Prescribed virtual torsion in the homology of 3-manifolds

Michelle Chr
Tech Topology Conference 2020

based on joint work with Daniel Groves

Introduction

Let M be a compact irreducible 3-maniford with empty or toroidal boundary which is not a graph manifold.

Geometrization the
M can be cut along tori into prices which are either hyperbolic ar seifert fibered.
not a graph manifold $=$ at least 1 hyperbolic piece.

Introduction
Goal: understand the homology of finite covers of M

* M virtually contains amy prescribed torsion in homology

$$
\begin{gathered}
H_{1}(M, \mathbb{L})=\mathbb{L}^{b_{1}} \oplus \tau_{1}^{\text {Cons ion }} \text { finite abelian group } \\
b_{1}=18 t \text { Betti number }
\end{gathered}
$$

Motivation and History

Lick approximation the - combined Lott-Luck:
If $\rightarrow M_{i} \rightarrow{ }_{\Gamma_{2}} \rightarrow \Gamma_{1} \rightarrow \stackrel{\Gamma}{M}$ tower of cofinal regular covers of M

$$
\lim _{i \rightarrow \infty} \frac{b_{1}\left(M_{i}\right)}{\left[\Gamma: \Gamma_{i}\right]}=0 .
$$

Motivation and History
Torsion growth conjecture (Bergeron-Venkatern, Lick, Le)
there is a cofinal tower regular covers of M st.

$$
\limsup _{i \rightarrow \infty} \frac{\ln \left|T_{1}\left(M_{i}\right)\right|}{\left[T_{i} \Gamma_{i}\right]}=\frac{\operatorname{vol}(M)}{6 \pi}=\sum_{\text {of the hyp pieces }}
$$

Le: for any such tower

$$
\limsup _{i \rightarrow \infty} \frac{\ln \left|T_{1}\left(M_{i}\right)\right|}{[\Gamma ; \Gamma i]} \leqslant \frac{\operatorname{vo}(M)}{6 \pi}
$$

Motivation and History
A weaker question:
Given M, does there exist a finite cover $\widetilde{M} \rightarrow M$ st. $T_{1}(\mathbb{M}) \neq 0$?

- Sun 2015: true for closed hyperbolic 3-manifolds
- Indep. Friedl-Hermann
Lin true for M as before

Motivation and History

Theorem (Sun 2015)
Let N be a closed hyperbolic 3-manifold.
Let A be any finite abelian group.
Then there is a finite cover $\widetilde{N} \rightarrow N$ such that A is a direct summand in $H_{1}(\widetilde{N}, 7 L)$ this is what call "prescribed torsion"

Statement

Theorem (C-Groves)
Let M be a compact irreducible 3 -manifold with empty or toroidal boundary which is not a graph manifold. Let A be any finite abelian group.
There is a $\widetilde{M} \rightarrow M$ finite cover such that A is a direct summand in $H_{1}(\mathbb{M}, \mathbb{Z})$.

Ideas
Surface Σ_{g}
cut along c
 quotient by $\frac{2 \pi}{n}$ rotation
 X_{n}

Exercise: $H_{1}\left(x_{n} ; z\right)=\mathbb{R}^{2 g-1} \oplus \mathbb{K} / n \mathbb{z}$.

Ideas

Ideas

- use the Kahn-Wright construction of surfaces to build a 2 -complex $X_{n} \xrightarrow{\longrightarrow} M_{H}$ such that
[- Xn stays far away from the cusps
* $\left[\begin{array}{l}\text { - immersion is } \pi_{1} \text {-infective } \\ \text { - image of } \pi_{1}\left(X_{n}\right)\end{array}\right.$
- image of $\pi_{1}\left(X_{n}\right)$ be a quasi-convex subgp in $\Pi_{1}\left(M_{\mathbb{H}}\right)$
- appeal to the urtually special this (Agol, Wise, Preytycki-Wise) to find a finite index subgp $H \leq \Pi_{1}(M)$ such that H retracts to $\Pi_{1}\left(X_{n}\right)$.
- stand ard computation shows that

$$
H_{1}(\widetilde{M}, \mathbb{Z})=H_{1}\left(X_{n}, \mathcal{Z}\right) \oplus \operatorname{Kov}\left(r_{*}\right)
$$

corresponding to H

Thank you!

