Ordered groups and n-dimensional dynamics

Dale Rolfsen
University of British Columbia

2019

Groups of homeomorphisms

Suppose $Y \subset X$ are topological spaces.

Groups of homeomorphisms

Suppose $Y \subset X$ are topological spaces.
$\operatorname{Homeo}(X, Y)=$ all self-homeomorphisms of X fixed on Y.

Groups of homeomorphisms

Suppose $Y \subset X$ are topological spaces.
$\operatorname{Homeo}(X, Y)=$ all self-homeomorphisms of X fixed on Y.
It's a group under composition and may have interesting subgroups $P L(X, Y)=$ all piecewise-linear homeomorphisms.

Groups of homeomorphisms

Suppose $Y \subset X$ are topological spaces.
$\operatorname{Homeo}(X, Y)=$ all self-homeomorphisms of X fixed on Y.
It's a group under composition and may have interesting subgroups
$P L(X, Y)=$ all piecewise-linear homeomorphisms.
$\operatorname{Diff}^{i}(X, Y)=$ all which are smooth of class $i=1,2, \ldots, \infty$.

Groups of homeomorphisms

Consider $\operatorname{Homeo}(I, \partial I)$, where $I=[0,1]$ and $\partial I=\{0,1\}$.

Groups of homeomorphisms

Consider $\operatorname{Homeo}(I, \partial I)$, where $I=[0,1]$ and $\partial I=\{0,1\}$. Any homeomorphism $f: I \rightarrow I$ such that $f(0)=0$ and $f(1)=1$ must be an increasing function: $x<y \Longrightarrow f(x)<f(y)$.

Groups of homeomorphisms

Consider $\operatorname{Homeo}(I, \partial I)$, where $I=[0,1]$ and $\partial I=\{0,1\}$.
Any homeomorphism $f: I \rightarrow I$ such that $f(0)=0$ and $f(1)=1$ must be an increasing function: $x<y \Longrightarrow f(x)<f(y)$.
We can argue that $\operatorname{Homeo}(I, \partial I)$ is torsion-free, that is it has no elements of finite order, as follows:

Groups of homeomorphisms

Consider Homeo $(I, \partial I)$, where $I=[0,1]$ and $\partial I=\{0,1\}$. Any homeomorphism $f: I \rightarrow I$ such that $f(0)=0$ and $f(1)=1$ must be an increasing function: $x<y \Longrightarrow f(x)<f(y)$.
We can argue that $\operatorname{Homeo}(I, \partial I)$ is torsion-free, that is it has no elements of finite order, as follows:
If f is not the identity, then there is $x \in I$ such that either $x<f(x)$ or $x>f(x)$. In the first case, we conclude that $f(x)<f^{2}(x), f^{2}(x)<f^{3}(x)$, etc. So by transitivity, $x<f^{n}(x)$ for all powers n. Similarly, in the second case, we see that $f^{n}(x) \neq x$ for all n.

Groups of homeomorphisms

In higher dimensions, we will focus upon $X=$ the n-dimensional cube I^{n}, $Y=\partial I^{n}$.

Groups of homeomorphisms

In higher dimensions, we will focus upon $X=$ the n-dimensional cube I^{n}, $Y=\partial I^{n}$.

Theorem
Homeo $\left(I^{n}, \partial I^{n}\right)$ is torsion-free. That is, it has no elements of finite order.

Groups of homeomorphisms

In higher dimensions, we will focus upon $X=$ the n-dimensional cube I^{n}, $Y=\partial I^{n}$.

Theorem
Homeo $\left(I^{n}, \partial I^{n}\right)$ is torsion-free. That is, it has no elements of finite order.
The case $n=1$ was just proven. The case $n=2$ was proved by Kerékjártó exactly a century ago.

Groups of homeomorphisms

For the general case, suppose $f: I^{n} \rightarrow I^{n}$ is a homeomorphism fixed on the boundary, and that f^{p} is the identity. We may assume p is prime.

Groups of homeomorphisms

For the general case, suppose $f: I^{n} \rightarrow I^{n}$ is a homeomorphism fixed on the boundary, and that f^{p} is the identity. We may assume p is prime.

Theorem (Smith-Borel)

Suppose X is a compact space, and $f: X \rightarrow X$ satisfies $f^{p}=1$, for p prime. Then using $\mathbb{Z} / p \mathbb{Z}$ coefficients, if X has trivial homology groups, the same is true of the set of fixed points of f.

