## Lightning Talks III Tech Topology Conference

 December 8, 2019
# Statistics of <br> Random Square-tiled Surfaces 

Sunrose Shrestha
Tufts University

## Square-tiled Surfaces (STSs)

Finite collection of axis parallel Euclidean unit squares, glued edge-to-edge via translations.

## Square-tiled Surfaces (STSs)

Finite collection of axis parallel Euclidean unit squares, glued edge-to-edge via translations.


## Square-tiled Surfaces (STSs)

Finite collection of axis parallel Euclidean unit squares, glued edge-to-edge via translations.


## Cone points

STSs are flat except for finitely many points, called cone points / singularities with angle $2 \pi(k+1)$ for $k \geq 1$

## Cone points

STSs are flat except for finitely many points, called cone points / singularities with angle $2 \pi(k+1)$ for $k \geq 1$


## Saddle Connection/Holonomy Vector

## Saddle Connection/Holonomy Vector



## Saddle Connection/Holonomy Vector



## Saddle Connection/Holonomy Vector


$(1,1)$
$(2,1)$
$(1,2)$

## Saddle Connection/Holonomy Vector


$(1,1)$
$(2,1)$
$(1,2)$
$\operatorname{Hol}(S)$ for holonomy vectors of S . Note: $\operatorname{Hol}(S) \subset \mathbb{Z}^{2}$

## Holonomy Examples

$\operatorname{Hol}\left(\mathbb{T}^{2}\right)=\left\{(p, q) \in \mathbb{Z}^{2} \mid \operatorname{gcd}(p, q)=1\right\}=: \operatorname{RP}$

## Holonomy Examples

$\operatorname{Hol}\left(\mathbb{T}^{2}\right)=\left\{(p, q) \in \mathbb{Z}^{2} \mid \operatorname{gcd}(p, q)=1\right\}=: \operatorname{RP}$

But not the case for the following surface:


## Random STS model

STS with $n$ labeled squares $\leftrightarrow$ a pair in $S_{n} \times S_{n}$

## Random STS model

STS with $n$ labeled squares $\leftrightarrow$ a pair in $S_{n} \times S_{n}$


## Random STS model

STS with $n$ labeled squares $\leftrightarrow$ a pair in $S_{n} \times S_{n}$


## Random STS model

STS with $n$ labeled squares $\leftrightarrow$ a pair in $S_{n} \times S_{n}$


Topology Result

## Topology Result

Theorem 1 (Lechner, S): The expected genus of a random STS is,

## Topology Result

Theorem 1 (Lechner, S): The expected genus of a random STS is,

$$
\mathbb{E}(\text { genus })=\frac{n}{2}-\frac{\ln n}{2}-\gamma+o(1)
$$

## Topology Result

Theorem 1 (Lechner, S): The expected genus of a random STS is,

$$
\mathbb{E}(\text { genus })=\frac{n}{2}-\frac{\ln n}{2}-\gamma+o(1)
$$

Note:

## Topology Result

Theorem 1 (Lechner, S): The expected genus of a random STS is,

$$
\mathbb{E}(\text { genus })=\frac{n}{2}-\frac{\ln n}{2}-\gamma+o(1)
$$

Note:

- In fact, distribution is asymptotically normal.


## Topology Result

Theorem 1 (Lechner, S): The expected genus of a random STS is,

$$
\mathbb{E}(\text { genus })=\frac{n}{2}-\frac{\ln n}{2}-\gamma+o(1)
$$

Note:

- In fact, distribution is asymptotically normal.
- My method generalizes to other even-gontiled surfaces.


## Geometry Result

## Geometry Result

Theorem 2 (S): For a random $n$-square-tiled surface, $S$

## Geometry Result

Theorem 2 (S): For a random $n$-square-tiled surface, $S$

$$
\operatorname{Pr}(S \text { has } \operatorname{Hol}(S)=\mathrm{RP}) \rightarrow 1 / e \text { as } n \rightarrow \infty
$$

## Geometry Result

Theorem 2 (S): For a random $n$-square-tiled surface, $S$

$$
\operatorname{Pr}(S \text { has } \operatorname{Hol}(S)=\mathrm{RP}) \rightarrow 1 / e \text { as } n \rightarrow \infty
$$

$$
\operatorname{Pr}(S \text { has } \operatorname{Hol}(S) \supset \mathrm{RP}) \rightarrow 1 \text { as } n \rightarrow \infty
$$

## Demo!

(time permitting..)

Thank You!

# The Word Problem for ART ( $\widetilde{A}_{2}$ ) Tech Topology Conference, Georgia Institute of Technology 

Ashlee Kalauli

## December 8, 2019

## The Word Problem for Artin Groups

## The Word Problem: (Dehn 1910)

Given a group $G=\langle S \mid R\rangle$ with a finite generating set $S$ and relations $R$, can you decide which words are equivalent to the identity?

The Word Problem for ART $\left(\widetilde{A_{2}}\right)$

## The Word Problem for Artin Groups

## The Word Problem: (Dehn 1910)

Given a group $G=\langle S \mid R\rangle$ with a finite generating set $S$ and relations $R$, can you decide which words are equivalent to the identity?

- Example: $\operatorname{Art}\left(\widetilde{A_{2}}\right)$


The Word Problem for ART $\left(\widetilde{A_{2}}\right)$

## The Word Problem for Artin Groups

## The Word Problem: (Dehn 1910)

Given a group $G=\langle S \mid R\rangle$ with a finite generating set $S$ and relations $R$, can you decide which words are equivalent to the identity?

- Example: $\operatorname{Art}\left(\widetilde{A_{2}}\right)$


$$
\operatorname{ART}\left(\widetilde{A_{2}}\right)=\langle a, b, c \mid a b a=b a b, b c b=c b c, a c a=c a c\rangle
$$

The Word Problem for ART $\left(\widetilde{A_{2}}\right)$

## A Solution

## Theorem (McCammond, Sulway, 2017):

$\operatorname{ArT}\left(\widetilde{A_{2}}\right)$ is a torsion-free, centerless group with a solvable word problem.

