Contact invariant from Heegaard Floer homology

Akram Alishahi

akram.alishahi@uga.edu

Department of Mathematics University of Georgia

Joint with: Földvári, Hendricks, Licata, Petkova, and Vértesi

Contact Structure: ξ on an oriented 3-manifold M is:

▶ a smooth, oriented nowhere integrable 2-plane field

Contact Structure: ξ on an oriented 3-manifold M is:

- ▶ a smooth, oriented nowhere integrable 2-plane field
- $\xi = \ker(\alpha)$ where α is a 1-form s.t. $\alpha \wedge d\alpha > 0$

Contact Structure: ξ on an oriented 3-manifold M is:

- ▶ a smooth, oriented nowhere integrable 2-plane field
- $\xi = \ker(\alpha)$ where α is a 1-form s.t. $\alpha \wedge d\alpha > 0$

Example: $\xi = \ker(dz - ydx)$ on \mathbb{R}^3 (standard contact structure)

Closed Ori. 3-manifold M Ozsváth-Szabó

Heegaard Floer homology graded abelian group: $\widehat{HF}(M)$

Ozsváth-Szabó

Heegaard Floer homology graded abelian group: $\widehat{HF}(M)$

$$M$$
 + Contact str. ξ

$$c(\xi) \in \widehat{HF}(-M)$$

Heegaard Floer homology graded abelian group: $\widehat{HF}(M)$

$$M$$
 + Contact str. ξ

$$c(\xi) \in \widehat{HF}(-M)$$

Properties:

- ▶ If ξ overtwisted then $c(\xi) = 0$.
- ▶ If ξ *Stein fillable* then $c(\xi) \neq 0$.

3-manifold X with $\partial X \neq \emptyset$

3-manifold X with $\partial X \neq \emptyset$

1 pw dis. ori. circles $\Gamma \subset \partial X$ Juhász

Sutured Floer homology gr. abelian group: $SFH(X, \Gamma)$

3-manifold X with $\partial X \neq \emptyset$

1 pw dis. ori. circles $\Gamma \subset \partial X$ — Juhász

Lipshitz-Ozsváth-Thurston

2 parametrization \mathcal{Z} of ∂X

Sutured Floer homology gr. abelian group: $SFH(X, \Gamma)$

Bordered Floer homology algebra $A(\mathcal{Z})$

 \mathcal{A}_{∞} -module $\widehat{CFA}(X, \mathcal{Z})$ dg-module $\widehat{CFD}(X, \mathcal{Z})$

3-manifold X with $\partial X \neq \emptyset$

1 pw dis. ori. circles
$$\Gamma \subset \partial X$$
 Juhász

Sutured Floer homology gr. abelian group: $SFH(X, \Gamma)$

2 parametrization \mathcal{Z} of ∂X

Lipshitz-Ozsváth-Thurston

Bordered Floer homology algebra $\mathcal{A}(\mathcal{Z})$

 \mathcal{A}_{∞} -module $\widehat{\mathit{CFA}}(X,\mathcal{Z})$ dg-module $\widehat{\mathit{CFD}}(X,\mathcal{Z})$

Gluing formula: $M = (-X) \cup_{\partial} Y$, then:

$$\widehat{HF}(M) = H_{\star}\left(\widehat{CFA}(-X)\boxtimes_{\mathcal{A}}\widehat{CFD}(Y)\right)$$

3-manifold X with $\partial X \neq \emptyset$

- 1 pw dis. ori. circles $\Gamma \subset \partial X$ Juhász
- Sutured Floer homology gr. abelian group: $SFH(X, \Gamma)$

- **2** parametrization \mathcal{Z} of ∂X
- Lipshitz-Ozsváth-Thurston

Bordered Floer homology algebra A(Z)

 \mathcal{A}_{∞} -module $\widehat{\mathit{CFA}}(X,\mathcal{Z})$ dg-module $\widehat{\mathit{CFD}}(X,\mathcal{Z})$

Gluing formula: $M = (-X) \cup_{\partial} Y$, then:

$$\widehat{HF}(M) = H_{\star}\left(\widehat{CFA}(-X)\boxtimes_{\mathcal{A}}\widehat{CFD}(Y)\right)$$

Bordered Sutured Floer homology \widehat{BSD} and \widehat{BSA}

3-manifold X with $\partial X \neq \emptyset$

- 1 pw dis. ori. circles $\Gamma \subset \partial X$ Juhász
- Sutured Floer homology gr. abelian group: $SFH(X, \Gamma)$

- **2** parametrization \mathcal{Z} of ∂X
- Lipshitz-Ozsváth-Thurston

Bordered Floer homology algebra A(Z)

 A_{∞} -module $\widehat{CFA}(X, \mathcal{Z})$ dg-module $\widehat{CFD}(X, \mathcal{Z})$

