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Graph



The Flip Graph ℱ(𝑆𝑆)
vertices ↔ triangulations on 𝑆𝑆

edges ↔ flips

ℱ(𝑆𝑆)
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Finite Rigidity of ℱ 𝑆𝑆

Theorem (S., 2020)
Besides ℱ( ), every flip graph has a finite 
rigid subgraph.



Why do we care about these 
graphs?



(Extended) Mapping Class Group 
Mod±(𝑆𝑆)

homeomorphisms 
𝑆𝑆 → 𝑆𝑆

up to isotopy{ }
• “Symmetries” of surface

• Algebraic invariant of 
surface

• Modular group of 
Teichmüller space



Mod± 𝑆𝑆 ↷ ℱ(S)



Theorem (Korkmaz-Papadopoulus, 2012; 
Aramayona-Koberda-Parlier, 2015; S., 2020)

Besides a few exceptional surfaces,

homeomorphisms 
𝑆𝑆 → 𝑆𝑆

up to isotopy

automorphisms 
ℱ(S) → ℱ(S){ } { }



homeomorphisms 
𝑆𝑆 → 𝑆𝑆

up to isotopy{ }

inj. simplicial maps 
𝒳𝒳 → ℱ(S){ }

automorphisms 
ℱ(S) → ℱ(S){ }



Proof Ideas



Finite Rigidity of ℱ 𝑆𝑆

Theorem (S., 2020)
Besides ℱ( ), every flip graph has a finite 
rigid subgraph.



Helpful properties

• Connected
• Locally finite
• Finitely many automorphism classes of 
vertices

ℱ( )



Almost extension

ℱ 𝑆𝑆 ℱ 𝑆𝑆

𝑓𝑓

𝑔𝑔

𝒳𝒳

𝒴𝒴



Four-cycle
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Extension!
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rigid subgraph.



Finite Rigidity of ℱ 𝑆𝑆

Theorem (S., 2020)
Besides ℱ( ), every flip graph has a finite 
rigid subgraph.

Thank you for your time!

ℱ( )



Symplectic fillings of lens spaces

Agniva Roy
Joint work with John Etnyre

Georgia Tech

Tech Topology - December 2020



Contact structures and contact manifolds

M3

α 1-form such that α ∧ (dα) > 0
ξ = ker(α) 2-plane distribution

Example: R3, ξstd = ker(dz − ydx)

R3, ξstd



Symplectic fillings

(X ,w) symplectic filling of (M, ξ)

Question: Given (M, ξ), can you classify all of its symplectic
fillings?



Lens spaces

Gluing two solid tori together



Lens spaces

Surgery pictures, −p
q = a1 − 1

a2− 1

...− 1
an



Tight structures on lens spaces - Giroux, Honda, 2000

Example: L(13, 8)

−13
8 = −3− 1

−4− 1
−2

Universally tight: Virtually overtwisted:



Symplectic fillings of tight lens spaces (upto
diffeomorphism)

I Lisca in 2008 classified all minimal symplectic fillings of all
universally tight lens spaces. Mcduff had classified the fillings
of L(p, 1).
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Symplectic fillings of tight lens spaces (upto
diffeomorphism)

I Lisca in 2008 classified all minimal symplectic fillings of all
universally tight lens spaces. Mcduff had classified the fillings
of L(p, 1).

I Fillings of some classes of virtually overtwisted structures were
classified by Plamenevskaya-van Horn Morris (2012), Kaloti
(2015), Fossati(2018).

I Etnyre-R. and independently Christian-Li (2020) classified all
minimal symplectic fillings of all virtually overtwisted lens
spaces.



Main result

Theorem (Etnyre-R., independently Christian-Li): The
minimal symplectic fillings of (L(p, q), ξvo), as smooth manifolds,
are a subset of the minimal symplectic fillings of (L(p, q), ξut).