The Word Problem for ART $\left(\widetilde{A_{2}}\right)$

## A Solution

## Theorem (McCammond, Sulway, 2017):

$\operatorname{ArT}\left(\widetilde{A_{2}}\right)$ is a torsion-free, centerless group with a solvable word problem.

$$
\begin{array}{rlll}
\operatorname{ART}\left(\widetilde{A_{2}}\right) & \cong & \operatorname{ART}^{*}\left(\widetilde{A_{2}}, w\right) & \hookrightarrow \operatorname{GAR}\left(\widetilde{A_{2}}, w\right) \\
\downarrow & \downarrow \\
\operatorname{Cox}\left(\widetilde{A_{2}}\right) & \cong \operatorname{Cox}\left(\widetilde{A_{2}}, w\right) & \hookrightarrow \operatorname{CRYst}\left(\widetilde{A_{2}}, w\right)
\end{array}
$$

The Word Problem for ART $\left(\widetilde{A_{2}}\right)$

## A Solution



Ashlee Kalauli
The Word Problem for ART $\left(\widetilde{A_{2}}\right)$

## A Solution



Ashlee Kalauli
The Word Problem for ART $\left(\widetilde{A_{2}}\right)$

## A Solution



Ashlee Kalauli
The Word Problem for ART $\left(\widetilde{A_{2}}\right)$

## A Solution



Ashlee Kalauli
The Word Problem for ART $\left(\widetilde{A_{2}}\right)$

## A Solution



Ashlee Kalauli
The Word Problem for ART $\left(\widetilde{A_{2}}\right)$

## A Solution



Ashlee Kalauli
The Word Problem for ART $\left(\widetilde{A_{2}}\right)$

## A Solution



Ashlee Kalauli
The Word Problem for ART $\left(\widetilde{A_{2}}\right)$

## A Solution



Ashlee Kalauli
The Word Problem for ART $\left(\widetilde{A_{2}}\right)$

## A Solution



Ashlee Kalauli
The Word Problem for ART $\left(\widetilde{A_{2}}\right)$

## A Solution



Ashlee Kalauli
The Word Problem for ART $\left(\widetilde{A_{2}}\right)$

A Solution


Ashlee Kalauli
The Word Problem for ART $\left(\widetilde{A_{2}}\right)$

## A New Solution

- This infinite generating set is a poset under left division leading to a normal form that solves the word problem.


## A New Solution

- This infinite generating set is a poset under left division leading to a normal form that solves the word problem.
- GOAL: Write finite state automata that will solve the word problem for $\operatorname{ART}\left(\widetilde{A_{2}}\right)$ with its classical presentation.

The Word Problem for ART $\left(\widetilde{A_{2}}\right)$

## References

- N. Brady and J. McCammond. Factoring euclidean isometries, Int. J. of Alg. and Comp. 25 (2015), 325 -347.
- J. McCammond. Dual euclidean Artin groups and the failure of the lattice property, J. of Alg. 437 (2015), 308 - 343.
- J. McCammond and R. Sulway. Artin groups of euclidean type. Math. Fors. Ober. Rep. 49 (2012), 2964 - 2966.
- P. Dehornoy and L. Paris. Gaussian groups and Garside groups, Proc. London Math. Soc. 79(3) (1999), 569 - 604.
- F.A. Garside. The braid group and other groups, Quart. J. Math. Oxford Ser., 20(2) (1969), 235 -254.


## Thank You!

## Mahalo!

The Word Problem for ART $\left(\widetilde{A_{2}}\right)$

## Small Seifert Fibered Zero Surgery

Peter Johnson
December 2019

University of Virginia

## Small Seifert Fiber Spaces

## Notation

Let $S^{2}\left(\frac{\alpha_{1}}{\beta_{1}}, \frac{\alpha_{2}}{\beta_{2}}, \frac{\alpha_{3}}{\beta_{3}}\right)$ be the Seifert fiber space with base orbifold $S^{2}$ and 3 critical fibers with corresponding Seifert invariants $\frac{\alpha_{1}}{\beta_{1}}, \frac{\alpha_{2}}{\beta_{2}}, \frac{\alpha_{3}}{\beta_{3}}$.

## Small Seifert Fiber Spaces

## Notation

Let $S^{2}\left(\frac{\alpha_{1}}{\beta_{1}}, \frac{\alpha_{2}}{\beta_{2}}, \frac{\alpha_{3}}{\beta_{3}}\right)$ be the Seifert fiber space with base orbifold $S^{2}$ and 3 critical fibers with corresponding Seifert invariants $\frac{\alpha_{1}}{\beta_{1}}, \frac{\alpha_{2}}{\beta_{2}}, \frac{\alpha_{3}}{\beta_{3}}$.

Figure 1: A surgery description of $S^{2}\left(\frac{\alpha_{1}}{\beta_{1}}, \frac{\alpha_{2}}{\beta_{2}}, \frac{\alpha_{3}}{\beta_{3}}\right)$


## Surgery Questions

Question 1
Which $S^{2}\left(\frac{\alpha_{1}}{\beta_{1}}, \frac{\alpha_{2}}{\beta_{2}}, \frac{\alpha_{3}}{\beta_{3}}\right)$ can be obtained by 0 -surgery on a knot in $S^{3}$ ?

## Surgery Questions

## Question 1

Which $S^{2}\left(\frac{\alpha_{1}}{\beta_{1}}, \frac{\alpha_{2}}{\beta_{2}}, \frac{\alpha_{3}}{\beta_{3}}\right)$ can be obtained by 0 -surgery on a knot in $S^{3}$ ?

Question 2
What obstructions are there to $S^{2}\left(\frac{\alpha_{1}}{\beta_{1}}, \frac{\alpha_{2}}{\beta_{2}}, \frac{\alpha_{3}}{\beta_{3}}\right)$ being 0 -surgery on a knot in $S^{3}$ ?