Gluing formula: $M = (-X) \cup_{\partial} Y$, then:

$$\widehat{HF}(M) = H_{\star}\left(\widehat{CFA}(-X)\boxtimes_{\mathcal{A}}\widehat{CFD}(Y)\right)$$

- Bordered Sutured Floer homology \widehat{BSD} and \widehat{BSA}

► Gluing formula that recovers *SFH*

Cap

bimodule **W** s.t. $SFH(X,\Gamma) \cong H_{\star}(\widehat{CFA}(X,\mathcal{Z}) \boxtimes \mathbf{W}) = H_{\star}(\widehat{CFA}(X,\mathcal{Z})) \cdot \iota$

$$(X,\xi)$$
 s.t ∂X is convex $\xrightarrow{\mathsf{HKM}}$ \to $\mathsf{EH}(\xi) \in SFH(-X,-\Gamma)$

$$(X,\xi) \text{ s.t } \partial X \text{ is convex} \xrightarrow{\mathsf{HKM}} EH(\xi) \in SFH(-X,-\Gamma)$$

$$(X,\xi,\mathcal{F}) \text{ foliation } \mathcal{F} \text{ on } \partial X \xrightarrow{\mathsf{AFHLVP}} c_{A}(X,\xi,\mathcal{F}) \in \widehat{CFA}(-X,\overline{\mathcal{Z}})$$

$$c_{D}(X,\xi,\mathcal{F}) \in \widehat{CFD}(-X,\overline{\mathcal{Z}})$$

$$(X,\xi) \text{ s.t } \partial X \text{ is convex} \qquad \xrightarrow{\mathsf{HKM}} \qquad \underbrace{\mathsf{EH}(\xi) \in \mathit{SFH}(-X,-\Gamma)}_{\mathsf{HKM}}$$

$$(X,\xi,\mathcal{F}) \text{ foliation } \mathcal{F} \text{ on } \partial X \qquad \xrightarrow{\mathsf{AFHLVP}} \qquad c_{\mathsf{A}}(X,\xi,\mathcal{F}) \in \widehat{\mathit{CFA}}(-X,\overline{\mathcal{Z}})$$

$$c_{\mathcal{D}}(X,\xi,\mathcal{F}) \in \widehat{\mathit{CFD}}(-X,\overline{\mathcal{Z}})$$

Properties:

▶ If $(M,\xi) = (-X,\xi,-\mathcal{F}) \cup_{\partial} (Y,\xi,\mathcal{F})$ then under the gluing formula

$$c_{\mathbf{A}}(-X,\xi,-\mathcal{F})\boxtimes c_{\mathbf{D}}(Y,\xi,\mathcal{F})$$

recovers $\mathbf{c}(\xi) \in \widehat{HF}(M, \xi)$.

$$(X,\xi) \text{ s.t } \partial X \text{ is convex} \qquad \xrightarrow{\mathsf{HKM}} \qquad \underbrace{\mathsf{EH}(\xi) \in \mathit{SFH}(-X,-\Gamma)}_{\mathsf{HKM}}$$

$$(X,\xi,\mathcal{F}) \text{ foliation } \mathcal{F} \text{ on } \partial X \qquad \xrightarrow{\mathsf{AFHLVP}} \qquad c_{\mathsf{A}}(X,\xi,\mathcal{F}) \in \widehat{\mathit{CFA}}(-X,\overline{\mathcal{Z}})$$

$$c_{\mathcal{D}}(X,\xi,\mathcal{F}) \in \widehat{\mathit{CFD}}(-X,\overline{\mathcal{Z}})$$

Properties:

▶ If $(M,\xi) = (-X,\xi,-\mathcal{F}) \cup_{\partial} (Y,\xi,\mathcal{F})$ then under the gluing formula

$$c_{\mathsf{A}}(-X,\xi,-\mathcal{F})\boxtimes c_{\mathsf{D}}(Y,\xi,\mathcal{F})$$

recovers $\mathbf{c}(\xi) \in \widehat{HF}(M, \xi)$.

▶ (X, ξ, \mathcal{F}) : under the isom. $SFH(-X, -\Gamma) \cong H_{\star}(\widehat{CFA}(-X, \overline{\mathcal{Z}})) \cdot \iota$

$$[\mathbf{c_A}(X,\xi,\mathcal{F})] \cdot \iota$$

identifies with $\mathbf{EH}(\xi)$.

$$(M,\xi) \leftarrow Giroux \qquad \left\{ \begin{array}{c} \text{Open book decomposition} \\ (B,\pi) \end{array} \right\}_{/\text{stab.}} \stackrel{\text{OS}}{\longleftarrow} c(\xi)$$

$$(M,\xi) \leftarrow Giroux$$
 $\left\{ \begin{array}{c} \text{Open book decomposition} \\ (B,\pi) \end{array} \right\}_{/\text{stab.}} \stackrel{\text{OS}}{\longleftarrow} c(\xi)$