Groups of homeomorphisms

For the general case, suppose $f: I^{n} \rightarrow I^{n}$ is a homeomorphism fixed on the boundary, and that f^{p} is the identity. We may assume p is prime.

Theorem (Smith-Borel)

Suppose X is a compact space, and $f: X \rightarrow X$ satisfies $f^{p}=1$, for p prime. Then using $\mathbb{Z} / p \mathbb{Z}$ coefficients, if X has trivial homology groups, the same is true of the set of fixed points of f.

Now ∂I^{n} represents a nontrivial $(n-1)$-cycle in $\operatorname{Fix}(f)$. If $\operatorname{Fix}(f)$ is not all of I^{n}, this cycle cannot bound in Fix (f), a contradiction. Therefore $\operatorname{Fix}(f)=I^{n}$; in other words f is the identity.

Groups of homeomorphisms

For the general case, suppose $f: I^{n} \rightarrow I^{n}$ is a homeomorphism fixed on the boundary, and that f^{p} is the identity. We may assume p is prime.

Theorem (Smith-Borel)

Suppose X is a compact space, and $f: X \rightarrow X$ satisfies $f^{p}=1$, for p prime. Then using $\mathbb{Z} / p \mathbb{Z}$ coefficients, if X has trivial homology groups, the same is true of the set of fixed points of f.

Now ∂I^{n} represents a nontrivial $(n-1)$-cycle in $\operatorname{Fix}(f)$. If $\operatorname{Fix}(f)$ is not all of I^{n}, this cycle cannot bound in $\operatorname{Fix}(f)$, a contradiction. Therefore $\operatorname{Fix}(f)=I^{n}$; in other words f is the identity.

In fact, there is a much stronger theorem for PL or smooth homeomorphisms. So we next consider souped-up versions of being torsion-free.

Orderable groups

A left-order $<$ for a group G is a strict total ordering $<$ of its elements which is invariant under multiplication on the left:

$$
g<h \Longleftrightarrow f g<f h \quad \forall f, g, h \in G
$$

Orderable groups

A left-order $<$ for a group G is a strict total ordering $<$ of its elements which is invariant under multiplication on the left:

$$
g<h \Longleftrightarrow f g<f h \quad \forall f, g, h \in G
$$

If such an ordering exists, G is left-orderable.

Orderable groups

A left-order $<$ for a group G is a strict total ordering $<$ of its elements which is invariant under multiplication on the left:

$$
g<h \Longleftrightarrow f g<f h \quad \forall f, g, h \in G
$$

If such an ordering exists, G is left-orderable. If a left-order is also right-invariant, we call it a bi-order and say that the group is bi-orderable.

Orderable groups

A left-order $<$ for a group G is a strict total ordering $<$ of its elements which is invariant under multiplication on the left:

$$
g<h \Longleftrightarrow f g<f h \quad \forall f, g, h \in G
$$

If such an ordering exists, G is left-orderable. If a left-order is also right-invariant, we call it a bi-order and say that the group is bi-orderable.
Left-orderable groups are easily seen to be torsion-free, for $1<f \Longrightarrow f<f^{2} \Longrightarrow \cdots$ so $1<f^{n}$ for all n, and similarly if $f<1$ then all powers of f are less than 1 .

Orderable groups

A left-order $<$ for a group G is a strict total ordering $<$ of its elements which is invariant under multiplication on the left:

$$
g<h \Longleftrightarrow f g<f h \quad \forall f, g, h \in G
$$

If such an ordering exists, G is left-orderable.
If a left-order is also right-invariant, we call it a bi-order and say that the group is bi-orderable.
Left-orderable groups are easily seen to be torsion-free, for $1<f \Longrightarrow f<f^{2} \Longrightarrow \cdots$ so $1<f^{n}$ for all n, and similarly if $f<1$ then all powers of f are less than 1 .
But there are many torsion-free groups which are not left-orderable.

Orderable groups

A group G is locally indicable if for every finitely generated nontrivial subgroup $H \subset G$ there is a surjective homomorphism $H \rightarrow \mathbb{Z}$.

Orderable groups

A group G is locally indicable if for every finitely generated nontrivial subgroup $H \subset G$ there is a surjective homomorphism $H \rightarrow \mathbb{Z}$.

Theorem (Burns - Hale)
Locally indicable implies left-orderable.

Orderable groups

A group G is locally indicable if for every finitely generated nontrivial subgroup $H \subset G$ there is a surjective homomorphism $H \rightarrow \mathbb{Z}$.