## Examples

Torus knots have Seifert fibered complement. In particular, by work of Moser (1971), 0-surgery on a torus knot is Seifert fibered.

## Examples

Torus knots have Seifert fibered complement. In particular, by work of Moser (1971), 0-surgery on a torus knot is Seifert fibered. Example (0-surgery on $T_{5,2}$ )


## Examples

## Theorem (Ichihara - Motegi - Song 2008)

There exists an infinite family of hyperbolic knots $K_{n}$ with small Seifert fibered 0 -surgery, where $n \in \mathbb{Z} \backslash\{0,-1,-2\}$.

Figure 2: The knot $K_{n}$ is the image of blue curve after performing the corresponding surgeries on the other 3 link components.


## Examples

## Example ( $n=1$ )

Figure 3: After performing surgery on the link to the left, the image of the blue curve becomes $K_{1} \subset S^{3}$.


## Examples

## Example ( $n=1$, continued)



## Examples

## Proposition (J. 2019)

There exists an infinite two parameter family of knots $K_{m, n}$ (extending the I-M-S knots) with small Seifert fibered 0-surgery.

Figure 4: The knot $K_{m, n}$ is the image of blue curve after performing the corresponding surgeries on the other 3 link components. Here, $m, n \in \mathbb{Z}$ such that $n \notin\{0,-1\}, m \neq 0,1+m+n \neq 0$, and $(m-n)^{2}$ divides $(1+m+n)$. Note, $K_{n+1, n}=K_{n}$.


## Obstructions

## Basic Algebraic Topological Obstructions

 If $Y$ is obtained by 0 -surgery on a knot in $S^{3}$, then $\pi_{1}(Y)$ has weight 1 , i.e. $\pi_{1}(Y)$ is normally generated by a single element. Also, $H_{1}(Y ; \mathbb{Z}) \cong \mathbb{Z}$.
## Obstructions

## Basic Algebraic Topological Obstructions

 If $Y$ is obtained by 0 -surgery on a knot in $S^{3}$, then $\pi_{1}(Y)$ has weight 1 , i.e. $\pi_{1}(Y)$ is normally generated by a single element. Also, $H_{1}(Y ; \mathbb{Z}) \cong \mathbb{Z}$.
## Rohlin Invariant

Theorem (Hedden - Kim - Mark - Park 2018)
If an integral homology $S^{1} \times S^{2}$ has two non-trivial Rohlin invariants, then it is not obtained by surgery on a knot in $S^{3}$.

## Obstructions

Basic Algebraic Topological Obstructions If $Y$ is obtained by 0 -surgery on a knot in $S^{3}$, then $\pi_{1}(Y)$ has weight 1 , i.e. $\pi_{1}(Y)$ is normally generated by a single element. Also, $H_{1}(Y ; \mathbb{Z}) \cong \mathbb{Z}$.

## Rohlin Invariant

Theorem (Hedden - Kim - Mark - Park 2018)
If an integral homology $S^{1} \times S^{2}$ has two non-trivial Rohlin invariants, then it is not obtained by surgery on a knot in $S^{3}$.

Theorem (Hedden - Kim - Mark - Park 2018)
For all positive integers $k, S^{2}\left(-\frac{2}{1}, \frac{-8 k+1}{1}, \frac{-16 k+2}{-8 k-1}\right)$ is irreducible, has weight 1 fundamental group, and cannot be obtained by 0 -surgery on a knot in $S^{3}$.

## Obstructions

Heegaard Floer Homology
Theorem 1 (Ozsváth - Szabó 2001)
If $Y$ is obtained by 0 -surgery on a knot in $S^{3}$, then

$$
\begin{equation*}
-\frac{1}{2} \leq d_{-1 / 2}(Y) \quad \text { and } \quad d_{1 / 2}(Y) \leq \frac{1}{2} \tag{1}
\end{equation*}
$$

## Obstructions

Heegaard Floer Homology
Theorem 1 (Ozsváth - Szabó 2001)
If $Y$ is obtained by 0 -surgery on a knot in $S^{3}$, then

$$
\begin{equation*}
-\frac{1}{2} \leq d_{-1 / 2}(Y) \quad \text { and } \quad d_{1 / 2}(Y) \leq \frac{1}{2} \tag{1}
\end{equation*}
$$

Unfortunately, by the following theorem, we cannot use this to obstruct a Seifert fibered homology $S^{1} \times S^{2}$ from being 0-surgery on a knot in $S^{3}$.

Theorem 2 (Hedden - Kim - Mark - Park 2018)
Suppose $M$ is homology cobordant to a Seifert fibered homology $S^{1} \times S^{2}$. Then, (1) also holds for $M$.

## Obstructions

## Work in Progress

A potential strategy to obtain another obstruction:

## Obstructions

## Work in Progress

A potential strategy to obtain another obstruction:

- We can prove an analog of the $d$-invariant bounds from Theorem 1 for involutive Heegaard Floer homology.


## Obstructions

## Work in Progress

A potential strategy to obtain another obstruction:

- We can prove an analog of the $d$-invariant bounds from Theorem 1 for involutive Heegaard Floer homology.
- However, the analog of Theorem 2 is not clear in the involutive setting. One may hope that, in fact, the analog of Theorem 2 for involutive Heegaard Floer homology does not hold. This would then provide an obstruction to a Seifert fibered homology $S^{1} \times S^{2}$ being 0-surgery on a knot in $S^{3}$.


