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Background

(Since Lisa says | have to.)
Let W" be a compact manifold with non-empty boundary.
A spine is a subset S that is a deformation retract of W.
Usually, require more. Eg dim(S) < dim(W).
@ W is PL, then S should be a subcomplex.
@ Standard argument: any W has a codimension one spine.

@ Lots of results (insert famous names here) about codim > 3.

o Cappell-Shaneson (1974): if n > 4 and m1 =1 (or n is odd) and if
W ~ ¥"=2 a PL manifold, then W has a codim 2 spine.

Matsumoto (1975) found a spineless 4-manifold ~ T2

Cappell-Shaneson (1976): spineless manifolds for n > 6 even.
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The canonical example

We'll focus on simply connected 4-manifolds.

Canonical example: Knot trace X,(K) = B* Uk h? with framing n

S is the core of the handle U cone(K); it's PL but not locally flat.
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Spines and homology cobordisms

Definition: A topological spine of W* is a locally tame (= locally PL)
submanifold S C W that is a deformation retract of W.

Assume S locally flat away from a single point:

e local model given by (B*, cone(K))

@ We say the spine has singularity (modeled on) K.
Suppose W ~ S? with intersection form Qy = (n).

OW ~ L(n,1) and a neighborhood of S is homeomorphic to X,(K).

Key observation: W — int(X,(K)) is a homology cobordism between oW
and S3(K).

Notation for homology cobordism: OW ~p S3(K).
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A rough converse

Suppose W ~ S2, Qu = (n), and there are
@ a knot K
@ a homology cobordism V between S3(K) and OW with
o m1(S3(K)) normally generating 71 (V).

Then W has a spine S with singularity modeled on K.

What kind of spine?

o If V is just a topological H-cobordism then S is a topological spine.
e If V is PL (aka smooth) then S is a PL spine.
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Spineless 4-manifolds

Theorem (Levine-Lidman, 2018). For any n = m?, m > 2, there are
infinitely many smooth W, ~ S with Qu,, = (n) that have no PL spine.

Uses principles above: [LL] show (via d-invariants) that W, is not
H-cobordant to S3(K) for any knot K.

Theorem (Kim-Ruberman, 2019). The Levine-Lidman manifolds W, with
n =4 have locally tame topological spines.

Theorem (Hayden-Piccirillo, 2019.5). There exist smooth (PL) structures
on knot traces that admit no PL spines.

Based on different principle; OW is by definition surgery on a knot.
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Spineless 4-manifolds

Some questions:
@ What about the other LL manifolds with n > 47
o Does every W ~ S? admit a locally tame spine?

It seems there's always a (wild) 2-sphere in W; maybe it's a (wild) spine.
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Finding tame spines

From now on, will only discuss the topological case.

Recall the goal: start with Levine-Lidman manifolds W, find knot K, with
8Wp ~H Sf(Kp)-

Main point is to find the right knot so we can solve the homology
cobordism problem via topological surgery.

Levine-Lidman: Write m = —2p — 3; then OW, = Qm# — Y.
e Y, is a ZHS® which we can ignore since it bounds contractible.
@ Qm is 44 surgery on a knot in Y.

Useful observation: Q, is a spherical space form; G, = m1(Qm).

N
1 Zim Gm Ly 1
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Finding tame spines

We want K, C S3 with Q, ~y S3(Km) (and 71 condition).
Will do in a couple of steps; K, gets modified a few times.
@ Find K,, with m1(S% — Ki,) = G, and Z[G,,] homology equivalence

fn : S3(Km) = Qm.

There aren’t any in the knot tables up through 12 crossings!
@ Find normal cobordism (X, F) between f,, and idg, .

Normal means F is covered by map of stable normal bundles.

Daniel Ruberman Spines for spineless 4-manifolds December 8, 2019 9 /17



Finding tame spines

Basic invariant: intersection form on
ker (Fs : Ho(X; Z[Gm]) — Ha(Qm % 1, Z[Gp)]))
defines element 0(F) € L4(Z[Gp]) (a large group).

@ Modify K, to get K], for which 6(F) vanishes in Ly;
surger to get H-cobordism V with 71(V) = Gp,.

Q VUXy(K],) = W,.
ltems 1 and 3 are harder—done by similar technique.

Item 2 has a Z, obstruction; turns out it's 0. Last bit from S. Boyer.
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First approximation to K,

Qm is +4 surgery on indicated knot in Y, = —1 surgery on T(2,2p + 1).
(Remember m = —4p — 3.)

Qnm S3(K)

Want K, so that Sf(Km) maps onto @, with degree one.
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First approximation to K,

Lemma (Boileau-Wang 1996) Suppose the knot n C M is null-homotopic.
For any r, the Dehn surgered manifold M,(n) maps to M with degree 1.

We can turn T(2,2p + 1) into an unknot by crossing changes, ie surgeries
along curves ;. Make these null-homotopic by adding copies of 79 and z.

Surger the resulting curves 7’.
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Second approximation to K,

Now we have knots K, with degree 1 maps f,, : Sf(Km) — Qm, with £, a
Z homology equivalence.

But for surgery to apply, 8(F) must be non-singular over Z[G,].

This means that f,, should be a Z[G,,] homology equivalence.

How to understand H(S3(Km); Z[Gm])?

Answer: The G, cover is obtained from S3 by surgery on lifts of the 7.
Its homology is determined by their linking numbers (and framings).

Do finger moves (downstairs) to change the (upstairs) linking matrix into
an invertible one.

Get new knot, new Z[G,] homology equivalence fn, : S3(Km) — Qm.
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We finally get to do some surgery theory

Lemma: The map f,, is normally cobordant to idg, . The intersection
form of the cobordism, say W, is the surgery obstruction 0 € La(Z[Gp)).

By adding a copies of the Eg manifold, we can assume sign(f) = 0. Hence
by a change of basis, the intersection form over Z is a sum of hyperbolics.

To kill the surgery obstruction, add 2-handles to W along S3(K,,) that
‘realize’ the intersection form —6.

A nice surprise: Can do this so the new boundary is of the form S3(K/,).

The resulting cobordism has trivial surgery obstruction and hence can be
surgered to a homology cobordism.

Glue in X4(K],) to get (top) manifold with a spine.
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Killing the surgery obstruction

Proposition: Let Y = S3(J) and o : m1(Y) — G. Suppose that A is a
(nonsingular, Hermitian) matrix with Z[G] coefficients such that

e(A) = @ ((1’ (1)) = H".

Then there is a cobordism W from Y to Y' = S3(J') with Z[G]
intersection form A.

Augmentation € means image of A under Z[G] — Z.

-1 -1
Typical A= <g+g h_(lk ) g) .
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Killing the surgery obstruction

Proof of the proposition: First add 0-framed Hopf links (still have
Y = S3(J)).

0 J
To create h entries in A, do finger moves guided by h.

SORS)

If you ignore J, it's still a Hopf link so you still get S3.

5>

But J gets changed to J'.
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Thanks from our mascot!
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