Theorem (Burns - Hale)
Locally indicable implies left-orderable.

Theorem (Hölder)
Bi-orderable implies locally indicable.

Orderable groups

If $(G,<)$, is a left-ordered group, define the positive cone to be

$$
P:=\{g \in G \mid g>1\} .
$$

Then (1) P is closed under multiplication and (2) for every $g \in G$ exactly one of $g \in P, g^{-1} \in P$ or $g=1$ holds.

Orderable groups

If $(G,<)$, is a left-ordered group, define the positive cone to be

$$
P:=\{g \in G \mid g>1\}
$$

Then (1) P is closed under multiplication and (2) for every $g \in G$ exactly one of $g \in P, g^{-1} \in P$ or $g=1$ holds.
Conversely, if a group G has a subset P satisfying (1) and (2), then the formula $g<h \Longleftrightarrow g^{-1} h \in P$ defines a left-ordering of G.

Orderable groups

If $(G,<)$, is a left-ordered group, define the positive cone to be

$$
P:=\{g \in G \mid g>1\} .
$$

Then (1) P is closed under multiplication and (2) for every $g \in G$ exactly one of $g \in P, g^{-1} \in P$ or $g=1$ holds.
Conversely, if a group G has a subset P satisfying (1) and (2), then the formula $g<h \Longleftrightarrow g^{-1} h \in P$ defines a left-ordering of G.
A group G is bi-orderable iff it has a subset P satisfying (1) and (2) and also (3) $g P g^{-1} \subset P$ for all $g \in G$.

Orderable groups

Local indicability, left orderability and being torsion-free are preserved under taking subgroups, and also by extensions.

Orderable groups

Local indicability, left orderability and being torsion-free are preserved under taking subgroups, and also by extensions.

That is, if

$$
1 \rightarrow K \rightarrow G \rightarrow H \rightarrow 1
$$

is a short exact sequence and K and H are locally indicable, left-orderable or torsion-free, then the same is true of G.

Orderable groups

Local indicability, left orderability and being torsion-free are preserved under taking subgroups, and also by extensions.

That is, if

$$
1 \rightarrow K \rightarrow G \rightarrow H \rightarrow 1
$$

is a short exact sequence and K and H are locally indicable, left-orderable or torsion-free, then the same is true of G.
Bi-orderability is also preserved under taking subgroups, but not necessarily under extensions.

Orderable groups

Consider the Klein bottle group $G=\left\langle x, y \mid x y x^{-1}=y^{-1}\right\rangle$.

Orderable groups

Consider the Klein bottle group $G=\left\langle x, y \mid x y x^{-1}=y^{-1}\right\rangle$.
Then y generates a normal subgroup which is infinite cyclic, and the quotient of G by this subgroup is also infinite cyclic. That is, there is an exact sequence

$$
1 \rightarrow \mathbb{Z} \rightarrow G \rightarrow \mathbb{Z} \rightarrow 1
$$

Orderable groups

Consider the Klein bottle group $G=\left\langle x, y \mid x y x^{-1}=y^{-1}\right\rangle$.
Then y generates a normal subgroup which is infinite cyclic, and the quotient of G by this subgroup is also infinite cyclic. That is, there is an exact sequence

$$
1 \rightarrow \mathbb{Z} \rightarrow G \rightarrow \mathbb{Z} \rightarrow 1
$$

While \mathbb{Z} is bi-orderable, the same cannot be said of G. If it were, then if y were greater than the identity, the relation would imply y^{-1} is also greater than the identity, a contradiction. Similarly $y<1$ would also lead to a contradiction.

Orderable groups

Consider the Klein bottle group $G=\left\langle x, y \mid x y x^{-1}=y^{-1}\right\rangle$.
Then y generates a normal subgroup which is infinite cyclic, and the quotient of G by this subgroup is also infinite cyclic. That is, there is an exact sequence

$$
1 \rightarrow \mathbb{Z} \rightarrow G \rightarrow \mathbb{Z} \rightarrow 1
$$

While \mathbb{Z} is bi-orderable, the same cannot be said of G. If it were, then if y were greater than the identity, the relation would imply y^{-1} is also greater than the identity, a contradiction. Similarly $y<1$ would also lead to a contradiction.
On the other hand, this group G is locally indicable and (hence) left-orderable and torsion-free.

Orderable groups

Orderable groups are abundant in topology.
For example, Dehornoy proved that braid groups are left-orderable.