## References

國 M．Hedden，M．H．Kim，T．E．Mark，K．Park，Irreducible 3－manifolds that cannot be obtained by 0 －surgery on a knot．Trans．Amer．Math． Soc． 372 （2019），no．11，7619－7638
E．Hendricks and C．Manolescu，Involutive Heegaard Floer homology．Duke Math．J． 166 （2017），no．7，1211－1299．
围 K．Ichihara，K．Motegi，H．Song，Seifert fibered slopes and boundary slopes on small hyperbolic knots．Bull．Nara Univ．Ed．Natur．Sci． 57 （2008），no．2，21－25．
R
L．Moser，Elementary surgery along a torus knot．Pacific J．Math． 38 （1971），737－745．
R．Ozsváth and Z．Szabó，Absolutely graded Floer homologies and intersection forms for four manifolds with boundary．Adv．Math 173 （2003），no．2，179－261．

䡒 F．Swenton，KLO，http：／／klo－software．net

# TIGHT CONTACT STRUCTURES ON THE BRIESKORN HOMOLOGY SPEHERES $\Sigma(2,3,6 n+1)$ 

## Kürșat Yılmaz

The University of Toledo, Ohio

December 08, 2019

## Question

## Question

Can we find the exact number of tight contact structures on a given 3 manifold?

## Question

## Question

Can we find the exact number of tight contact structures on a given 3 manifold?

Not always!

## Constructing and Counting the Tight Contact Structures

## Theorem (Mark, Tosun 2018) <br> The Brieskorn homology spheres $\Sigma(2,3,6 n+1)$ has exactly two tight contact structures for any $n \geq 1$.

## Constructing and Counting the Tight Contact Structures

## Sketch of Proof:

We start with the basic surgery description of $\Sigma(2,3,6 n+1)$. To find the Seifert invariants we begin with solving the equation

$$
3(6 n+1) b_{1}+2(6 n+1) b_{2}+6 b_{3}=1
$$

for the integers $b_{1}, b_{2}$ and $b_{3}$. To make it simple let us take $b_{1}=1, b_{2}=-1$ and $b_{3}=-n$.

## Constructing and Counting the Tight Contact Structures



Figure 1: Surgery description of $\Sigma(2,3,6 n+1)$

## Constructing and Counting the Tight Contact Structures



Figure 2: Non-isotopic tight contact structures on $\Sigma(2,3,6 n+1)$

## Question

## Question

How do we find the upper bound?

## Question

## Question

How do we find the upper bound?

By using Honda's bypass technique!

## Constructing and Counting the Tight Contact Structures



Figure 3: Slope of the dividing curves of abstract solid torus

## Constructing and Counting the Tight Contact Structures

The attaching maps are can be given as

$$
A_{1}=\left(\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right), A_{2}=\left(\begin{array}{cc}
3 & 1 \\
-1 & 0
\end{array}\right), A_{3}=\left(\begin{array}{cc}
6 n+1 & 6 n-5 \\
-n & -n+1
\end{array}\right) .
$$

## Constructing and Counting the Tight Contact Structures

The attaching maps are can be given as

$$
A_{1}=\left(\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right), A_{2}=\left(\begin{array}{cc}
3 & 1 \\
-1 & 0
\end{array}\right), A_{3}=\left(\begin{array}{cc}
6 n+1 & 6 n-5 \\
-n & -n+1
\end{array}\right) .
$$

Then the corresponding slopes on the boundary of $V_{i}$ 's will be

$$
s_{1}=\frac{n_{1}}{2 n_{1}-1}, s_{2}=-\frac{n_{2}}{3 n_{2}+1}, s_{3}=-\frac{n n_{3}+n-1}{(6 n+1) n_{3}+6 n-5} .
$$

## Constructing and Counting the Tight Contact Structures



Figure 4: The dividing curve (dashed lines) configuration of the annulus $\mathscr{A}$

## Constructing and Counting the Tight Contact Structures



Figure 5: This figure illustrates the isotopy between $\partial\left(M \backslash\left(V_{1} \cup V_{2} \cup \mathscr{A}\right)\right)$ and $\partial\left(M \backslash V_{3}\right)$.

## Constructing and Counting the Tight Contact Structures

After configurations we end up with the slopes $s_{1}=\frac{2}{5}$ and $s_{2}=-\frac{2}{5}$ corresponds to slopes $\frac{1}{n_{1}}=-\frac{1}{2}$ and $\frac{1}{n_{2}}=-\frac{1}{2}$ respectively.

## Constructing and Counting the Tight Contact Structures

After configurations we end up with the slopes $s_{1}=\frac{2}{5}$ and $s_{2}=-\frac{2}{5}$ corresponds to slopes $\frac{1}{n_{1}}=-\frac{1}{2}$ and $\frac{1}{n_{2}}=-\frac{1}{2}$ respectively.

On the other hand, the slope $s_{3}=-\frac{1}{5}$ corresponds in coordinates of $\partial V_{3}$ to $-\frac{n+1}{n}$ which has continued fraction $[-2, \ldots,-2]$ ( $n$-times -2 ) and by the results of Honda we know that the solid torus satisfying this boundary conditions admits exactly two tight contact structures.

## References

㡺 K．Honda．On the classification of tight contact structures．I．Geom． Topol，4：309－368， 2000.

嗇 P．Ghiggini and S．Schönenberger．On the classification of tight contact structures．In Topology and geometry of manifolds（Athens， GA，2001），volume 71 of Proc．Sympos．Pure Math．，pages 121－151． Amer．Math．Soc．，Providence，RI， 2003.

图 T．E．Mark and B．Tosun．Obstructing pseudoconvex embeddings and contractible Stein fillings for Brieskorn spheres．Advances in Mathematics 335，878－895， 2018.

# Tangle Invariants via Cornered Sutured Floer Homology 

Ian Montague

Brandeis University

December 8th, 2019

## Theorem

## Theorem [M.](paper in progress)

There exists a monoidal functor $C F^{-}: \mathfrak{T a n} \rightarrow 2-\mathfrak{M o d}$ from the category of tangles to a category of "2-modules", which recovers (a stabilized version of) $g C L L^{-}\left(S^{3}, L\right)$ for links in $S^{3}$.

