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But	not	the	case	for	the	following	surface:	
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Theorem	1	(Lechner,	S):		The	expected	genus	of	
a	random	STS	is,	
	
	
Note:	
•  In	fact,	distribution	is	asymptotically	normal.	
•  My	method	generalizes	to	other	even-gon-
tiled	surfaces.	
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Demo!		
(time	permitting..)	
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The Word Problem for Artin Groups

The Word Problem: (Dehn 1910)

Given a group G = 〈S | R〉 with a finite generating set S and
relations R, can you decide which words are equivalent to the
identity?

Example: Art
(
Ã2

)

ART
(
Ã2

)
= 〈a, b, c | aba = bab, bcb = cbc, aca = cac〉
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A Solution

Theorem (McCammond, Sulway, 2017):

Art(Ã2) is a torsion-free, centerless group with a solvable word
problem.

Art(Ã2) ∼= Art∗(Ã2,w) ↪→ Gar(Ã2,w)

� �
Cox(Ã2) ∼= Cox(Ã2,w) ↪→ Cryst(Ã2,w)
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Ã2

)



A Solution

Ashlee Kalauli

The Word Problem for ART
(
Ã2
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Ã2

)



A Solution

Ashlee Kalauli

The Word Problem for ART
(
Ã2
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A New Solution

This infinite generating set is a poset under left division leading
to a normal form that solves the word problem.

GOAL: Write finite state automata that will solve the word
problem for ART

(
Ã2

)
with its classical presentation.
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Thank You!

Mahalo!
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Small Seifert Fiber Spaces

Notation
Let S2(α1

β1
, α2
β2
, α3
β3

) be the Seifert fiber space with base orbifold S2

and 3 critical fibers with corresponding Seifert invariants α1
β1
, α2
β2
, α3
β3

.

Figure 1: A surgery description of S2(α1

β1
, α2

β2
, α3

β3
)
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Surgery Questions

Question 1
Which S2(α1

β1
, α2
β2
, α3
β3

) can be obtained by 0-surgery on a knot in

S3?

Question 2
What obstructions are there to S2(α1

β1
, α2
β2
, α3
β3

) being 0-surgery on a

knot in S3?
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Examples

Torus knots have Seifert fibered complement. In particular, by

work of Moser (1971), 0-surgery on a torus knot is Seifert fibered.

Example (0-surgery on T5,2)

3



Examples

Torus knots have Seifert fibered complement. In particular, by

work of Moser (1971), 0-surgery on a torus knot is Seifert fibered.

Example (0-surgery on T5,2)

3



Examples

Theorem (Ichihara - Motegi - Song 2008)
There exists an infinite family of hyperbolic knots Kn with small

Seifert fibered 0-surgery, where n ∈ Z \{0,−1,−2}.

Figure 2: The knot Kn is the image of blue curve after performing the

corresponding surgeries on the other 3 link components.
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Examples

Example (n = 1)

Figure 3: After performing surgery on the link to the left, the image of

the blue curve becomes K1 ⊂ S3.
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Examples

Example (n = 1, continued)
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Examples

Proposition (J. 2019)
There exists an infinite two parameter family of knots Km,n

(extending the I-M-S knots) with small Seifert fibered 0-surgery.

Figure 4: The knot Km,n is the image of blue curve after performing the

corresponding surgeries on the other 3 link components. Here, m, n ∈ Z
such that n /∈ {0,−1}, m 6= 0, 1 + m + n 6= 0, and (m − n)2 divides

(1 + m + n). Note, Kn+1,n = Kn.
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Obstructions

Basic Algebraic Topological Obstructions
If Y is obtained by 0-surgery on a knot in S3, then π1(Y ) has

weight 1, i.e. π1(Y ) is normally generated by a single element.

Also, H1(Y ;Z) ∼= Z.

Rohlin Invariant

Theorem (Hedden - Kim - Mark - Park 2018)
If an integral homology S1 × S2 has two non-trivial Rohlin

invariants, then it is not obtained by surgery on a knot in S3.

Theorem (Hedden - Kim - Mark - Park 2018)
For all positive integers k , S2(−2

1 ,
−8k+1

1 , −16k+2
−8k−1 ) is irreducible,

has weight 1 fundamental group, and cannot be obtained by

0-surgery on a knot in S3.
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Obstructions

Heegaard Floer Homology

Theorem 1 (Ozsváth - Szabó 2001)
If Y is obtained by 0-surgery on a knot in S3, then

−1

2
≤ d−1/2(Y ) and d1/2(Y ) ≤ 1

2
(1)

Unfortunately, by the following theorem, we cannot use this to

obstruct a Seifert fibered homology S1 × S2 from being 0-surgery

on a knot in S3.