Technology: Menke’s(2018) result on symplectic fillings of
contact 3-manifolds containing mixed tori.



Constructing Stein fillings - algorithm

Example: Virtually overtwisted structure



Constructing minimal fillings - algorithm

Step 1: Remove knots to get a union of consistent chains



Constructing minimal fillings - algorithm

Step 2: Take fillings of consistent chains, add 2-handles along the
knots that were removed



Consequence:

Corollary 1: The minimal filling of a lens space with maximal b2 is
unique and given by the plumbing.

Corollary 2: There exist no nontrivial Stein cobordisms from
(L(p, q), ξ1) to (L(p, q), ξ2), where ξ1 and ξ2 are tight.



More on symplectic cobordisms between tight lens spaces

Corollary 2’: If there exists a Stein cobordism from (L(p, q), ξ) to
(L(p′, q′), ξ′), then l(p/q) ≤ l(p′/q′). In case of equality, it must
be trivial.

−p
q = a1 − 1

a2− 1

...− 1
an

=⇒ l(p/q) := n

Question: Does there exist a Stein cobordism from a virtually
overtwisted lens space to an universally tight lens space?



Contact lens space realisation

Question: Which tight lens spaces can be obtained by Legendrian
surgery on a single knot in (S3, ξstd)?



Contact lens space realisation

Question: Which tight lens spaces can be obtained by Legendrian
surgery on a single knot in (S3, ξstd)?

Conjecture: Only the following families:

L(nm + 1,m2)

(n,−m) torus knot

L(3n2 + 3n + 1, 3n + 1)

A type of Berge knot



Vector fields, mapping class groups, 
and holomorphic 1-forms

Aaron Calderon
Yale University

(joint work w/ Nick Salter)



Framed surfaces

Framing ≈ nonvanishing vector field

Signature = (k1, …, kn)
ki = – (index of i th boundary)

Poincaré–Hopf: Σ ki = 2g-2

winding number functions:

wn(f):      {curves} ℤ
wn(F): {curves} ⊔ {arcs} ℤ

or

f: punctures F: boundary
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Framed MCGs: fMod & FMod

stabilize f/F up to isotopy
⟺ preserve all winding #s

infinite index, not normal
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Framed surfaces

Framed MCGs: fMod & FMod

stabilize f/F up to isotopy
⟺ preserve all winding #s

infinite index, not normal

(punctures) (boundary)

Twist-linearity:
𝛾 an arc or curve, c a curve.
wn(Tc𝛾) = wn(𝛾) + 〈𝛾,c〉 wn(c)

wn(c) = 0 “admissible”
⇝ Tc ∊ fMod and FMod

c separating
⇝ Tc ∊ fMod but not FMod



Theorem: [C.–Salter, ‘20]

Let k be a partition of 2g – 2 with g ≥ 5.

Every framed mapping class group of signature k is 

generated by an* explicit finite set of Dehn twists.

FMod: admissible twists

fMod: admissible + separating twists

*actually, we give a general inductive 
criterion for when a set of Dehn twists 
generates in terms of “stabilization.”

Corollary: general criterion for twists 
to generate closed MCGs



Generating sets

e.g. signature (4,3,3) ⇝ genus 6

k1 = 4

k2 = 3

FMod: admissible twists

k3 = 3
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Generating sets

e.g. signature (4,3,3) ⇝ genus 6

k1 = 4

k2 = 3

fMod: admissible + separating twists

k3 = 3

FMod: admissible twists



Holomorphic 1-forms

Locally, ω = dz or zndz
Vector field 1/ω ↭
framing f of S \ Zeros(ω)

ΩM(k1, …, kn) = “stratum”
= moduli space of ω’s with

zeros of orders k1, …, kn
⇝ framing f has signature (k1, …, kn)

Loops in ΩM(k1, …, kn) induce
homeos of S preserving Zeros(ω)

z2dzdz

∊ ΩM(2)

H = component of ΩM(k1, …, kn)
(classified by Kontsevich–Zorich)

π1(H ,ω)        Mod(S \ Zeros(ω))



Theorem: [C.–Salter, ‘20]

Let H be a component of ΩM(k1, …, kn).*
Then the image of the monodromy

π1(H ,ω)          Mod(S \ Zeros(ω))

is the framed mapping class group preserving 1/ω.