## The Monoidal Category of Tangles

## The Category $\mathfrak{T a n}$

Composition in $\mathfrak{T a n}$ is given by vertical stacking ( $*$ ):


## The Monoidal Category of Tangles (cont.)

## The Category $\mathfrak{T a n}$ (cont.)

$\mathfrak{T a n}$ is also a monoidal category under horizontal concatenation $\amalg$ :


18 $\Perp \quad \varnothing$
$=\quad \varnothing \quad \Perp$
$19 j$

$$
=i_{0} j j
$$

## Tangle Invariants As Functors

## Definition

For our purposes, a link invariant is map $F:$ Link $\rightarrow$ R-Mod, (e.g., $R=\mathbb{Z}, \mathbb{F}_{2}, \mathbb{F}_{2}[U]$ ).

## Tangle Invariants As Functors

## Definition

For our purposes, a link invariant is map $F:$ Link $\rightarrow \mathbf{R}$-Mod, (e.g., $R=\mathbb{Z}, \mathbb{F}_{2}, \mathbb{F}_{2}[U]$ ).

## Categorification

Let $\mathfrak{B i m o d}$ be the category where:

- $\operatorname{Ob}(\mathfrak{B i m o d})=$ set of dg-algebras $\mathcal{A}$ over $R$,
- $\operatorname{Mor}(\mathcal{A}, \mathcal{B})=$ set of dg-bimodules over $(\mathcal{A}, \mathcal{B})$.

A categorification of $F:$ Link $\rightarrow \mathbf{R}$-Mod is a functor $\mathfrak{F}: \mathfrak{T a n} \rightarrow \mathfrak{B i m o d}$ such that:

- $\mathfrak{F}(0)=R$
- $H_{*}(\mathfrak{F})=F$ when restricted to Link $\subset \mathfrak{T} \mathfrak{a n}$.


## What about the Monoidal Structure?

## Question

When does a categorified tangle invariant extend to a monoidal functor $\mathfrak{F}:(\mathfrak{T a n}, \amalg) \rightarrow(\mathfrak{B i m o d}, \otimes)$ ?

## What about the Monoidal Structure?

## Question

When does a categorified tangle invariant extend to a monoidal functor $\mathfrak{F}:(\mathfrak{T a n}, \amalg) \rightarrow(\mathfrak{B i m o d}, \otimes)$ ?

## Answer

It doesn't in general: $\mathfrak{F}(m) \otimes \mathfrak{F}(n) \not \models \mathfrak{F}(m+n)$ for most tangle invariants arising from Floer homology (or Khovanov homology) :'(

## Categorification (cont.)

## Idea

Let's extend our TQFT down one more level:

We can replace $\mathfrak{B i m o d}$ with a (2-)category 2 - $\mathfrak{M o d}$, endowed with a more suitable monoidal structure.

## $\mathfrak{T a n} \rightarrow \mathfrak{B i m o d}$

Tan




Bimod

## 2-Algebras and Algebra-Bimodules



## Morphisms in the Category 2 - Mod



## Composition in $2-\mathfrak{M o d}$



## Monoidal Product in $2-\mathfrak{M o d}$



## Knot/Link Floer Homology

## Knot/Link Floer Homology

$$
\operatorname{HFK}^{-}\left(S^{3}, K\right)=H_{*}\left(g C F K^{-}\left(S^{3}, K\right)\right)
$$

is an $\mathbb{F}_{2}[U]$-module.

$$
\operatorname{HFL}^{-}\left(S^{3}, L\right)=H_{*}\left(g C F L^{-}\left(S^{3}, L\right)\right)
$$

```
is an \(\mathbb{F}_{2}\left[U_{1}, \ldots, U_{\ell}\right]\)-module.
```


## Tangle Floer Homology

## Some Heegaard Floer Tangle Invariants

- Sutured:
- [Alishahi-Eftekhary,' 16]
- [Zibrowius,' 16]
- Glue Under Vertical Composition:
- [Petkova-Vértesi,' 14]
- [Ozsváth-Szabó,' 17/'18]


## Tangle Floer Homology (cont.)

## Idea

- Enhance Zibrowius' construction using Alishahi-Eftekhary's construction to recover $g C F L^{-}$instead of $\widehat{C F L}$.
- Refine this construction so it satisfies the vertical concatenation properties of the Petkova-Vértesi and Ozsváth-Szabó tangle invariants, i.e., defines a functor $\mathfrak{T a n} \rightarrow \mathfrak{B i m o d}$.


## Tangle Floer Homology (cont.)

## Idea

- Enhance Zibrowius' construction using Alishahi-Eftekhary's construction to recover $g C F L^{-}$instead of $\widehat{C F L}$.
- Refine this construction so it satisfies the vertical concatenation properties of the Petkova-Vértesi and Ozsváth-Szabó tangle invariants, i.e., defines a functor $\mathfrak{T a n} \rightarrow \mathfrak{B i m o d}$.
- Solving right-hand side of the equation
$\{$ bordered sutured Floer homology [Zar 11] $\}$
$+\{$ cornered Heegaard Floer homology $[$ DLM 13$]\}$
$=\{$ cornered sutured Floer homology $\}$
enhance the above tangle invariant to a monoidal functor $\mathfrak{T} \mathfrak{a n} \rightarrow 2-\mathfrak{M o d}$.


## Tangle Floer Homology (cont.)

## Theorem [M.] (paper in progress)

There exists a monoidal functor $C F^{-}: \mathfrak{T a n} \rightarrow 2-\mathfrak{M o d}$ which recovers (a stabilized version of) $g C F L^{-}\left(L, S^{3}\right)$ for links in $S^{3}$.

## Future Research Directions

## Other Invariants

Is it possible to construct cornered versions of the Ozsváth-Szabó or Petkova-Vértesi HF tangle invariants?

## Contact Geometry

Using Honda-Kazez-Matić's EH invariant in SFH we should be able to define a (relative) LOSS invariant for Legendrian/transverse tangles in $S^{2} \times I$.

- How does the LOSS invariant behave under local modifications (e.g., mutation)?
- Does this provide a faster way to compute the LOSS invariant than existing methods (e.g., grid homology)?


