Mapping class groups of connect sums of $S^2 \times S^1$

Nathan Broaddus Ohio State University

December 5, 2020

Preprint: https://arxiv.org/abs/2012.01529

Mapping class group

Definition

Mapping class group of closed oriented Riemannian *n*-manifold M^n is

$$Mod(M^n) \equiv Diff^+(M^n) / Diff^0(M^n)$$
.

 π_1 functor gives homomorphism

$$\mathsf{Mod}(M^n) \to \mathsf{Out}(\pi_1(M^n)).$$

Theorem (Dehn–Nielsen–Baer)

For 2-manifolds above is injective (isomorphism for Mod^{\pm}).

Mapping class group of 3-manifold

Question

M³ closed oriented Riemannian 3-manifold. What is kernel

$$\mathsf{Mod}(M^3) \to \mathsf{Out}(\pi_1(M^3))?$$

Sphere twist subgroup

Definition (Sphere twist subgroup) $S \subset M^3$ an embedded 2-sphere. **Sphere twist**

$$T_S: M^3 \to M^3$$

is 360° rotation in regular neighborhood of S.

$$\pi_1(\mathrm{SO}(3)) \cong \pi_1(\mathbf{RP}^3) \cong \mathbf{Z}/2 \qquad \text{so } T_S^2 = 1$$

Sphere twist subgroup of $Mod(M^3)$ is subgroup

 $\mathsf{Twist}(M^3) \equiv \langle \mathsf{T}_{\mathsf{S}} | \mathsf{S} \subset M^3 \text{ embedded sphere} \rangle$

"Pull over the pole" idea

Sphere twist subgroup

Properties of $Twist(M^3)$

- 4. In fact Twist(M^3) is kernel of action on $Out(\pi_1(M^3))$. (See Hatcher-Wahl 2010)

Connect sums of $S^2 \times S^1$

Set

$$M_n = \# S^2 \times S^1$$
 so $\pi_1(M_n) \cong F_n$
Theorem (Laudenbach 1973)
Twist $(M_n) \cong (\mathbb{Z}/2)^n$.
Have exact sequence
Lander back Sequence

 $1 \to \mathsf{Twist}(M_n) \to \mathsf{Mod}(M_n) \to \mathsf{Out}(F_n) \to 1$

Nontriviality of Sphere Twists

How to show T_S nontrivial in $Mod(M^3)$?

- 1. First idea: Get action on (homotopy class of) submanifold in M^3
- 2. "Pull over pole" idea shows T_S acts trivially on all such homotopy classes.
- 3. Laudenbach uses framed cobordism and Pontryagin-Thom construction

Trivializations of TM^3

- 1. M³ closed oriented 3-manifold hence parallelizable.
- 2. That means we have smooth, everywhere linearly independent sections $\sigma_1, \sigma_2, \sigma_3 : M^3 \to TM^3$ of tangent bundle.
- **3.** That means we have global section $\sigma : M^3 \to Fr(TM^3)$ of tangent frame bundle ($\sigma = (\sigma_1, \sigma_2, \sigma_3)$).

$$\frac{\operatorname{Triv}(M^3)}{\operatorname{sections of } \operatorname{Fr}(TM^3)}$$

Trivializations of TM^3

2. Set $HTriv(M^3) = \{homotopy classes of Triv(M^3)\}$

Trivializations of TM^3

Fix **base trivialization** σ_0 : $M^3 \rightarrow Fr(TM^3)$ and let $[\sigma_0]$ be its homotopy class.

Theorem (Brendle-B-Putman 2020)

- **1.** Twist $(M_n) \cong H^1(M_n; \mathbb{Z}/2)$ as Mod (M_n) -modules.
- **2.** $(\operatorname{Mod}(M_n))_{[\sigma_0]} \cong \operatorname{Out}(F_n).$
- **3.** $\operatorname{Mod}(M_n) = \operatorname{Twist}(M_n) \rtimes (\operatorname{Mod}(M_n))_{[\sigma_0]}$

(Laudenbach sequence splits)

Nontriviality of Sphere Twists $M_n = \# S^2 \times S'$

- We streamline Laudenbach proof that "core sphere twists" generate Twist(M_n).
- ▶ Today I focus on our nontriviality of $Twist(M_n)$ proof.

Maps to structure group

Given trivializations

$$\sigma, \tau \in \operatorname{Triv}(M^3)$$

For
$$p \in M^3$$
 have matrix $\phi_{\sigma,\tau}(p) \in GL_3(\mathbf{R})$ taking basis $\sigma(p)$ to basis $\tau(p)$.

Get smooth

$$\phi_{\sigma,\tau}: M^3 \to \mathsf{GL}_3(\mathbf{R})$$

Derivative crossed homomorphism

Let

$$C(M^3, \mathrm{GL}_3^+(\mathbf{R}^3)) = \{ \text{smooth } \phi : M^3 \to \mathrm{GL}_3^+(\mathbf{R}) \}$$

► $C(M^3, GL_3^+(\mathbf{R}^3))$ has Diff⁺ (M^3) -action given by

$$\phi^f = \phi \circ f$$

Define

$$\mathscr{D}: \mathsf{Diff}^+(M^3) \to C(M^3, \mathsf{GL}_3^+(\mathbf{R}^3))$$

by

 $\mathcal{D}(f) = \phi_{\sigma_0^f, \sigma_0}$ base triviclization

Derivative crossed homomorphism

$$\mathscr{D}: \operatorname{Diff}^+(M^3) \to C(M^3, \operatorname{GL}_3^+(\mathbf{R}^3))$$

is a crossed homomorphism meaning
$$\mathscr{D}(f_1 f_2) = \mathscr{D}(f_1)^{f_2} \mathscr{D}(f_2)$$

Taking homotopy classes get crossed homomorphism

$$\mathscr{D}: \mathsf{Mod}(M^3) \to [M^3, \mathsf{GL}_3^+(\mathbf{R}^3)]$$

 $\pi(6L_3) \sim SO(3) - \pi^{0}$ **Twisted crossed homomorphism** \blacktriangleright π_1 functor gives homomorphism $\pi_1: [M^3, \operatorname{GL}_3^+(\mathbf{R}^3)] \to \operatorname{Hom}(\pi_1(M^3), \mathbf{Z}/2) = \operatorname{H}^1(M^3; \mathbf{Z}/2)$ • Composition $\mathscr{T} = \pi_1 \circ \mathscr{D}$ is **twisted crossed** homomorphism

$$\mathscr{T}: \mathsf{Mod}(M^3) \to \mathsf{H}^1(M^3; \mathbf{Z}/2)$$

Image of sphere twist under ${\mathscr T}$

Lemma

 $S \subset M^3$ embedded sphere. Then $\mathscr{T}(T_S) \in H^1(M^3; \mathbb{Z}/2)$ is Poincaré dual of $[S] \in H_2(M^3; \mathbb{Z}/2)$

Laudenbach Sequence Splits

Corollary

Conjugation action of $Mod(M_n)$ on $Twist(M_n)$ is same as action on $H^1(M^3; \mathbb{Z}/2)$.

Lemma

$$1 \rightarrow A \rightarrow G \rightarrow Q \rightarrow 1$$

splits if and only if there is crossed homomorphism $G \rightarrow A$.