Theorem 2 (Hedden - Kim - Mark - Park 2018)
Suppose M is homology cobordant to a Seifert fibered homology

S1 × S2. Then, (1) also holds for M.
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Obstructions

Work in Progress
A potential strategy to obtain another obstruction:

• We can prove an analog of the d-invariant bounds from

Theorem 1 for involutive Heegaard Floer homology.

• However, the analog of Theorem 2 is not clear in the

involutive setting. One may hope that, in fact, the analog of

Theorem 2 for involutive Heegaard Floer homology does not

hold. This would then provide an obstruction to a Seifert

fibered homology S1 × S2 being 0-surgery on a knot in S3.
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Question

Question

Can we find the exact number of tight contact structures on a
given 3 manifold?

Not always!
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Constructing and Counting the Tight Contact Structures

Theorem (Mark, Tosun 2018)

The Brieskorn homology spheres Σ(2,3,6n+ 1) has exactly two
tight contact structures for any n ≥ 1.
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Constructing and Counting the Tight Contact Structures

Sketch of Proof:

We start with the basic surgery description of Σ(2,3,6n+ 1). To
find the Seifert invariants we begin with solving the equation

3(6n+ 1)b1 + 2(6n+ 1)b2 + 6b3 = 1

for the integers b1,b2 and b3. To make it simple let us take
b1 = 1,b2 =−1 and b3 =−n.
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Constructing and Counting the Tight Contact Structures

0

2 −3 − 6n+1
n

∼=

− 1
n

Figure 1: Surgery description of Σ(2,3,6n+ 1)
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Constructing and Counting the Tight Contact Structures

−n+ 1

n

n copy
−1

−1

−1

−1

n copy

Figure 2: Non-isotopic tight contact structures on Σ(2,3,6n+ 1)
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Question

Question

How do we find the upper bound?

By using Honda’s bypass technique!
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Constructing and Counting the Tight Contact Structures

Vi

Slope = 1
ni

Figure 3: Slope of the dividing curves of abstract solid torus
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Constructing and Counting the Tight Contact Structures

The attaching maps are can be given as

A1 =

(
2 −1
1 0

)
,A2 =

(
3 1
−1 0

)
,A3 =

(
6n+ 1 6n−5
−n −n+ 1

)
.

Then the corresponding slopes on the boundary of Vi ’s will be

s1 =
n1

2n1−1
,s2 =− n2

3n2 + 1
,s3 =− nn3 +n−1

(6n+ 1)n3 + 6n−5
.
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Constructing and Counting the Tight Contact Structures

A
V1 V2

Figure 4: The dividing curve (dashed lines) configuration of the annulus
A
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Constructing and Counting the Tight Contact Structures

V1

V2

V3

∼= V1 ∪ V2 ∪ A

Figure 5: This figure illustrates the isotopy between ∂ (M \ (V1∪V2∪A ))
and ∂ (M \V3).
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Constructing and Counting the Tight Contact Structures

After configurations we end up with the slopes s1 = 2
5 and s2 =−2

5
corresponds to slopes 1

n1
=−1

2 and 1
n2

=−1
2 respectively.

On the other hand, the slope s3 =−1
5 corresponds in coordinates

of ∂V3 to −n+1
n which has continued fraction [−2, ...,−2] (n-times

−2) and by the results of Honda we know that the solid torus
satisfying this boundary conditions admits exactly two tight
contact structures.
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Theorem

Theorem [M.](paper in progress)

There exists a monoidal functor CF− : Tan→ 2−Mod from the category
of tangles to a category of ”2-modules”, which recovers (a stabilized
version of) gCFL−(S3, L) for links in S3.
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The Monoidal Category of Tangles

The Category Tan

Composition in Tan is given by vertical stacking (∗):
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The Monoidal Category of Tangles (cont.)

The Category Tan (cont.)

Tan is also a monoidal category under horizontal concatenation q:
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Tangle Invariants As Functors

Definition

For our purposes, a link invariant is map F : Link→ R-Mod,
(e.g., R = Z, F2, F2[U]).

Categorification

Let Bimod be the category where:

Ob(Bimod) = set of dg-algebras A over R,

Mor(A,B) = set of dg-bimodules over (A,B).