Orderable groups

Orderable groups are abundant in topology.
For example, Dehornoy proved that braid groups are left-orderable. Fundamental groups of surfaces are all bi-orderable, with the exception of the Klein bottle (only left-orerable) and the projective plane, whose fundamental group is $\mathbb{Z} / 2 \mathbb{Z}$.

Orderable groups

Orderable groups are abundant in topology.
For example, Dehornoy proved that braid groups are left-orderable.
Fundamental groups of surfaces are all bi-orderable, with the exception of the Klein bottle (only left-orerable) and the projective plane, whose fundamental group is $\mathbb{Z} / 2 \mathbb{Z}$.
Fundamental groups of 3-manifolds which have positive first Betti number are left-orderable. As a special case, knot groups are left-orderable.

Orderable groups

Here are a few important properties of orderable groups.
Theorem
If G is left-orderable, then the group ring $\mathbb{Z} G$ has no zero divisors.

Orderable groups

Here are a few important properties of orderable groups.

Theorem
 If G is left-orderable, then the group ring $\mathbb{Z} G$ has no zero divisors.

This is conjectured to be true for torsion-free groups.
Theorem
If G is bi-orderable, and g^{m} and h^{n} commute, then so do g and h. Moreover, roots are unique: that is, if $g^{n}=h^{n}$ for some $n \neq 0$, then $g=h$.

Ordering groups of homeomorphisms

Theorem
 Homeo($I, \partial I)$ is left-orderable.

Ordering groups of homeomorphisms

Theorem

Homeo($I, \partial I)$ is left-orderable.
To see this, consider a countable dense subset r_{1}, r_{2}, \ldots of the interval $I=[0,1]$ and compare two different functions $f, g \in \operatorname{Homeo}(I, \partial I)$ by declaring that

$$
f \prec g \Longleftrightarrow f\left(r_{i}\right)<g\left(r_{i}\right)
$$

at the first i for which the values $f\left(r_{i}\right)$ and $g\left(r_{i}\right)$ differ.

Ordering groups of homeomorphisms

Theorem
If G is left-orderable and countable, then G embeds in Homeo $(I, \partial I)$.

Ordering groups of homeomorphisms

```
Theorem
If \(G\) is left-orderable and countable, then \(G\) embeds in Homeo( \(I, \partial I)\).
```

Corollary
Homeo($I, \partial I)$ is NOT bi-orderable or locally indicable.
This follows because there are many countable LO groups which are not bi-orderable or locally indicable.

Ordering groups of homeomorphisms

Theorem (Chehata)
$P L(I, \partial I)$ is bi-orderable.

Ordering groups of homeomorphisms

Theorem (Chehata)
$P L(I, \partial I)$ is bi-orderable.
One can compare two PL functions $f, g \in P L(I, \partial I)$ by examining the "first" point x_{0} (reading from the left of the interval) at which their graphs begin to differ, and declare $f \prec g$ if and only if the graph of g is above that of f just beyond that point. This is a bi-order, as this property is preserved under conjugation.

Ordering groups of homeomorphisms

Theorem (Chehata)
$P L(I, \partial I)$ is bi-orderable.
One can compare two PL functions $f, g \in P L(I, \partial I)$ by examining the "first" point x_{0} (reading from the left of the interval) at which their graphs begin to differ, and declare $f \prec g$ if and only if the graph of g is above that of f just beyond that point. This is a bi-order, as this property is preserved under conjugation.

Theorem (W. Thurston)
$\operatorname{Diff}^{1}(I, \partial I)$ is locally indicable.

Ordering groups of homeomorphisms

Theorem (Calegari - R)

Let $n \geq 1$. Then $P L\left(I^{n}, \partial I^{n}\right)$ is locally indicable, and therefore left-orderable.

Ordering groups of homeomorphisms

Theorem (Calegari - R)

Let $n \geq 1$. Then $\operatorname{PL}\left(I^{n}, \partial I^{n}\right)$ is locally indicable, and therefore left-orderable.

More generally,
Theorem (Calegari - R)
If M is a connected $P L$ n-manifold and $B \subset M$ a proper $P L$ submanifold of codimension 0 or 1 , then $P L(M, B)$ is locally indicable.

Proof that $P L\left(I^{n}, \partial I^{n}\right)$ is locally indicable

Lemma

Let G be the subgroup of $G L(n, \mathbb{R})$ consisting of all linear maps which pointwise fix an $n-1$ dimensional subspace S of \mathbb{R}^{n} and preserve orientation. Then G is locally indicable.