## Done

## Thanks!

# On Translation Length of Anosov Maps on Curve Graph of Torus [arxiv:1908.00472] 

## Sanghoon Kwalk (University of Utah)

## Joint with

Hyungryul Baik, (KAIST)
Changsub Kim, (KAIST)
Hyunshik Shin, (University of Georgia)

## Table of Contents

- Basic Definitions
- Curve Graph - Stage
- (pseudo)-Anosov Mapping Class - Actor
- Main Theorem
- Strengthening Masur-Minsky's Result
- Idea of Proof
- Curve Graph of Torus
- Idea of Proof


## Basic Definitions

## Curve Graph C(S)

- Surface $S=S_{g, n}$ of genus g with n punctures
- Curve Graph $C(S)$ of a Surface $S$

Vertices : Isotopy classes of essential simple closed curves
Edges : Join two vertices if they represent minimally intersecting pair of curves.

## Curve Graph C(S)

- Surface $S=S_{g, n}$ of genus g with n punctures
- Curve Graph $C(S)$ of a Surface $S$

Vertices : Isotopy classes of essential simple closed curves
Edges : Join two vertices if they represent minimally intersecting pair of curves.
E.g.


## Mapping Class Group $\operatorname{Mod}(S)$

- Mapping Class Group $\operatorname{Mod}(\boldsymbol{S})=\{S \rightarrow$ S: orientation preserving homeomorphism $\} /$ isotopy


## Mapping Class Group $\operatorname{Mod}(S)$

- Mapping Class Group $\operatorname{Mod}(\boldsymbol{S})=\{S \rightarrow$ S: orientation preserving homeomorphism $\} /$ isotopy
[Nielsen-Thurston Classification, 1988]

1. Periodic Rotation, Reflection...
2. Reducible Dehntwist, ...

3. (Pseudo-)Anosov Stretching, ...


## Mapping Class Group $\curvearrowright$ Curve Graph

- $\operatorname{Mod}(S)$ acts on $C(S)$ !

For $f \in \operatorname{Mod}(S)$,


## Mapping Class Group ~ Curve Graph

- $\operatorname{Mod}(S)$ acts on $C(S)$ !

For $f \in \operatorname{Mod}(S)$,


- Stable Translation Length

For $f \in \operatorname{Mod}(\mathrm{~S})$, define the stable translation length of $f$ as:

$$
\mathrm{l}_{C}(f)=\liminf _{n \rightarrow \infty} \frac{d_{C}\left(v, f^{n}(v)\right)}{n}
$$

where $v$ is any vertex of $C(S)$. (Note: $l_{C}(f)$ is independent to choice of $v$ )

Main Theorem

## Earlier Works for $l_{C}(f)$ when $S$ is non-sporadic

Sporadic surface : either [a sphere with $0-3$ punctures] or [a torus with $0-1$ punctures]

## Earlier Works for $l_{C}(f)$ when $S$ is non-sporadic

Sporadic surface : either [a sphere with $0-3$ punctures] or [a torus with $0-1$ punctures]
-For non-sporadic surfaces:
| Theorem(Masur-Minsky, 1998). Any pA map has a quasi-geodesic axis in curve graph. $\rightarrow$ That is, for any map $f \in \operatorname{Mod}(S), f$ acts on a quasi-geodesic in $C(S)$, by translation.
ICorollary. $l_{C}(f)>\mathbf{0}$ iff $f$ is $\mathbf{p A}$.

## Earlier Works for $l_{C}(f)$ when $S$ is non-sporadic

Sporadic surface : either [a sphere with $0-3$ punctures] or [a torus with $0-1$ punctures]
-For non-sporadic surfaces:
| Theorem(Masur-Minsky, 1998). Any pA map has a quasi-geodesic axis in curve graph. $\rightarrow$ That is, for any map $f \in \operatorname{Mod}(S), f$ acts on a quasi-geodesic in $\mathrm{C}(S)$, by translation.
ICorollary. $l_{C}(f)>\mathbf{0}$ iff $f$ is $\mathbf{p A}$.
-Bowditch further strengthened this result:
Theorem(Bowditch, 2008). There exists a constant $M=M(S)$ only depending on $S$, such that $l_{C}(f)$ is rational with the denominator bounded above $M$.

## Earlier Works for $l_{C}(f)$ when $S$ is non-sporadic

Sporadic surface : either [a sphere with $0-3$ punctures] or [a torus with $0-1$ punctures]
-For non-sporadic surfaces:
| Theorem(Masur-Minsky, 1998). Any pA map has a quasi-geodesic axis in curve graph. $\rightarrow$ That is, for any map $f \in \operatorname{Mod}(S), f$ acts on a quasi-geodesic in $\mathrm{C}(S)$, by translation.

ICorollary. $l_{C}(f)>\mathbf{0}$ iff $f$ is $\mathbf{p A}$.
-Bowditch further strengthened this result:
Theorem(Bowditch, 2008). There exists a constant $M=M(S)$ only depending on $S$, such that $l_{C}(f)$ is rational with the denominator bounded above $M$. -Algorithmic approaches to calculating stable translation lengths: Shackleton(2012), Webb(2015), and Bell-Webb(2016; Polynomial-time algorithm)

## Earlier Works for $l_{C}(f)$ when $S$ is non-sporadic

Sporadic surface : either [a sphere with $0-3$ punctures] or [a torus with $0-1$ punctures]
-For non-sporadic surfaces:
| Theorem(Masur-Minsky, 1998). Any pA map has a quasi-geodesic axis in curve graph. $\rightarrow$ That is, for any map $f \in \operatorname{Mod}(S)$, $f$ acts on a quasi-geodesic in $C(S)$, by translation.
ICorollary. $l_{C}(f)>\mathbf{0}$ iff $f$ is pA.
-Bowditch further strengthened this result:
Theorem(Bowditch, 2008). There exists a constant $M=M(S)$ only depending on $S$, such that $l_{C}(f)$ is rational with the denominator bounded above $M$. -Algorithmic approaches to calculating stable translation lengths: Shackleton(2012), Webb(2015), and Bell-Webb(2016; Polynomial-time algorithm)

But NO literature is found with analogous result for $S=\mathrm{T}$ (torus).