A categorification of F : Link→ R-Mod is a functor F : Tan→ Bimod
such that:

F(0) = R

H∗(F) = F when restricted to Link ⊂ Tan.
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What about the Monoidal Structure?

Question

When does a categorified tangle invariant extend to a monoidal functor
F : (Tan,q)→ (Bimod,⊗)?

Answer

It doesn’t in general: F(m)⊗ F(n) 6∼= F(m + n) for most tangle invariants
arising from Floer homology (or Khovanov homology) :’(
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Categorification (cont.)

Idea

Let’s extend our TQFT down one more level:

We can replace Bimod with a (2-)category 2−Mod, endowed with a
more suitable monoidal structure.
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Tan→ Bimod
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2-Algebras and Algebra-Bimodules
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Morphisms in the Category 2−Mod
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Composition in 2−Mod
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Monoidal Product in 2−Mod
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Knot/Link Floer Homology

Knot/Link Floer Homology

HFK−(S3,K ) = H∗(gCFK−(S3,K ))

is an F2[U]-module.

HFL−(S3, L) = H∗(gCFL−(S3, L))

is an F2[U1, . . . ,U`]-module.
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Tangle Floer Homology

Some Heegaard Floer Tangle Invariants

Sutured:

[Alishahi-Eftekhary,′ 16]
[Zibrowius,′ 16]

Glue Under Vertical Composition:

[Petkova-Vértesi,′ 14]
[Ozsváth-Szabó,′ 17/′18]
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Tangle Floer Homology (cont.)

Idea

Enhance Zibrowius’ construction using Alishahi-Eftekhary’s
construction to recover gCFL− instead of ĈFL.

Refine this construction so it satisfies the vertical concatenation
properties of the Petkova-Vértesi and Ozsváth-Szabó tangle
invariants, i.e., defines a functor Tan→ Bimod.

Solving right-hand side of the equation

{bordered sutured Floer homology [Zar 11]}

+{cornered Heegaard Floer homology [DLM 13]}

= {cornered sutured Floer homology},

enhance the above tangle invariant to a monoidal functor
Tan→ 2−Mod.
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Tangle Floer Homology (cont.)

Theorem [M.] (paper in progress)

There exists a monoidal functor CF− : Tan→ 2−Mod which recovers (a
stabilized version of) gCFL−(L, S3) for links in S3.
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Future Research Directions

Other Invariants

Is it possible to construct cornered versions of the Ozsváth-Szabó or
Petkova-Vértesi HF tangle invariants?

Contact Geometry

Using Honda-Kazez-Matić’s EH invariant in SFH we should be able to
define a (relative) LOSS invariant for Legendrian/transverse tangles in
S2 × I .

How does the LOSS invariant behave under local modifications (e.g.,
mutation)?

Does this provide a faster way to compute the LOSS invariant than
existing methods (e.g., grid homology)?

Ian Montague (Brandeis University) Tangle Invariants December 8th, 2019 17 / 18



Done

Thanks!
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Basic Definitions



• Surface 𝑆 = 𝑆#,% of genus g with n punctures

• Curve Graph 𝐶(𝑆)	of a Surface S
Vertices : Isotopy classes of essential simple closed curves

Edges : Join two vertices if they represent minimally intersecting pair of curves.

Curve Graph 𝐶(𝑆)



• Surface 𝑆 = 𝑆#,% of genus g with n punctures

• Curve Graph 𝐶(𝑆)	of a Surface S
Vertices : Isotopy classes of essential simple closed curves

Edges : Join two vertices if they represent minimally intersecting pair of curves.

E.g.

Curve Graph 𝐶(𝑆)

𝑆 𝐶(𝑆)



Mapping Class Group 𝑀𝑜𝑑(𝑆)
• Mapping Class Group 	𝑴𝒐𝒅 𝑺 = {𝑆 → 𝑆: 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛	𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑖𝑛𝑔	ℎ𝑜𝑚𝑒𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚}/𝑖𝑠𝑜𝑡𝑜𝑝𝑦



3. (Pseudo-)Anosov Stretching, …

Mapping Class Group 𝑀𝑜𝑑(𝑆)
• Mapping Class Group 	𝑴𝒐𝒅 𝑺 = {𝑆 → 𝑆: 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛	𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑖𝑛𝑔	ℎ𝑜𝑚𝑒𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚}/𝑖𝑠𝑜𝑡𝑜𝑝𝑦

[Nielsen-Thurston Classification, 1988]
1. Periodic 2. ReducibleRotation, Reflection… Dehn twist, …

	𝜆

	1
𝜆

Locally..



