Mapping class groups of

connect sums of $S^{2} \times S^{1}$

Nathan Broaddus
Ohio State University

December 5, 2020
Preprint: https://arxiv.org/abs/2012.01529

Mapping class group

Definition

Mapping class group of closed oriented Riemannian n-manifold M^{n} is

$$
\operatorname{Mod}\left(M^{n}\right) \equiv \operatorname{Diff}^{+}\left(M^{n}\right) / \operatorname{Diff}^{0}\left(M^{n}\right)
$$

π_{1} functor gives homomorphism

$$
\operatorname{Mod}\left(M^{n}\right) \rightarrow \operatorname{Out}\left(\pi_{1}\left(M^{n}\right)\right)
$$

Theorem (Dehn-Nielsen-Baer)

For 2-manifolds above is injective (isomorphism for $\mathrm{Mod}^{ \pm}$).

Mapping class group of 3-manifold

Question

M^{3} closed oriented Riemannian 3-manifold. What is kernel

$$
\operatorname{Mod}\left(M^{3}\right) \rightarrow \operatorname{Out}\left(\pi_{1}\left(M^{3}\right)\right) ?
$$

Sphere twist subgroup

Definition (Sphere twist subgroup)

$S \subset M^{3}$ an embedded 2-sphere. Sphere twist

$$
T_{S}: M^{3} \rightarrow M^{3}
$$

is 360° rotation in regular neighborhood of S.

$$
\pi_{1}(\mathrm{SO}(3)) \cong \pi_{1}\left(\mathbf{R P}^{3}\right) \cong \mathbf{Z} / 2 \quad \text { so } T_{S}^{2}=1
$$

Sphere twist subgroup of $\operatorname{Mod}\left(M^{3}\right)$ is subgroup

$$
\left.\operatorname{Twist}\left(M^{3}\right) \equiv\left\langle T_{S}\right| S \subset M^{3} \text { embedded sphere }\right\rangle
$$

"Pull over the pole" idea

Sphere twist subgroup

Properties of Twist $\left(M^{3}\right)$

1. $\operatorname{Twist}\left(M^{3}\right) \triangleleft \operatorname{Mod}\left(M^{3}\right)$ since $f T_{S} f^{-1}=T_{f S}$. pull S^{\prime} over pole of
2. In fact Twist $\left(M^{3}\right)$ is kernel of action on $\operatorname{Out}\left(\pi_{1}\left(M^{3}\right)\right)$.
(See Hatcher-Wahl 2010)

Connect sums of $S^{2} \times S^{1}$

Set

$$
M_{n}=\underset{n}{\#} S^{2} \times S^{1} \quad \text { so } \pi_{1}\left(M_{n}\right) \cong F_{n}
$$

Theorem (Laudenbach 1973)

$$
\operatorname{Twist}\left(M_{n}\right) \cong(\mathbf{Z} / 2)^{n}
$$

Have exact sequence Landesbach sequence $1 \rightarrow \operatorname{Twist}\left(M_{n}\right) \rightarrow \operatorname{Mod}\left(M_{n}\right) \rightarrow \operatorname{Out}\left(F_{n}\right) \rightarrow 1$

Nontriviality of Sphere Twists

How to show T_{S} nontrivial in $\operatorname{Mod}\left(M^{3}\right)$?

1. First idea: Get action on (homotopy class of) submanifold in M^{3}
2. "Pull over pole" idea shows T_{S} acts trivially on all such homotopy classes.
3. Laudenbach uses framed cobordism and Pontryagin-Thom construction

Trivializations of $T M^{3}$

1. M^{3} closed oriented 3-manifold hence parallelizable.
2. That means we have smooth, everywhere linearly independent sections $\sigma_{1}, \sigma_{2}, \sigma_{3}: M^{3} \rightarrow T M^{3}$ of tangent bundle.
3. That means we have global section $\sigma: M^{3} \rightarrow \operatorname{Fr}\left(T M^{3}\right)$ of tangent frame bundle ($\sigma=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$).

$$
\operatorname{Triv}\left(M^{3}\right) \equiv\left\{\text { sections of } \operatorname{Fr}\left(T M^{3}\right)\right\}
$$

Trivializations of $T M^{3}$

1. Diff $^{+}(M)$ acts on $\operatorname{Triv}\left(M^{3}\right)$ via

2. Set $H \operatorname{Triv}\left(M^{3}\right)=\left\{\right.$ homotopy classes of $\left.\operatorname{Triv}\left(M^{3}\right)\right\}$

Trivializations of $T M^{3}$

Fix base trivialization $\sigma_{0}: M^{3} \rightarrow \operatorname{Fr}\left(T M^{3}\right)$ and let $\left[\sigma_{0}\right]$ be its homotopy class.