## Main Theorem

## Theorem(Baik-Kim-K.-Shin 2019).

Any Anosov map has a geodesic axis in the curve graph.
$\rightarrow$ That is, for any Anosov map $f \in \operatorname{Mod}(T)$,
there exists a bi-infinite geodesic in $C(T)$ on which $f$ acts by translation.

## Main Theorem

## Theorem(Baik-Kim-K.-Shin 2019).

 Any Anosov map has a geodesic axis in the curve graph.$\rightarrow$ That is, for any Anosov map $f \in \operatorname{Mod}(T)$,
there exists a bi-infinite geodesic in $C(T)$ on which $f$ acts by translation.
Corollary. $l_{C}(f) \in \mathbb{Z}^{+}$for any Anosov map $f$.

+ Since the proof is constructive, We devised a polynomial-time algorithm to calculate $l_{C}(f)$. Available @ http://samkwak.info/research


## Examples(Generated by the Code)



## Example 2

$$
z \stackrel{f}{\mapsto} \frac{277 z+60}{337 z+73}
$$



Idea of Proof

## CurveGraph of Torus - (1) Vertices


( $p, q$ )-curve :


Simple Closed Curve on Torus $=(p, q)$-curve with relatively prime $p, q$

## CurveGraph of Torus - (1) Vertices



Simple Closed Curve on Torus $=(p, q)$-curve with relatively prime $p, q$
$\therefore$ Vertices of $C(T)$

$$
=\mathbf{Q} \cup\left\{\frac{1}{0}\right\}
$$

## Curve Graph of Torus - (2) Edges


$\mid(p, q)$-curve $\cap(r, s)$-curve $|=|p s-q r|$

## Curve Graph of Torus - (2) Edges



$$
\mid(p, q) \text {-curve } \cap(r, s) \text {-curve }|=|p s-q r|
$$

$\therefore$ We join vertices $\frac{p}{q}$ and $\frac{r}{s}$ if and only if $|\mathrm{ps}-\mathrm{qr}|=1$.

## $\therefore$ Curve Graph of Torus = Farey Graphb



Identify $C(T)$ with Farey Graph $F$ !
Vertices $=\mathbf{Q} \cup\left\{\frac{1}{\mathbf{1}}\right\}$
Edges $=$ Between $\frac{p}{q}, \frac{r}{s}$
with $(|\mathbf{p s}-\mathbf{q r}|=\mathbf{1})$

## Idea of Proof

-Identify Anosov $f \in \operatorname{Mod}(T)$ with hyperbolic $f \in P S L_{2}(\mathbb{Z})$.
-Embed $\mathrm{F}=C(T)$ into Hyperbolic plane $\boldsymbol{H}$.
$-\exists!f$-Invariant axis in $\boldsymbol{H}$.

## Idea of Proof

-Identify Anosov $f \in \operatorname{Mod}(T)$ with hyperbolic $f \in P S L_{2}(\mathbb{Z})$. -Embed $\mathrm{F}=\boldsymbol{C}(T)$ into Hyperbolic plane $\boldsymbol{H}$.
$-\exists!f$-Invariant axis in $\boldsymbol{H}$.

- $\exists$ ! $f$-Invariant ladder $L$ in $\mathbf{F}$.
- $\exists f$-Invariant geodesic $\mathbf{P}$ in $\boldsymbol{L}$.


Ladder

## Idea of Proof

-Identify Anosov $f \in \operatorname{Mod}(T)$ with hyperbolic $f \in P S L_{2}(\mathbb{Z})$.
-Embed $\mathrm{F}=\boldsymbol{C}(T)$ into Hyperbolic plane $\boldsymbol{H}$.
$-\exists!f$-Invariant axis in $\boldsymbol{H}$.

- $\exists$ ! $f$-Invariant ladder $L$ in $\mathbf{F}$.
- $\exists f$-Invariant geodesic $\mathbf{P}$ in $\boldsymbol{L}$.
-Ladder is geodesically convex.
-P is $f$-invariant geodesic in F .
-Q.E.D.


Ladder

## Thank youd

# Relative Kirby Diagrams and Casson Tower Factories 

Charles Stine (joint with Bob Gompf)

8 December 2019

## What are Casson Towers?

## What are Casson Towers?



## What are Casson Towers?



Where do they appear?

Where do they appear?


Where do they appear?


Where do they appear?

$x^{1 / 2}$


Carson handles: $C^{1}, C^{2}, C^{3}, C^{4}$

Definition 1
$C$ is exotic $\Longleftrightarrow \nexists\left(\mathbb{D}^{2}, \mathbb{S}^{1}\right) \stackrel{C^{\infty}}{\hookrightarrow}\left(C, \partial_{-} C\right)$

## Where do they appear?



Definition 1
$C$ is exotic $\Longleftrightarrow \nexists\left(\mathbb{D}^{2}, \mathbb{S}^{1}\right) \stackrel{C^{\infty}}{\hookrightarrow}\left(C, \partial_{-} C\right)$
Question 1
(Open) When is the Casson handle corresponding to a tree exotic?

## An Observation:

## An Observation:



Theorem 1
$\operatorname{Tree}\left(C^{1}\right) \hookrightarrow \operatorname{Tree}\left(C^{2}\right) \Longrightarrow C^{2} \hookrightarrow C^{1}$

## An Observation:



Theorem 1
$\operatorname{Tree}\left(C^{1}\right) \hookrightarrow \operatorname{Tree}\left(C^{2}\right) \Longrightarrow C^{2} \hookrightarrow C^{1}$ (Yes, this looks backwards)

## An Observation:



Theorem 1
$\operatorname{Tree}\left(C^{1}\right) \hookrightarrow \operatorname{Tree}\left(C^{2}\right) \Longrightarrow C^{2} \hookrightarrow C^{1}$ (Yes, this looks backwards)
Corollary 1
One branch of $C$ is exotic $\Longrightarrow C$ is exotic.

