob computes the key abxb�1a�1 = baxa�1b�1



What my student wants

• The protocols use normal form, greedy normal form of braids (from
the work of Garside and developed by Dehorny)

He wants to improve the protocols, he wants to find faster algorithms
to compute the normal forms of braids.
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What I want

I want to use Kirby Calculus in protocols.
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Contact structures on hyperbolic 3-manifolds

Hyunki Min

Georgia Tech

Joint work with James Conway



Contact structures

œ A contact structure on a 3-manifold M is a plane field

ª= kerÆ where Æ 2≠1(M), Æ^dÆ> 0.

x

y

z



Tight & overtwisted contact structures

œ An overtwisted disk is an embedded disk tangent to the

contact planes along the boundary.

œ A contact structure is called overtwisted if it contains an

overtwisted disk.

œ A contact structure is called tight if it does not contain an

overtwisted disk.

Theorem (Eliashberg 1989)
There is a one to one correspondence between overtwisted contact
structures (up to isotopy) and plane fields (up to homotopy).



Tight contact structures

Goal
Classify tight contact structures up to isotopy.

Prime manifolds
œ Seifert fibration: Many results

œ Toroidal: Many results

œ Hyperbolic: No result



Hyperbolic manifolds

Why is it hard?

œ Need a ’good’ decomposition.

œ Analyze contact structures in each piece.

œ Most decompositions for hyperbolic manifolds are not simple

enough.



Figure-8 knot

œ Surgeries on the figure-8 knot yield hyperbolic manifolds.

œ S3
r (K )\N(K§) is a punctured torus bundle over S1

with a

pseudo-Anosov monodromy.

r

K

√=
°2 1
1 1

¢



Results I

Theorem (M – Conway 2018)
There are exactly two Stein fillable and universally tight contact
structures on S3

1/n
(K ) for n<°1.



Results II

Theorem (M – Conway 2018)
Let r be a rational number. Then Sr (K ) supports

Ω
2©(r), r 2 [1,4)[ [5,1)
©(r)+™(r), r 2 (°1,°4)[ [°3,0)

tight contact structures, where

°1

r
= [r0, . . . ,rn]= r0°

1

r1° 1
...° 1

rn

,

©(r)=
ØØr0(r1+1) · · ·(rn+1)

ØØ .

™(r)=
Ω

0, r ∏°3

©(° 1
r+3), r <°3.



Thank you!
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B����� ����������� �� ������� ��������

Meier and Zupan: any closed surface in S� can be divided into three
nice sets of disks.
Theorem (Meier, Zupan)

surfaces in S�

isotopy
⇠=
triples of trivial tangles with tit̄j unlinked

some moves
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Meier and Zupan: any closed surface in S� can be divided into three
nice sets of disks.
Theorem (Meier, Zupan)

surfaces in S�

isotopy
⇠=
triples of trivial tangles with tit̄j unlinked

some moves
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L��� �������� ��� ��������

Link L �! group Kh(L)
Cobordism ⌃ : L! L0 �! map F⌃ : Kh(L) ! Kh(L0)
Not interesting for closed surfaces! (Rasmussen; Tanaka)



L��� �������� ��� ������ �����������

Question: Can we use link homology and bridge trisections to
obtain interesting invariants of knotted surfaces?



L��� �������� ��� ������ �����������

Theorem (S.)
Let t be a bridge trisection for the surface ⌃.
There is an invariant q(t) 2 Z/�Z of ⌃ de�ned using link homology.
This invariant distinguishes the unknotted sphere from spun
(�,p)-torus knots.

Uses a link homology theory due to Sarkar, Seed, Szabó (building on
Bar-Natan and also Szabó)



T�� ��� �������
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t̄�t�
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R������� ��� ���� (�,p)-����� �����?

Write Sp for the spun (�,p)-torus knot.

p p p

Lemma (S.)
q(Sp) = q(Sp��)

What’s the topological connection?