Theorem (Brendle-B-Putman 2020)

1. Twist $\left(M_{n}\right) \cong H^{1}\left(M_{n} ; \mathbf{Z} / 2\right)$ as $\operatorname{Mod}\left(M_{n}\right)$-modules.
2. $\left(\operatorname{Mod}\left(M_{n}\right)\right)_{\left[\sigma_{0}\right]} \cong \operatorname{Out}\left(F_{n}\right)$.
3. $\operatorname{Mod}\left(M_{n}\right)=\operatorname{Twist}\left(M_{n}\right) \rtimes\left(\operatorname{Mod}\left(M_{n}\right)\right)_{\left[\sigma_{0}\right]}$
(Laudenbach sequence splits)

Nontriviality of Sphere Twists

$$
M_{n}=\#_{n}^{2} \times S^{1}
$$

- We streamline Laudenbach proof that "core sphere twists" generate Twist $\left(M_{n}\right)$.
- Today I focus on our nontriviality of $\operatorname{Twist}\left(M_{n}\right)$ proof.

Maps to structure group

- Given trivializations

$$
\sigma, \tau \in \operatorname{Triv}\left(M^{3}\right)
$$

- For $p \in M^{3}$ have matrix $\phi_{\sigma, \tau}(p) \in \mathrm{GL}_{3}(\mathbf{R})$ taking basis $\sigma(p)$ to basis $\tau(p)$.
- Get smooth

$$
\phi_{\sigma, \tau}: M^{3} \rightarrow \mathrm{GL}_{3}(\mathbf{R})
$$

Derivative crossed homomorphism

- Let

$$
C\left(M^{3}, \mathrm{GL}_{3}^{+}\left(\mathbf{R}^{3}\right)\right)=\left\{\text { smooth } \phi: M^{3} \rightarrow \mathrm{GL}_{3}^{+}(\mathbf{R})\right\}
$$

- $C\left(M^{3}, \mathrm{GL}_{3}^{+}\left(\mathbf{R}^{3}\right)\right)$ has $\operatorname{Diff}^{+}\left(M^{3}\right)$-action given by

$$
\phi^{f}=\phi \circ f
$$

- Define

$$
\mathscr{D}: \operatorname{Diff}^{+}\left(M^{3}\right) \rightarrow C\left(M^{3}, \mathrm{GL}_{3}^{+}\left(\mathbf{R}^{3}\right)\right)
$$

by

$$
\mathscr{D}(f)=\phi_{\sigma_{0}^{f}, \sigma_{0}}<\text { base trivizlization }
$$

Derivative crossed homomorphism

$$
\mathscr{D}: \operatorname{Diff}^{+}\left(M^{3}\right) \rightarrow C\left(M^{3}, \mathrm{GL}_{3}^{+}\left(\mathbf{R}^{3}\right)\right)
$$

is a crossed homomorphism meaning ${\text { cution of } \mathrm{Diff}^{+} \text {on } C\left(M^{3}, G L\right) ~}_{\text {on }}$)

$$
\mathscr{D}\left(f_{1} f_{2}\right)=\mathscr{D}\left(f_{1}\right)^{f_{2}} \mathscr{D}\left(f_{2}\right)
$$

- Taking homotopy classes get crossed homomorphism

$$
\mathscr{D}: \operatorname{Mod}\left(M^{3}\right) \rightarrow\left[M^{3}, \mathrm{GL}_{3}^{+}\left(\mathbf{R}^{3}\right)\right]
$$

Twisted crossed homomorphism

- π_{1} functor gives homomorphism
$\pi_{1}:\left[M^{3}, \mathrm{GL}_{3}^{+}\left(\mathbf{R}^{3}\right)\right] \rightarrow \operatorname{Hom}\left(\pi_{1}\left(M^{3}\right), \mathbf{Z} / 2\right)=\mathrm{H}^{1}\left(M^{3} ; \mathbf{Z} / 2\right)$
- Composition $\mathscr{T}=\pi_{1} \circ \mathscr{D}$ is twisted crossed homomorphism

$$
\mathscr{T}: \operatorname{Mod}\left(M^{3}\right) \rightarrow \mathrm{H}^{1}\left(M^{3} ; \mathbf{Z} / 2\right)
$$

Image of sphere twist under \mathscr{T}

Lemma

$S \subset M^{3}$ embedded sphere. Then $\mathscr{T}\left(T_{S}\right) \in \mathrm{H}^{1}\left(M^{3} ; \mathbf{Z} / 2\right)$ is
Poincaré dual of $[S] \in \mathrm{H}_{2}\left(M^{3} ; \mathbf{Z} / 2\right)$

Laudenbach Sequence Splits

Corollary

Conjugation action of $\operatorname{Mod}\left(M_{n}\right)$ on $\operatorname{Twist}\left(M_{n}\right)$ is same as action on $\mathrm{H}^{1}\left(M^{3} ; \mathbf{Z} / 2\right)$.

Lemma

$$
1 \rightarrow A \rightarrow G \rightarrow Q \rightarrow 1
$$

splits if and only if there is crossed homomorphism $G \rightarrow A$.