Bizaca/Gompf Example

Exotic $\mathbb{R}^{4}$ :


The Casson Tower Factory


## The Casson Tower Factory



Theorem 2
$\operatorname{CTF}(9 n-3) \hookrightarrow E(n) \# \overline{\mathbb{C P}}^{2}$

## The Casson Tower Factory



Theorem 2
$\operatorname{CTF}(9 n-3) \hookrightarrow E(n) \# \overline{C \mathbb{P}}^{2}$
Corollary 2
$\mathrm{C}^{+}$is exotic. (This takes a little work.)

The New Casson Tower Factory


## The New Casson Tower Factory



Proposition 1
$C T F(n, m)$ contains the first $n+m$ stages of every linear Casson handle with $n$ positive and $m$ negative plumbings.

## Research Objective

Construct smooth, closed, simply-connected $X(k)$ such that:

## Research Objective

Construct smooth, closed, simply-connected $X(k)$ such that:
$-\operatorname{CTF}(k, k) \hookrightarrow X(k)$

## Research Objective

Construct smooth, closed, simply-connected $X(k)$ such that:
$-\operatorname{CTF}(k, k) \hookrightarrow X(k)$

- Twisting $M \hookrightarrow \operatorname{CTF}(k, k) \hookrightarrow X(k)$ changes the smooth structure on $X(k)$.


## Research Objective

Construct smooth, closed, simply-connected $X(k)$ such that:
$-\operatorname{CTF}(k, k) \hookrightarrow X(k)$

- Twisting $M \hookrightarrow \operatorname{CTF}(k, k) \hookrightarrow X(k)$ changes the smooth structure on $X(k)$.
$\Longrightarrow$ All linear Casson handles are exotic.


## Research Objective

Construct smooth, closed, simply-connected $X(k)$ such that:
$-\operatorname{CTF}(k, k) \hookrightarrow X(k)$

- Twisting $M \hookrightarrow \operatorname{CTF}(k, k) \hookrightarrow X(k)$ changes the smooth structure on $X(k)$.
$\Longrightarrow$ All linear Casson handles are exotic.
$\Longrightarrow$ All Casson handles are exotic.

Thank you!

# Finite Rigid Sets in the Arc Complex 

Emily Shinkle

TILLINOIS

## Setting

$S$ a closed, connected, orientable, finite-type surface with marked points


Arcs
Arcs on $S$ are essential paths between marked points with embedded interiors, up to isotopy.


## The Arc Complex

The arc complex $\mathcal{A}(S)$ of $S$ is a simplicial complex

The Arc Complex
The arc complex $\mathcal{A}(S)$ of $S$ is a simplicial complex

- vertices $\leftrightarrow \operatorname{arcs}$ on $S$

$\mathcal{A}(S)$

The Arc Complex
The arc complex $\mathcal{A}(S)$ of $S$ is a simplicial complex
-vertices $\leftrightarrow \operatorname{arcs}$ on $S$

- $k$-simplices $\leftrightarrow k+1$ disjoint arcs

$\mathcal{A}(S)$


The Arc Complex
The arc complex $\mathcal{A}(S)$ of $S$ is a simplicial complex
-vertices $\leftrightarrow \operatorname{arcs}$ on $S$

- $k$-simplices $\leftrightarrow k+1$ disjoint arcs

$\mathcal{A}(S)$


Maps of the Arc Complex

- A homeomorphism $f: S \rightarrow S$
- sends arcs to arcs
- sends disjoint arcs to disjoint arcs
-Thus, we can define an induced map $\tilde{f} \in \operatorname{Aut}(\mathcal{A}(S))$.

Rigidity of the Arc Complex
Theorem (Irmak-McCarthy, 2010) Every automorphism

$$
\mathcal{A}(S) \rightarrow \mathcal{A}(S)
$$

is induced by a homeomorphism $S \rightarrow S$, unique up to isotopy in most cases.

Rigidity of the Arc Complex
Theorem (Irmak-McCarthy, 2010)
Every automorphism

$$
\mathcal{A}(S) \rightarrow \mathcal{A}(S)
$$

is induced by a homeomorphism $S \rightarrow S$, unique up to isotopy in most cases.

Corollary: In non-exceptional cases, $\operatorname{Mod}^{ \pm}(S) \cong \operatorname{Aut}(\mathcal{A}(\mathrm{S}))$.

## Strengthening

Theorem (S., 2019)
Every isomorphism

$$
\mathcal{A}(S) \rightarrow \mathcal{A}\left(S^{\prime}\right)
$$

is induced by a homeomorphism $S \rightarrow S^{\prime}$, unique up to isotopy in most cases.

## Strengthening

Theorem (S., 2019)
Every isomorphism

$$
\mathcal{A}(S) \rightarrow \mathcal{A}\left(S^{\prime}\right)
$$

is induced by a homeomorphism $S \rightarrow S^{\prime}$, unique up to isotopy in most cases.

Corollary: $\mathcal{A}(S) \cong \mathcal{A}\left(S^{\prime}\right)$ implies $S \cong S^{\prime}$.

## Main Theorem

Theorem (S., 2019)
There is a finite subcomplex $X \subseteq \mathcal{A}(S)$ such that any injection

$$
X \rightarrow \mathcal{A}\left(S^{\prime}\right)
$$

is induced by a homeomorphism $S \rightarrow S^{\prime}$, unique up to isotopy in most cases, provided $\operatorname{dim}(\mathcal{A}(S))=\operatorname{dim}\left(\mathcal{A}\left(S^{\prime}\right)\right)$.*

Proof Ideas

- Include a triangulation in $X$


Proof Ideas

- Include a triangulation in $X$



## Proof Ideas

- Include a triangulation in $X$
- Include arcs to guarantee each triangle maps to a triangle

Avoid:


## Proof Ideas

- Include a triangulation in $X$
- Include arcs to guarantee each triangle maps to a triangle
- Include arcs to guarantee orientations are preserved

Avoid:


## Thank you for your time!

Finite rigid set in $\mathcal{A}\left(S_{1,1}\right)$