Proof that $P L\left(I^{n}, \partial I^{n}\right)$ is locally indicable

Lemma

Let G be the subgroup of $G L(n, \mathbb{R})$ consisting of all linear maps which pointwise fix an $n-1$ dimensional subspace S of \mathbb{R}^{n} and preserve orientation. Then G is locally indicable.

Proof: With appropriate basis, G is the group of matrices $\left(\begin{array}{cc}I d & v \\ 0 & r\end{array}\right)$

where $I d$ is the $(n-1) \times(n-1)$ identity matrix, $v \in \mathbb{R}^{n-1}$ is an arbitrary (column) vector and $r \in \mathbb{R}, r>0$.

Proof that $P L\left(I^{n}, \partial I^{n}\right)$ is locally indicable

Lemma

Let G be the subgroup of $G L(n, \mathbb{R})$ consisting of all linear maps which pointwise fix an $n-1$ dimensional subspace S of \mathbb{R}^{n} and preserve orientation. Then G is locally indicable.

Proof: With appropriate basis, G is the group of matrices $\left(\begin{array}{cc}I d & v \\ 0 & r\end{array}\right)$

where $I d$ is the $(n-1) \times(n-1)$ identity matrix, $v \in \mathbb{R}^{n-1}$ is an arbitrary (column) vector and $r \in \mathbb{R}, r>0$. Determinant maps G to \mathbb{R}_{+}and we have an exact sequence $1 \rightarrow \mathbb{R}^{n-1} \rightarrow G \rightarrow \mathbb{R}_{+} \rightarrow 1 \quad \square$

Proof that $P L\left(I^{n}, \partial I^{n}\right)$ is locally indicable

To see that $P L\left(I^{n}, \partial I^{n}\right)$ is locally indicable, consider a finitely-generated nontrivial subgroup $H=\left\langle h_{1}, \ldots h_{k}\right\rangle$. The set $\operatorname{Fix}(H)$ of points fixed by all of H is the intersection of the $\operatorname{Fix}\left(h_{i}\right)$, and therefore a polyhedron containing ∂I^{n}.

Proof that $P L\left(I^{n}, \partial I^{n}\right)$ is locally indicable

To see that $P L\left(I^{n}, \partial I^{n}\right)$ is locally indicable, consider a finitely-generated nontrivial subgroup $H=\left\langle h_{1}, \ldots h_{k}\right\rangle$. The set Fix (H) of points fixed by all of H is the intersection of the $\operatorname{Fix}\left(h_{i}\right)$, and therefore a polyhedron containing ∂I^{n}.
Choose a point p which is in the interior of an ($\mathrm{n}-1$)-dimensional face of Fix (H), and let G be the group of germs of functions in H at p. These are linear, fix an ($n-1$)-dimensional hyperplane and preserve orientation.

Proof that $P L\left(I^{n}, \partial I^{n}\right)$ is locally indicable

To see that $P L\left(I^{n}, \partial I^{n}\right)$ is locally indicable, consider a finitely-generated nontrivial subgroup $H=\left\langle h_{1}, \ldots h_{k}\right\rangle$. The set Fix (H) of points fixed by all of H is the intersection of the $\operatorname{Fix}\left(h_{i}\right)$, and therefore a polyhedron containing ∂I^{n}.
Choose a point p which is in the interior of an ($\mathrm{n}-1$)-dimensional face of Fix (H), and let G be the group of germs of functions in H at p. These are linear, fix an ($n-1$)-dimensional hyperplane and preserve orientation. There is a nontrivial homomorphism $H \rightarrow G$, and G was just shown to be locally indicable. It follows that there is a nontrivial homomorphism $H \rightarrow \mathbb{Z}$.

$P L\left(I^{n}, \partial I^{n}\right)$ not biorderable in general

Proposition

$P L\left(I^{2}, \partial I^{2}\right)$ is NOT bi-orderable.
To show this, we construct two functions $f, g \in P L\left(I^{2}, \partial I^{2}\right)$ with the property that $f g f^{-1}=g^{-1}$. Such an equation cannot hold, for $g \neq 1$, in a bi-orderable group, as discussed earlier.

$P L\left(I^{n}, \partial I^{n}\right)$ not biorderable in general

Proposition

$P L\left(I^{2}, \partial I^{2}\right)$ is NOT bi-orderable.
To show this, we construct two functions $f, g \in P L\left(I^{2}, \partial I^{2}\right)$ with the property that $f g f^{-1}=g^{-1}$. Such an equation cannot hold, for $g \neq 1$, in a bi-orderable group, as discussed earlier.
We will take f to be a PL map fixed on the outer square ∂I^{2} and rotating an interior square of half the size by 180 degrees. For example, we can use $f=h^{6}$, where h is as follows.