Mapping Class Group ↷ Curve Graph
• 𝑀𝑜𝑑 𝑆 acts on 𝐶 𝑆 !

For 𝑓 ∈ 𝑀𝑜𝑑 𝑆 ,

𝑓

𝐶(𝑆)

𝑓
by homeomorphism by isometry𝑆



Mapping Class Group ↷ Curve Graph
• 𝑀𝑜𝑑 𝑆 acts on 𝐶 𝑆 !

For 𝑓 ∈ 𝑀𝑜𝑑 𝑆 ,

𝑓

𝐶(𝑆)

𝑓
by homeomorphism by isometry𝑆
• Stable Translation Length

For 𝑓 ∈ Mod(S), define the stable translation length of 𝑓	as:

lP 𝑓 = liminf
%→T

	UV(W,X
Y W )
%

,

where 𝑣	is any vertex of 𝐶(𝑆). (Note: 𝑙P(𝑓)	is independent to choice of 𝑣)



Main Theorem



Earlier Works for 𝑙P(𝑓) when 𝑺 is non-sporadic
Sporadic surface : either [a sphere with 0 — 3 punctures] or [a torus with 0 — 1  punctures]
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Theorem(Masur-Minsky, 1998). Any pA map has a quasi-geodesic axis in curve graph.

Corollary. 𝑙P 𝑓 > 𝟎 iff 𝑓 is pA.

Sporadic surface : either [a sphere with 0 — 3 punctures] or [a torus with 0 — 1  punctures]

-For non-sporadic surfaces:

→That is, for any map 𝑓 ∈ 𝑀𝑜𝑑 𝑆 , 𝑓 acts on a quasi-geodesic in C(𝑆), by translation.
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But NO literature is found with analogous result for 𝑆 = T(torus).

Earlier Works for 𝑙P(𝑓) when 𝑺 is non-sporadic

Theorem(Masur-Minsky, 1998). Any pA map has a quasi-geodesic axis in curve graph.

Corollary. 𝑙P 𝑓 > 𝟎 iff 𝑓 is pA.

Theorem(Bowditch, 2008). There exists a constant 𝑀 = 𝑀 𝑆 only depending on 𝑆,
such that 𝑙P(𝑓) is rational with the denominator bounded above 𝑴.
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-For non-sporadic surfaces:

-Bowditch further strengthened this result:

-Algorithmic approaches to calculating stable translation lengths:
Shackleton(2012), Webb(2015), and Bell-Webb(2016; Polynomial-time algorithm)

→That is, for any map 𝑓 ∈ 𝑀𝑜𝑑 𝑆 , 𝑓 acts on a quasi-geodesic in C(𝑆), by translation.



Main Theorem

Theorem(Baik-Kim-K.-Shin 2019).
Any Anosov map has a geodesic axis in the curve graph. 
→ That is, for any Anosov map 𝑓 ∈ 𝑀𝑜𝑑(𝑇),
there exists a bi-infinite geodesic in 𝐶(𝑇)	on which 𝑓 acts by translation.



We devised a polynomial-time algorithm to calculate 𝑙P 𝑓 .

Main Theorem

+Since the proof is constructive,

Theorem(Baik-Kim-K.-Shin 2019).
Any Anosov map has a geodesic axis in the curve graph. 
→ That is, for any Anosov map 𝑓 ∈ 𝑀𝑜𝑑(𝑇),
there exists a bi-infinite geodesic in 𝐶(𝑇)	on which 𝑓 acts by translation.

Corollary. 𝑙P 𝑓 ∈ ℤa for any Anosov map 𝑓.

Available @ http://samkwak.info/research



Examples(Generated by the Code)

Example 2

Example 1

∴	Translation Length = 2

∴	Translation Length = 5



Idea of Proof



(1,0)

(2,0) (2,1) (2,2)

(1,1) (1,2)

(0,0) (0,1) (0,2)

Simple Closed Curve on Torus
=(𝒑, 𝒒)-curve with relatively prime p,q.

Curve Graph of Torus – (1) Vertices

(𝑝, 𝑞)-curve :

𝑝

𝑞



(1,0)

(2,0) (2,1) (2,2)

(1,1) (1,2)

(0,0) (0,1) (0,2)

Simple Closed Curve on Torus
=(𝒑, 𝒒)-curve with relatively prime p,q.