*for g ≥ 5 and H non-hyperelliptic 
(the hyperelliptic case is both rare 
and classically understood)

Open Q: kernel? (we 
only know not injective 
in 2 very special cases!)



Track: Parallel transport: Stabilizes:

zeros surface with punctures framing (∼isotopy)

prong surface with boundary framing (∼ relative isotopy)

all prongs “pronged” surface framing (∼ pronged isotopy)

only surface closed surface “r-spin structure”
= framing mod r = gcd(k)

only homology H1(S, Zeros(ω)) total mod 2 winding numbers

Tracking different data
⇝ different monodromy maps

“prong”

[C.–Salter, ‘19]

“Monodromy of a stratum always
stabilizes some sort of framing”



Main theorems:

(Generating framed MCGs)

We give (many!) explicit 
generating sets for every 
framed mapping class group 
of signature (k1, …, kn).

(Characterization of monodromy)

The image of the map

π1(H ,ω)        Mod(S \ Zeros(ω))

is the framed mapping class group 
preserving 1/ω.

Let (k1, …, kn) be a partition of 2g – 2 with g ≥ 5.



Estimating Link Volumes via Subdivision

Lily Li

Tech Topology Conference, December 2020

Joint Work with Michele Capovilla-Searle, Darin Li, Jack 
McErlean, Alex Simons, Natalie Stewart, Miranda Wang 

Mentor: Prof. Colin Adams

SMALL 2020 Estimating link volumes via subdivision



Lower Bounds on Volume

Theorem (Lackenby)

If L is a prime alternating link in S3, then

v3(t(L)− 2)/2 ≤ vol(S3 −K)

where t(L) is the twisting number of L, and v3 ≈ 1.0149.

Theorem (Agol-Storm-Thurston)

Let M be a hyperbolic manifold, and let Σ be a totally geodesic
surface in M . If M is cut along Σ and reglued to form a manifold
M ′ that is also hyperbolic, then vol(M ′) ≥ vol(M).

Theorem

Let M be a Riemannian manifold and F the fix point set of an
isometry of M . Then each connected component of F is a closed
totally geodesic submanifold of M .
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Links in solid tori

Definition

A cylindrical tangle is a disjoint embedding of finitely
many circles and arcs ending at the “top/bottom caps.”

Suppose link L in a solid torus
decomposes into a cycle of
tangles (Ti), with strands
connecting adjacent tangles.
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Hyperbolic tangles

Definition

A tangle T yields a link in a solid
torus called the double D(T ).

T is hyperbolic if D(T ) is. In
this case, we define the volume

vol(T ) :=
vol(D(T ))

2
.

Theorem

Suppose L decomposes into a cycle (Ti)
n
i=1 of hyperbolic tangles.

Then, L is hyperbolic with volume

vol(L) ≥
n∑

i=1

vol(Ti)
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Square Tangles in a Thickened Torus

SMALL 2020 Estimating link volumes via subdivision



Square tangles

Definition

A square tangle T is the projection of a tangle living in a square,
where the tangle T will have a collection of strands meeting each
edge of the square.

SMALL 2020 Estimating link volumes via subdivision



Square Tangles in a Thickened Torus

Theorem

Consider a link L in a thickened torus, that decomposes into an
n×m grid of square tangles Ti,j . Then:

vol(Tm×n) ≥ 1

4

n,m∑
i,j=1

volC4(Ti,j)

SMALL 2020 Estimating link volumes via subdivision



Necklace links in S3

Theorem

Suppose L is a bracelet link
made of a cycle (Ti)mi=1 of
m ≥ 2n saucer tangles such that
each Ti is 2n-hyperbolic.
Then L is hyperbolic.
If m = 2n, then the volumes
satisfy

vol(L) ≥
∑
i

vol2n(Ti).