Surface case

Higher-dimensional case

Towards a higher-dimensional construction of
stable/unstable Lagrangian laminations

Sangjin Lee

University of California, Los Angeles

Tech Topology Conference, Dec 8, 2018

Sangjin Lee Stable/unstable Lagrangian laminations



Surface case

Higher-dimensional case
Background

Surface case

A surface automorphism  : S
⇠! S is of pseudo-Anosov type if

there is a transversal pair of singular foliations which are preserved
by  .

Thurston iterated  on an isotopy class of a closed curve c ⇢ S .

The sequence  n(c) can be encoded with a small amount of data
⌧ , which is called a train track.

Sangjin Lee Stable/unstable Lagrangian laminations
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Surface case

Higher-dimensional case
Background

An example of a train track

3 2

1

Sangjin Lee Stable/unstable Lagrangian laminations



Surface case

Higher-dimensional case
Background

Surface case

One can construct a geodesic lamination L from ⌧ such that
limn!1  n(c) = L.

One can extend the stable geodesic lamination to a stable singular
foliation.
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Surface case

Higher-dimensional case

Lagrangian branched submanifolds

Braids

Theorems

Generalizations of train tracks

Theorem 1 (L, in preparation.)

Let M be a symplectic manifold and let  : M
⇠! M be a symplect

automorphism of generalized Penner type.

Then there exists a Lagrangian branched submanifold B such that
if L is a Lagrangian submanifold which is carried by B ,  m(L) is carried
by B for all m 2 N.

Sangjin Lee Stable/unstable Lagrangian laminations
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Theorems

Generalizations of train tracks

Theorem 1 (L, in preparation.)

Let M be a symplectic manifold and let  : M
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Surface case

Higher-dimensional case

Lagrangian branched submanifolds

Braids

Theorems

Braids

A Lagrangian branched submanifold B has a fibered neighborhood
N(B ).

For a Lagrangian submanifold L ⇢ N(B ), L can be projected onto
B by using the fibered neighborhood structure, but unlikely the
case of surfaces, singularities occur naturally.

We defined data for L on B , which are called braids, containing
information about the singularities.

A braid is assigned on a boundary of each sector, which is a
connected component of B \ {branching loci}.

There are braid sequences corresponding to  n(L) and their limits.

One can construct a stable Lagrangian lamination from the limits of
braid sequences.

Sangjin Lee Stable/unstable Lagrangian laminations
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Surface case

Higher-dimensional case

Lagrangian branched submanifolds

Braids

Theorems

Theorems

Theorem 2 (L, in preparation.)

Let M be a symplectic manifold and let  : M
⇠! M be a symplectic

automorphism of generalized Penner type.
Then there is a Lagrangian lamination L such that
if L is a Lagrangian submanifold of M which is carried by B , then there
is a Lagrangian submanifold Lm which is Hamiltonian isotopic to  m(L) and

lim
m!1

Lm = L.

Sangjin Lee Stable/unstable Lagrangian laminations



Surface case

Higher-dimensional case

Lagrangian branched submanifolds

Braids

Theorems

Theorems

Theorem 3 (L, in preparation.)

Let  : M
⇠! M be a symplectic automorphism and let B be a Lagrangian

branched submanifold such that  (B ) is carried by B . Moreover if B 
admits a decomposition into singular and regular disks,
then there is a Lagrangian lamination L such that
if L is a Lagrangian submanifold of M which is carried by B , then there
is a Lagrangian submanifold Lm which is Hamiltonian isotopic to  m(L) and

lim
m!1

Lm = L.

Sangjin Lee Stable/unstable Lagrangian laminations



Surface case

Higher-dimensional case

Lagrangian branched submanifolds

Braids

Theorems

Theorems

Theorem 4 (L, in progress.)