Curve Graph of Torus – (1) Vertices

(𝑝, 𝑞)-curve :

𝑝

𝑞

	 ∴	Vertices of 𝐶(T)

= 	𝐐 ∪ {
𝟏
𝟎
}



|(𝑝, 𝑞)-curve ∩ (𝑟, 𝑠)-curve| = 𝑝𝑠 − 𝑞𝑟

(2,1)-curve & (3,2)-curve intersects at one point.

Curve Graph of Torus – (2) Edges



|(𝑝, 𝑞)-curve ∩ (𝑟, 𝑠)-curve| = 𝑝𝑠 − 𝑞𝑟

(2,1)-curve & (3,2)-curve intersects at one point.

Curve Graph of Torus – (2) Edges

∴ We join vertices  m
n
	 and  o

p
if and only if |ps − qr|=1.



Identify 𝐶(𝑇) with Farey Graph 𝐹!

∴Curve Graph of Torus = Farey Graph!

Vertices = 	𝐐 ∪ {𝟏
𝟎
}

Edges = Between m
n
, o
p

with ( 𝐩𝐬 − 𝐪𝐫 = 𝟏)



Idea of Proof
-Identify Anosov 𝑓 ∈ 𝑀𝑜𝑑(𝑇) with hyperbolic 𝑓 ∈ 𝑃𝑆𝐿| ℤ .

-Embed F = 𝐶(𝑇) into Hyperbolic plane 𝑯.

-∃! 𝑓-Invariant axis in 𝑯.



Idea of Proof
-Identify Anosov 𝑓 ∈ 𝑀𝑜𝑑(𝑇) with hyperbolic 𝑓 ∈ 𝑃𝑆𝐿| ℤ .

-∃! 𝑓-Invariant ladder 𝑳 in 𝐅.
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1

−1
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0
1
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2
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3

−3
8

−2
5

Ladder

-∃ 𝑓-Invariant geodesic 𝐏 in 𝑳.

-∃! 𝑓-Invariant axis in 𝑯.

-Embed F = 𝐶(𝑇) into Hyperbolic plane 𝑯.



Idea of Proof
-Identify Anosov 𝑓 ∈ 𝑀𝑜𝑑(𝑇) with hyperbolic 𝑓 ∈ 𝑃𝑆𝐿| ℤ .

-∃! 𝑓-Invariant ladder 𝑳 in 𝐅.

−2
1

−1
1

−1
0

0
1

−1
2

−1
3

−3
8

−2
5

Ladder

-Ladder is geodesically convex.

-∃ 𝑓-Invariant geodesic 𝐏 in 𝑳.

-∃! 𝑓-Invariant axis in 𝑯.

-𝐏 is 𝑓-invariant geodesic in F.
-Q.E.D.

-Embed F = 𝐶(𝑇) into Hyperbolic plane 𝑯.



Thank you!
Do you have any Q uestions?



Relative Kirby Diagrams and Casson Tower
Factories

Charles Stine (joint with Bob Gompf)

8 December 2019



What are Casson Towers?

TreeG 8 i
t

t1 ooo
o o O

O O

I ooo

I I 0 o
o ooo

O O O
ooo

2 k ooo

Exotic Cit
I

T ooo

T
2 Cit Trebeccity t.Ioo oa.ttooo

TreeG 8 i
t

t1 ooo
o o O

O O

I ooo

I I 0 o
o ooo

O O O
ooo

2 k ooo

Exotic Cit
I

T ooo

T
2 Cit Trebeccity t.Ioo oa.ttooo



What are Casson Towers?

TreeG 8 i
t

t1 ooo
o o O

O O

I ooo

I I 0 o
o ooo

O O O
ooo

2 k ooo

Exotic Cit
I

T ooo

T
2 Cit Trebeccity t.Ioo oa.ttooo

TreeG 8 i
t

t1 ooo
o o O

O O

I ooo

I I 0 o
o ooo

O O O
ooo

2 k ooo

Exotic Cit
I

T ooo

T
2 Cit Trebeccity t.Ioo oa.ttooo



What are Casson Towers?

