Tant Foliations, Bsitive 3-Braids \& the L-space conjectuve by Krishna

The L-space conjecture:
suppose Ψ^{3} is closed, conncited, oriented, and irred ©HS' TFAE

1) 4 admits a taut foliation "geometry"
2) ψ is a nou-L-space "Heegoard Floer hom."
3) $\pi_{l}(\tau)$ is left-orderable "algebra"
§ Taut Folcations:
Defin: A taut foliction of a 3 -monifold Y is o particulor type of clecompositionn into codimi 1 submonifolds, called "ceaves", st. J a sc.c. γ meeting each leaf A ly

Ex Fibered 3-uff F cpt orreited conrected $\phi: F S$ a diffe

$$
M_{\phi}=F \times I /(x, 1) \sim(\phi(x), 0)
$$

non Ex: Reel comp.

$$
D^{2} \times S^{4}
$$

Claim: if F is a fol ${ }^{n}$ of $\mu^{3} \& \Rightarrow$ contains rue Reeb comp as a sub for " when 7 isn't tout
\oint L-space
Suppose Y QHs ${ }^{3}$ irred
then T is an $L-s p a c e$ if

$$
\operatorname{rh}(\widehat{H F}(\varphi ; \mathbb{E} / ट \mathbb{Z}))=\left|H_{1}(\psi ; \mathbb{Z})\right|
$$

Rmk: always " \geq "
L-spaces are simple from the Heegard Floer persp.
Ex: Leus spaces C Elliptic geometry (like P4.s.)
§ Leff-ordenability
Def": A group G is L.O. if \exists a total order ">" which is presarved by leff multislication

Fact: L.O. groups are torsion-free
\oint Evidence:
Tḧ (Ozsuáth - Szabó)
ψ adimits a taut tol $I^{\prime \prime} \Rightarrow \psi$ is a non-L-space
Thin: The L.S.C. holds for graph manitolds
Pf: Inpat from many people!
ξ Producing Non-L-spaces Via Dehu surgery
Defn: Suppose $K \subset S^{3} \quad(K \neq 0)$
K is an L-space knot of $\exists r \in \mathbb{Q}_{+}$st.
$S_{r}^{3}(\mathbb{C})$ is an (-spoce
ex: Torus kuots (Moser)
Berge Knots

K is an L-space knot \downarrow
Th" ${ }^{n}$ (Kronkermer -Marka-
Orvaíth-Staho, TesRasmussen)
K isnt an l-space hnot
\downarrow
$\forall r \in \mathbb{Q}, S_{r}^{3}(k)$ is not-L-space

Point: Regardless of K 's status $\forall r \in(-\infty, 2 g(i<)-1)$ $S_{r}{ }^{3}(K)$ is a non- L-space

The L.S.C. predicits there nifds admot TFs
$T h \underline{m}(k):$
suppose $K \subset s^{3}, K \approx \hat{\beta}, \beta \in B_{3}^{+}$
Then $\forall r \in\left(-\infty, L_{g}(K)-1\right), S_{r}^{3}$ (k) has a taut folcotion
Ex: $\quad P(-2,3,7)$
 "Fintushal-Stern" $g(k)=5$ admits Lens space suguigs \Rightarrow C-space hast

So $\forall r \in(-\infty, 7), S^{3}(k)$ is a rom- C-space closue pos 3-braid

Th " (Lidman-Moore, Baka-Moore)
Then only C-space protzeling hots are tho

$$
P(-2,3, q) \quad q \geqslant 1, \quad q \text { odd }
$$

Thence are all pos 3-braid closures!
Point: We obtain the 1占t examples of
Y is a non-l-space $\Leftrightarrow Y$ admits a TF for every note obtained by Den surgery a long an ∞ family of hyp knots
\oint Slimes of proof via brachal surface
Th m $^{\text {(Roberts }}{ }^{\prime} \mathrm{O}$ I):
$\forall r \in(-\infty, 1) \quad S_{r}^{3}(R(t \tau)$ admits taut fol - -
Pf:

a diff perspective (a la Rudolph)

$$
\begin{aligned}
K & \text { is a fibered knot } \\
X_{k} & =S^{3}-\stackrel{\circ}{\nu}(K) \\
& =F \times I / \phi \quad \phi=\tau_{b} \cdot \tau_{a}
\end{aligned}
$$

what is $\phi(\alpha)$

$$
\begin{aligned}
& \text { pushing a through }\left(X_{k}-(F \times\{0\})\right) \\
& \cong F \times I
\end{aligned}
$$

yields $\quad \alpha x I=D^{2}$
Define $S=F x\{0\} \cup D^{2}$ a 2 -complex in X_{k}

Worienting D² yields a branched surface B, locally modled by

Moreover, B meets ∂X_{K} in a tran track τ_{B}

τ_{B} carries all slopes in $(-\infty, 1)$ "recall": τ carries a sloper if a sc. of slope can be isotoped to live in $\nu(\tau)$

Ex

Port: In this case, B is lamnar (L, 'O2'O3) and so $\forall r \in(-\infty, 1), S_{r}^{3}(k)$ has an essential lamination

More work \Rightarrow promote to a taut toluation

Strategy: Build a brandied ste B u/fiba surface and clishs st
Point!
(1) laminar
this reduces (2) τ_{B} carries all slopes ($-\infty, 2(k)-1$) building tact
fol' to checking some
comb. conditions