SMALL 2020 Estimating link volumes via subdivision



An example

Lackenby’s bound: 2.02988

Our bound: 32.7858

Actual volume: 32.9818

SMALL 2020 Estimating link volumes via subdivision
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Other Linking Patterns

We’ve seen three configurations thus far. It turns out there are
many more.

Other configurations:

Hexagonal tiling of the thickened torus;

Truncated square tiling of the thickened torus;

Archimedean Solids;

SMALL 2020 Estimating link volumes via subdivision



Pseudo-Anosov Stretch Factors and Coxeter

Transformations

Joshua Pankau (Joint with Livio Liechti)

Tech Topology Conference
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Visiting Assistant Professor



Preliminaries

Let f be a pseudo-Anosov element of Mod(Sg ).

Associated to f is a real number λ > 1 known as the stretch

factor of f .

Theorem (Thurston 1974)
If λ > 1 is the stretch factor of a pseudo-Anosov map of Sg then λ

is an algebraic unit where [Q(λ) : Q] ≤ 6g − 6.
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Fried’s conjecture

Theorem (Fried 1985)
Every stretch factor is a bi-Perron unit.

• bi-Perron unit - Real algebraic unit whose Galois conjugates

lie between λ and
1

λ
in absolute value.

Open Question
Which bi-Perron units are stretch factors of pseudo-Anosov maps?

Fried’s Conjecture
Every bi-Perron unit has a power that is a stretch factor.
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Results

Theorem A (P. 2017)
Fried’s conjecture is true for the class of Salem numbers.

Theorem B (Liechti, P. 2020)
Fried’s conjecture holds for all bi-Perron units λ where λ+ λ−1 is

totally real.
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Example

• Let TA = T 2
α1
T 2
α2
Tα3 and TB = T 2

β1
T 2
β2
.

• Thurston’s construction guarantees that TATB is

pseudo-Anosov.

• Stretch Factor λ =
5 +
√
17 +

√
38 + 10

√
17

2
, a Salem

number.
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Further Results

Proposition C (Liechti, P. 2020)
Let λ be a bi-Perron number. Then Q(λ+ λ−1) = Q(λk + λ−k)

for all positive integers k .

Theorem D (Liechti, P. 2020)
For a bi-Perron number λ, the following are equivalent.

(a) For some positive integer k , λk is the stretch factor of a

pseudo-Anosov homeomorphism arising from Thurston’s

construction.

(b) For some positive integer k , λk is the spectral radius of a

bipartite Coxeter transformation of a bipartite Coxeter

diagram with simple edges.
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Theorem D (Liechti, P. 2020)
For a bi-Perron number λ, the following are equivalent.
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The End

Thank you!



Weinstein handlebodies of
complements of toric divisors in toric 4-manifolds

joint work in progress with:
Bahar Acu, Agnès Gadbled,
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Orsola Capovilla-Searle

Duke University

November 24, 2020

Orsola Capovilla-Searle (Duke University) Weinstein handlebodies of complements of toric divisors in toric 4-manifoldsNovember 24, 2020 1 / 9



For any symplectic manifold (M2n, ω) there exists a symplectic divisor,
(Σ2n−2, i∗ω) ⊂ (M2n, ω), such that the complement M\ν(Σ) is an exact
symplectic manifold and has a Weinstein handle decomposition
[Donaldson, Giroux].

Goal: Find the Weinstein handlebody decomposition of M\ν(Σ̃) for
specific Σ and M.