TreeG 8 i
t

t1 ooo
o o O

O O

I ooo

I I 0 o
o ooo

O O O
ooo

2 k ooo

Exotic Cit
I

T ooo

T
2 Cit Trebeccity t.Ioo oa.ttooo

TreeG 8 i
t

t1 ooo
o o O

O O

I ooo

I I 0 o
o ooo

O O O
ooo

2 k ooo

Exotic Cit
I

T ooo

T
2 Cit Trebeccity t.Ioo oa.ttooo



Where do they appear?
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Definition 1
C is exotic ⇐⇒ @ (D2,S1) C∞

↪→ (C , ∂−C )

Question 1
(Open) When is the Casson handle corresponding to a tree exotic?
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An Observation:
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Theorem 1
Tree(C 1) ↪→ Tree(C 2) =⇒ C 2 ↪→ C 1 (Yes, this looks backwards)

Corollary 1

One branch of C is exotic =⇒ C is exotic.
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Bizaca/Gompf Example

TreeG 8 i
t

t1 ooo
o o O

O O

I ooo

I I 0 o
o ooo

O O O
ooo

2 k ooo

Exotic Cit
I

T ooo

T
2 Cit Trebeccity t.Ioo oa.ttooo



The Casson Tower Factory
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Theorem 2
CTF(9n-3) ↪→ E (n)#CP2

Corollary 2

C+ is exotic. (This takes a little work.)
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Research Objective

Construct smooth, closed, simply-connected X (k) such that:

I CTF(k , k) ↪→ X (k)

I Twisting M ↪→ CTF(k, k) ↪→ X (k) changes the smooth
structure on X (k).

=⇒ All linear Casson handles are exotic.

=⇒ All Casson handles are exotic.



Thank you!



Finite Rigid Sets in 
the Arc Complex

Emily Shinkle



Setting

𝑆 a closed, connected, orientable, finite-type 
surface with marked points



Arcs

Arcs on 𝑆 are essential paths between marked 
points with embedded interiors, up to isotopy.



The Arc Complex

The arc complex 𝒜(𝑆) of 𝑆 is a simplicial 
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The Arc Complex

The arc complex 𝒜(𝑆) of 𝑆 is a simplicial 
complex

•vertices ↔ arcs on 𝑆

•𝑘-simplices ↔ 𝑘 + 1 disjoint arcs

𝒜(𝑆)



Maps of the Arc Complex

•A homeomorphism 𝑓: 𝑆 → 𝑆
• sends arcs to arcs
• sends disjoint arcs to disjoint arcs

•Thus, we can define an induced map 
ሚ𝑓 ∈ Aut(𝒜 𝑆 ).



Rigidity of the Arc Complex

Theorem (Irmak-McCarthy, 2010) 

Every automorphism 

𝒜 𝑆 → 𝒜(𝑆)

is induced by a homeomorphism 𝑆 → 𝑆, 
unique up to isotopy in most cases.



Rigidity of the Arc Complex

Theorem (Irmak-McCarthy, 2010)

Every automorphism 

𝒜 𝑆 → 𝒜(𝑆)

is induced by a homeomorphism 𝑆 → 𝑆, 
unique up to isotopy in most cases.

Corollary: In non-exceptional cases, 
Mod± 𝑆 ≅ Aut(𝒜 S ).



Strengthening

Theorem (S., 2019)                            

Every isomorphism 

𝒜 𝑆 → 𝒜(𝑆′)

is induced by a homeomorphism 𝑆 → 𝑆′, 
unique up to isotopy in most cases.



Strengthening

Theorem (S., 2019)                           

Every isomorphism

𝒜 𝑆 → 𝒜(𝑆′)

is induced by a homeomorphism 𝑆 → 𝑆′, 
unique up to isotopy in most cases.

Corollary: 𝒜(𝑆) ≅ 𝒜(𝑆′) implies 𝑆 ≅ 𝑆′.



Main Theorem

Theorem (S., 2019) 

There is a finite subcomplex 𝑋 ⊆ 𝒜(𝑆) such 
that any injection 

𝑋 → 𝒜(𝑆′)

is induced by a homeomorphism 𝑆 → 𝑆′, 
unique up to isotopy in most cases, provided 
dim 𝒜 𝑆 = dim 𝒜 𝑆′ .*

*𝑆 ≠ 𝑆0,3
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Proof Ideas

• Include a triangulation in 𝑋

• Include arcs to guarantee each triangle maps 
to a triangle

• Include arcs to guarantee orientations are 
preserved

Avoid:



Thank you for 
your time!

Finite rigid set in 𝒜(𝑆1,1)