$P L\left(I^{n}, \partial I^{n}\right)$ not biorderable in general

A PL map $h: I^{2} \rightarrow I^{2}$, with the property that $f=h^{6}$ rotates the inner square by 180 degrees.

$P L\left(I^{n}, \partial I^{n}\right)$ not biorderable in general

Define the function $g: I^{2} \rightarrow I^{2}$ to be the identity, except on two small squares as illustrated. On one square take g to be a suitably scaled version of h. On the other take g to be h^{-1}. Then $f g f^{-1}=g^{-1}$

$P L\left(I^{n}, \partial I^{n}\right)$ not biorderable in general

Proposition

There is an isomorphic embedding of groups $\operatorname{Homeo}\left(I^{n}, \partial I^{n}\right) \rightarrow \operatorname{Homeo}\left(I^{n+1}, \partial I^{n+1}\right)$ and $P L\left(I^{n}, \partial I^{n}\right) \rightarrow P L\left(I^{n+1}, \partial I^{n+1}\right)$.

$P L\left(I^{n}, \partial I^{n}\right)$ not biorderable in general

Proposition

There is an isomorphic embedding of groups $\operatorname{Homeo}\left(I^{n}, \partial I^{n}\right) \rightarrow \operatorname{Homeo}\left(I^{n+1}, \partial I^{n+1}\right)$ and $P L\left(I^{n}, \partial I^{n}\right) \rightarrow P L\left(I^{n+1}, \partial I^{n+1}\right)$.

Conclusion

Recall the implications, for a group: Biorderable \Longrightarrow locally indicable \Longrightarrow left-orderable \Longrightarrow torsion-free.

Conclusion

Recall the implications, for a group: Biorderable \Longrightarrow locally indicable \Longrightarrow left-orderable \Longrightarrow torsion-free. We saw that $P L(I, \partial I)$ is bi-orderable, $\operatorname{Diff}^{1}(I, \partial I)$ is locally-indicable and Homeo($I, \partial I)$ is left-orderable.

Conclusion

Recall the implications, for a group: Biorderable \Longrightarrow locally indicable \Longrightarrow left-orderable \Longrightarrow torsion-free. We saw that $P L(I, \partial I)$ is bi-orderable, $\operatorname{Diff}^{1}(I, \partial I)$ is locally-indicable and Homeo($I, \partial I)$ is left-orderable. In higher dimensions, $P L\left(I^{n}, \partial I^{n}\right)$ is locally-indicable, but not bi-orderable. A similar conclusion is true for $\operatorname{Diff}^{1}\left(D^{n}, S^{n-1}\right)$.

Conclusion

Recall the implications, for a group: Biorderable \Longrightarrow locally indicable \Longrightarrow left-orderable \Longrightarrow torsion-free. We saw that $P L(I, \partial I)$ is bi-orderable, $\operatorname{Diff}^{1}(I, \partial I)$ is locally-indicable and Homeo($I, \partial I)$ is left-orderable. In higher dimensions, $P L\left(I^{n}, \partial I^{n}\right)$ is locally-indicable, but not bi-orderable. A similar conclusion is true for $\operatorname{Diff}^{1}\left(D^{n}, S^{n-1}\right)$.

It had long been an open question whether $\operatorname{Homeo}\left(I^{2}, \partial I^{2}\right)$ is left-orderable.

Conclusion

Recently, James Hyde showed that these higher-dimensional results do not hold for the topological category.

Theorem (Hyde)

The group Homeo $\left(I^{2}, \partial I^{2}\right)$ is not left-orderable. Therefore the same is true for Homeo($\left.I^{n}, \partial I^{n}\right)$ for all $n \geq 2$.

Conclusion

Recently, James Hyde showed that these higher-dimensional results do not hold for the topological category.

Theorem (Hyde)

The group Homeo $\left(I^{2}, \partial I^{2}\right)$ is not left-orderable. Therefore the same is true for Homeo($\left.I^{n}, \partial I^{n}\right)$ for all $n \geq 2$.

His proof is to construct a family of homeomorphisms of I^{2}, fixed on the boundary, which obey a certain relation in the group $\operatorname{Homeo}\left(I^{2}, \partial I^{2}\right)$. Then he argues that such a relation cannot hold in a left-orderable group.

Thank you!