Orsola Capovilla-Searle (Duke University) Weinstein handlebodies of complements of toric divisors in toric 4-manifoldsNovember 24, 2020 2 / 9



Definition

A Weinstein domain (X , ω = dλ, φ) is a compact exact symplectic
manifold with boundary such that

1 There exists a Liouville vector field Z , defined by ιZω = λ

2 Z is transverse to the boundary and therefore λ|∂X is a contact form.

3 φ : X → R is a Morse function that is gradient like with respect to Z

Orsola Capovilla-Searle (Duke University) Weinstein handlebodies of complements of toric divisors in toric 4-manifoldsNovember 24, 2020 3 / 9



Eliashberg gave a topological characterization of Weinstein 2n-manifolds:
you can only build them with handles of index k ≤ n.
Weinstein handlebody diagrams for Weinstein 4-manifolds are given by
projections of Legendrian links in (#k(S1 × S2), ξstd).

Figure: D∗T 2
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A toric 4-manifold (M, ω) is a symplectic 4-manifold equipped with a
effective Hamiltonian torus action. Then there exists a moment map

Φ : M → R2

that encodes the Hamiltonian torus action.

Figure: Moment map image of CP2 Figure: Toric divisor in CP2

Orsola Capovilla-Searle (Duke University) Weinstein handlebodies of complements of toric divisors in toric 4-manifoldsNovember 24, 2020 5 / 9



Toric Divisors

The complement of any singular toric divisor Σ ⊂ M is D∗T 2.
Goal: Consider smoothings Σ̃ of Σ and if possible find the Weinstein
handlebody decompostion of M\ν(Σ̃)

Figure: Singular toric divisor in CP2

Orsola Capovilla-Searle (Duke University) Weinstein handlebodies of complements of toric divisors in toric 4-manifoldsNovember 24, 2020 6 / 9



The divisor Σ̃ smoothed at the blue node has a complement given by
attaching a two handle hΛ(1,−1)

to D∗T 2.

Figure: Difference of inward normals
is (1,−1)

Figure: D∗T 2 ∪ hΛ(1,−1)

Figure: The complement of any toric divisor smoothed at one node.

Orsola Capovilla-Searle (Duke University) Weinstein handlebodies of complements of toric divisors in toric 4-manifoldsNovember 24, 2020 7 / 9



Weinstein Complements of smoothed toric divisors

Theorem (Acu, C-S, Gadbled, Marinkovic, Murphy, Starkston, & Wu)

For certain toric 4-manifold X , the complement of the toric divisor
smoothed at (V1, . . . ,Vn) nodes supports a Weinstein structure given by
taking the completion of

D∗T 2 ∪ hΛ(qi ,pi )

where hΛ(qi ,pi )
are 2-handles attached along the Legendrian conormal lift of

(qi , pi ) ⊂ T 2, and (qi , pi ) are the difference of the inward normals at Vi

Orsola Capovilla-Searle (Duke University) Weinstein handlebodies of complements of toric divisors in toric 4-manifoldsNovember 24, 2020 8 / 9



Thank you!

Orsola Capovilla-Searle (Duke University) Weinstein handlebodies of complements of toric divisors in toric 4-manifoldsNovember 24, 2020 9 / 9



Dehn surgery
Immersed curves

Integral Klein bottle surgeries and Heegaard
Floer homology
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Dehn surgery
Immersed curves

Why Dehn surgery?

For K ⊂ S3, excise νK to obtain S3 \ νK and glue D2 × S1 back
in. Determined by im(S1 × {pt}) = pµ+ qλ; result is S3

p/q(K ).

Open problems:

Cabling conjecture - Only cabled knots admit a reducible surgery.
Berge conjecture - Only Berge knots admit lens space surgeries.
Cosmetic Surgery conjecture - Different slopes never produce the
same manifold.

If S3
p/q(K ) contains a Klein bottle, then

p is divisible by 4.
If K is non-cabled, then q = ±1. (Teragaito)
|p/q| ≤ 4g(K ) + 4. (Ichihara & Teragaito)
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Dehn surgery
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Pairings

Let X = S3
8 (K ) with g(K ) = 2 contain a Klein bottle. We have

X = (Y \ νJ)∪h N, where N is the twisted I -bundle over the Klein
bottle.