Let M be a plumbing space of cotangent bundles of spheres ↵1, · · · ,↵m

and �1, · · · ,�l such that

↵i \ ↵j = ;,�i \ �j = ; for all i 6= j .

Moreover if ↵1, · · · ,↵m and �1, · · · ,�j generate the (compact) Fukaya
category of M,
then a symplectic automorphism  of generalized Penner type induces an
pseudo-Anosov autoequivalence on the (compact) Fukaya category of M.

Sangjin Lee Stable/unstable Lagrangian laminations



Orthoscheme Configuration Spaces

Michael Dougherty (Grinnell College)

December 8, 2018
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The configuration space Confn(X ) of n points in X

is the space of n-tuples in X n with distinct entries:

←→

Conf2(S1) is the interior of an annulus.



What if X is a graph? (e.g. a hexagon)

Removing the “diagonal” destroys the cell structure!



Solution: remove all cells touching the diagonal

Theorem: (Abrams ’00) The graphical configuration space is a

cube complex with CAT(0) universal cover.



What if we want a simplicial complex instead?

Idea: split each n-cube into n! orthoschemes



Again, remove all cells touching the diagonal:

The orthoscheme configuration space of two points

in an oriented hexagon is a closed annulus.





Theorem: (D-McCammond-Witzel) The orthoscheme

configuration space of k points in an oriented n-cycle is

�k−1 × S1 and its universal cover is CAT(0).

(oriented 6-cycle)

What about...any other directed graph?



Movies of singular fibrations on 4-manifolds

(in 5 minutes)

Maggie Miller

4th year Ph.D. student
Princeton University

maggiem@math.princeton.edu

December 5, 2018

Maggie Miller Princeton

Fibering 4-manifolds over S1



Definitions

Let K be a knot in S3.
Recall that K is fibered if S3 \ ⌫(K ) is fibered over S1.
K is ribbon if K bounds a ribbon disk in B4, where S3 = @B4.

(A disk D is ribbon if it has no maxima with respect to the radial
Morse function h.)
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Slice-Ribbon conjecture

Conjecture (Fox’s Slice-Ribbon conjecture, 1962)

If K bounds a disk in B4, then K bounds a ribbon disk in B4.

Possible obstruction:

Theorem (Casson-Gordon, 1983)

If K is fibered and bounds a ribbon disk D, then K bounds a disk
E in a homotopy 4-ball V 4 so that V 4 \ ⌫(E ) is fibered by
handlebodies.

My interest: Suppose V ⇠= B4. Is E = D?
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How to draw a ribbon disk

A ribbon disk D for K is defined by a set of bands attached to K .

Maggie Miller Princeton

Fibering 4-manifolds over S1



Main Theorem

Theorem (M–, 2018)

Say K is fibered and bounds ribbon disk D defined by bands bi
attached to K .

If the bi are transverse to the fibration of
S3 \ ⌫(K ), then (B4 \ ⌫(D)) is fibered by handlebodies.

Corollary

If K is fibered and bounds a ribbon disk D with two minima, then
B4 \ ⌫(D) is fibered by handlebodies.

The proof is constructive, so we can describe the handlebody in B4

explicitly.
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Main idea: movies of singular fibrations

We build a fibration F = Ft |t2[0,1] of B4 \ ⌫(D), where each Ft is
a singular fibration of h�1(t).

Maggie Miller Princeton

Fibering 4-manifolds over S1



Main idea: movies of singular fibrations

We want the fibers of Ft to be smooth 3-manifolds.

good bad good

Main content: keeping track of how these singularities resolve
(similar to Cerf theory).

Maggie Miller Princeton

Fibering 4-manifolds over S1



Build a library

We build a library of basic movies of singular fibrations on simple
4-manifolds. By composing several movies, we can fibrate
complicated 4-manifolds.

One important simple movie can cancel
singularities.

Maggie Miller Princeton
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Example: minimum movie

Given a singular fibration on B3, we build a movie of singular
fibrations on (B3 ⇥ I ) \ (trivial disk).