B ⊂ M Oriented link: binding

$$(M,\xi) \leftarrow \begin{array}{c} \operatorname{Giroux} & \left\{ \begin{array}{c} \operatorname{Open \ book \ decomposition} \\ \left(B,\pi\right) \end{array} \right\}_{/\mathrm{stab.}} \begin{array}{c} \operatorname{os} \\ c(\xi) \end{array}$$

- ▶ *B* ⊂ *M* Oriented link: *binding*
- $\pi: M \setminus B \to S^1$ is a fiberation (each fiber S_t (page) is a surface with $\partial S_t = B$)

$$(M,\xi) \leftarrow \begin{array}{c} \operatorname{Giroux} & \left\{ \begin{array}{c} \operatorname{Open \ book \ decomposition} \\ \left(B,\pi\right) \end{array} \right\}_{/\mathrm{stab.}} \begin{array}{c} \operatorname{OS} \\ c(\xi) \end{array}$$

- B ⊂ M Oriented link: binding
- ▶ $\pi: M \setminus B \to S^1$ is a fiberation (each fiber S_t (page) is a surface with $\partial S_t = B$)
- for $\xi = \ker \alpha$: $\alpha(TB) > 0$ and $d\alpha|_{S_t}$ is an area form.

$$(M,\xi) \leftarrow Giroux \qquad \left\{ \begin{array}{c} \text{Open book decomposition} \\ (B,\pi) \end{array} \right\}_{/\text{stab.}} \stackrel{\text{OS}}{\longleftarrow} c(\xi)$$

- B ⊂ M Oriented link: binding
- $\pi: M \setminus B \to S^1$ is a fiberation (each fiber S_t (page) is a surface with $\partial S_t = B$)
- for $\xi = \ker \alpha$: $\alpha(TB) > 0$ and $d\alpha|_{S_t}$ is an area form.

$$(X, \xi, \Gamma) \longleftrightarrow \begin{array}{c} \mathsf{HKM} \\ \mathsf{Partial\ open\ book\ decomp.} \end{array} \bigg\}_{/\mathsf{stab.}} \xrightarrow{\mathsf{HKM}} \begin{array}{c} \mathsf{EH}(\xi) \\ \end{array}$$

Foliated open book (B,π,\mathcal{F}) for (X,ξ,\mathcal{F}) is

▶ *B*: properly embed. 1-mfd

Foliated open book (B, π, \mathcal{F}) for (X, ξ, \mathcal{F}) is

- ▶ *B*: properly embed. 1-mfd
- ▶ $\pi: X \setminus B \to S^1$ regular map s.t. \mathcal{F} : level sets of $\pi|_{\partial X}$
 - S_t is a surface with corners s.t $\partial S_t = B \cup (\mathsf{leaf})$
 - $\pi|_{\partial X}$ is S^1 -Morse

Foliated open book (B, π, \mathcal{F}) for (X, ξ, \mathcal{F}) is

- ▶ *B*: properly embed. 1-mfd
- ▶ $\pi: X \setminus B \to S^1$ regular map s.t. \mathcal{F} : level sets of $\pi|_{\partial X}$
 - lacksquare S_t is a surface with corners s.t $\partial S_t = B \cup (\mathsf{leaf})$
 - $\pi|_{\partial X}$ is S^1 -Morse
- $ightharpoonup \mathcal{F}$ is *close* enough to \mathcal{F}_{ξ}
 - for $\xi=\ker\alpha\colon\alpha(\mathit{TB})>0$ and $d\alpha|_{S_t}$ is an area form.

Foliated open book (B, π, \mathcal{F}) for (X, ξ, \mathcal{F}) is

- ▶ *B*: properly embed. 1-mfd
- ▶ $\pi: X \setminus B \to S^1$ regular map s.t. \mathcal{F} : level sets of $\pi|_{\partial X}$
 - lacksquare S_t is a surface with corners s.t $\partial S_t = B \cup (\mathsf{leaf})$
 - $\pi|_{\partial X}$ is S^1 -Morse
- $ightharpoonup \mathcal{F}$ is *close* enough to \mathcal{F}_{ξ}
 - for $\xi = \ker \alpha$: $\alpha(TB) > 0$ and $d\alpha|_{S_t}$ is an area form.

$$(X,\xi,\mathcal{F}) \xleftarrow{\mathsf{Licata-V\acute{e}rtesi}} \Big\{\mathsf{Fol\ open\ book}\Big\}_{/\mathsf{stab}}$$

Heegaard Diagram for M:

Heegaard Diagram for M:

$$\left(\sum_{i} \alpha_{i}, \beta_{i}, z\right)$$

Heegaard Diagram for M:

Heegaard Diagram for M:

- ► $\Sigma = S_{\frac{1}{2}} \cup -S_0$ ► cutting arcs a_i
- cutting arcs a_i for $S_{\frac{1}{2}}$

Heegaard Diagram for M:

- ► $\Sigma = S_{\frac{1}{2}} \cup -S_0$ ► cutting arcs a_i
- cutting arcs a for $S_{\frac{1}{2}}$
- perturb a_i to get b_i

Heegaard Diagram for M:

- $\triangleright \ \Sigma = S_{\frac{1}{2}} \cup -S_0$
- cutting arcs a_i for $S_{\frac{1}{2}}$
- perturb a_i to get b_i
- $ightharpoonup \alpha_i = a_i \cup a_i$

- $H_{\alpha} = \pi^{-1}[0, \epsilon] \text{ and } H_{\beta} = \pi^{-1}[\epsilon, 1]$

- $H_{\alpha} = \pi^{-1}[0, \epsilon]$ and $H_{\beta} = \pi^{-1}[\epsilon, 1]$
- $ightharpoonup \Sigma = -S_0 \cup_B S_\epsilon$

- $H_{\alpha} = \pi^{-1}[0, \epsilon] \text{ and }$ $H_{\beta} = \pi^{-1}[\epsilon, 1]$
- $ightharpoonup \Sigma = -S_0 \cup_B S_\epsilon$

- (B, π, F) is called sorted if for a gradient vector field of π critical submanifolds are disjoint in X \ S₀.
- Any FOB can be made sorted via enough stabilizations.

- $H_{\alpha} = \pi^{-1}[0, \epsilon]$ and $H_{\beta} = \pi^{-1}[\epsilon, 1]$
- $ightharpoonup \Sigma = -S_0 \cup_B S_\epsilon$

- (B, π, F) is called sorted if for a gradient vector field of π critical submanifolds are disjoint in X \ S₀.
- Any FOB can be made sorted via enough stabilizations.

- $H_{\alpha} = \pi^{-1}[0, \epsilon]$ and $H_{\beta} = \pi^{-1}[\epsilon, 1]$
- $ightharpoonup \Sigma = -S_0 \cup_B S_\epsilon$

- ▶ (B, π, \mathcal{F}) is called **sorted** if for a *gradient* vector field of π critical submanifolds are disjoint in $X \setminus S_0$.
- Any FOB can be made sorted via enough stabilizations.

- $H_{\alpha} = \pi^{-1}[0, \epsilon]$ and $H_{\beta} = \pi^{-1}[\epsilon, 1]$
- $\triangleright \ \ \Sigma = -S_0 \cup_B S_{\epsilon}$
- $eta_i^a = \gamma_i^+ \text{ on } S_\epsilon \text{ and } \beta_i^a = h(\gamma_i^-) \text{ on } -S_0$

- (B, π, \mathcal{F}) is called **sorted** if for a *gradient* vector field of π critical submanifolds are disjoint in $X \setminus S_0$.
- Any FOB can be made sorted via enough stabilizations.

- $H_{\alpha} = \pi^{-1}[0, \epsilon]$ and $H_{\beta} = \pi^{-1}[\epsilon, 1]$
- $\triangleright \ \Sigma = -S_0 \cup_B S_{\epsilon}$
- $\beta_i^a = \gamma_i^+ \text{ on } S_{\epsilon} \text{ and }$ $\beta_i^a = h(\gamma_i^-) \text{ on } -S_0$
- lacktriangledown fix a set of cutting arcs b_i for $S_\epsilon\setminus\{\gamma_i^+\}$
- ▶ perturb $\{b_i\} \cup \{\gamma_i^+\}$ on S_{ϵ} to get a_i
- add basepoints

- (B, π, \mathcal{F}) is called **sorted** if for a *gradient* vector field of π critical submanifolds are disjoint in $X \setminus S_0$.
- Any FOB can be made sorted via enough stabilizations.

- $H_{\alpha} = \pi^{-1}[0, \epsilon]$ and $H_{\beta} = \pi^{-1}[\epsilon, 1]$
- $\triangleright \ \ \Sigma = -S_0 \cup_B S_{\epsilon}$
- $\beta_i^a = \gamma_i^+ \text{ on } S_\epsilon \text{ and }$ $\beta_i^a = h(\gamma_i^-) \text{ on } -S_0$
- fix a set of cutting arcs b_i for $S_{\epsilon} \setminus \{\gamma_i^+\}$
- ▶ perturb $\{b_i\} \cup \{\gamma_i^+\}$ on S_{ϵ} to get a_i
- $\alpha_i = a_i \cup a_i \text{ and } \beta_i = b_i \cup h(b_i)$
- add basepoints

Thank you!