Maggie Miller Princeton
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Example: minimum movie
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Example: minimum movie
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Example: minimum movie
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Thanks!
A. J. Casson and C. McA. Gordon, A loop theorem for duality
spaces and fibred ribbon knots, Invent. Math. 74 (1983),
119–137.

R. H. Fox, Some problems in knot theory, Proc. Top. Inst.
(1962), 168–176.

M. Miller, Extending fibrations on knot complements to ribbon
disk complements, arXiv:1811.09639 [math.GT], Nov. 2018.

Maggie Miller Princeton

Fibering 4-manifolds over S1



Blair’s Conjecture and Contact Dynamics

Surena Hozoori

Georgia Institute of Technology



Contact Manifolds

I Let M be a closed oriented (2n+1)-manifold during this talk.

I A 1-form ↵ on M is called a (positive) contact form if

↵ ^ (d↵)n > 0.

I We call ⇠ := ker↵ a (co-orientable) contact structure on M.

I Any contact form ↵ with ker↵ = ⇠ defines a unique vector

field X↵ (Reeb vector field) such that:

i) d↵(X , .) = 0

ii) ↵(X ) = 1

I e.g: (1) ⇠n = ker(2⇡nzdx + 2⇡nzdy) on T3

I e.g. (2) ⇠strd = TS3 \ JTS3 on unit S3 in C2
and Hopf

fibration is the corresponding Reeb vector field.



Compatible Geometry of Contact Manifolds

I Now given a contact (2n+1)-manifold (M, ⇠) we can naturally

define a Riemannian metric on M by defining

g(u, v) =
1

✓0
d↵(u, Jv) + ↵(u)↵(v)

I where ↵ is a contact form (i.e. ker↵ = ⇠), ✓0 is a positive

number (”instantaneous rotation”) and J is complex structure

on ⇠ (compatible with d↵ as symplectic structure), naturally

extended to TM.

I We call such a Riemannian metric a compatible Riemannian

metric for ⇠.

I X↵ is orthonormal to ⇠ and moreover is geodesic field.

I e.g: The round metric and flat metrics are compatible with

(S3, ⇠std) and (T3, ⇠n) respectively.



Blair’s Conjecture

Blair’s Conjecture

There is no non-flat compatible metric of non-positive curvature.



Blair’s Conjecture: Previous Work

Theorem (Zeghib 95, Rukimbira 98)

A compact contact manifold cannot admit any compatible metric
of strictly negative curvature.

Theorem (Blair 76)

A contact manifold of dimension � 5 cannot admit any flat
compatible metric.

Theorem (Rukimbira 98)

Characterized flat contact manifolds in dimension 3.

Theorem (Etnyre-Komendraczyk-Massot 12, 16)

Blair’s conjecture holds for overtwisted contact manifolds.

Theorem (H. 18)

Better than Blair’s conjecture for overtwisted contact manifolds
holds!



Conley Zehnder Index and Vertical Sectional Curvatures

Theorem (H. 18)

Let g be a compatible metric for (M, ⇠), a closed contact
3-manifold, such that

k(e,X↵)  (
✓0

2
�

r
✓02

4
� Ricc(X↵))

2 for every unit vector e 2 ⇠

(in particular if the sectional curvature of any plane containing X↵

is non positive), then:

1) 2c(⇠) = 0.
2) µCZ (�) = 0 for every contractible periodic orbit � of X↵.
3) If we have strict inequality, all the periodic orbits are
non-degenerate and hyperbolic.
4) ⇠ is not overtwisted (i.e. is tight).



Remarks

I This yields Blair’s conjecture for overtwisted contact

3-manifolds.

I Also proves tightness for flat contact manifolds.

I Improves Zeghib-Rukimbira theorem for overtwisted case.

I Same proof seems to work in higher dimensions!



Thank you!