Theorem (D.)

If X = (S3 \ νJ) ∪h N, then X is an L-space. Further,

If J = U, then X = (−1; 1
2 ,

1
2 ,

2
5) and K = T (2, 5).

If J 6= U, then J is a trefoil and K has the same knot Floer
homology as that of T (2, 5).
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Heegaard Floer homology

To a 3-manifold Y , Ozsváth & Szabó associate a finitely-generated
vector space over F = F2 that decomposes as

ĤF(Y ) =
⊕

s∈Spinc (Y )

ĤF(Y , s).

We may identify Spinc(Y ) with H2(Y ;Z) ∼= H1(Y ;Z).

Strong connection between ĤF(S3
p/q(K )) and ĤFK(K ).

Proposition

If X = S3
8 (K ) with g(K ) = 2, then dim ĤF(X , s) = 1 for 5 of 8

spinc structures s.
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Dehn surgery
Immersed curves

Heegaard Floer homology
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Bordered invariants as immersed curves

To a 3-manifold M with torus boundary, Hanselman, Rasmussen,
and Watson associate an invariant ĤF(M) in TM = ∂M \ {z}.

ĤF(S3 \ νJ) may be lifted to the infinite cylinder TM .

Figure: Pulling ĤF(S3 \ ν(T (2, 3)#T (2, 3))) tight
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Pairing theorem

Theorem (Hanselman, Rasmussen, Watson)

Let X = M1 ∪h M2. Then

ĤF(X ) = HF(ĤF(M1), h(ĤF(M2))),

computed in TM1 and respecting Spinc decomposition.

Example for S3
4 (T (2, 5)) =

(S3 \ νT (2, 5)) ∪h (D2 × S1).

4 lifts of h(ĤF(D2 × S1))
needed to lift all intersections.

S3
4 (T (2, 5)) is an L-space.
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Proof of main theorem

Let X = S3
8 (K ) with g(K ) = 2 contain a Klein bottle, and be

expressed as X = (S3 \ νJ) ∪h N.

h(ĤF(N)) fills with slope 2,
and needs 2 copies to lift all
intersections.

Cannot have 4 of 8 curves
intersecting ĤF(S3 \ νJ)
multiple times.

ĤF(S3 \ νJ) is heavily
constrained. No interesting
components and g(J) must be
small.
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Nielsen Realization
far

Infinite Type Surfaces
Rylee Lyman
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jointwork with SantanaAfton DannyCalegariand Luzhou Chen






















































An orientablesurface is of infinite typeif it has infinitegenus or infinitelymanypunctures

Tum KeriKjarto Richards 63An orientable surface without boundary is classified
by its genus its space ofends a closedsubsetofthe
cantor set and the closedsubspaceofends accumulatedbygenus
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Tum Afton Calegari Chen L 20 Let 5 be an
orientable surface of infinitetype Finite
subgroups of the mappingclassgroup of Sarise as groups of isometries of hyperbolic
metrics on S

This theorem extends Kerkhoff's 1983
solution to the Nielsen realization problemto the infinite type case






















































Tum Afton Calegari Chen L 20 Let 5 be an
orientable surface of infinitetype Finite
subgroups of the mappingclassgroup of Sarise as groups of isometries of hyperbolic
metrics on S

This theorem extends Kerkhoff's 1983
solution to the Nielsen realization problemto the infinite type case

The ideaof the proof is to find an
invariant exhaustion of 5 by finite typesubsurfaces and carefullyapply Kerkhoff's
theorem to the terms of the exhaustion






















































Cor Let Pcs be an embedded pairofpants withboundary curves Y Zzand Fs
stabH nstab k Astab123

is atorsionfree neighborhood of 1 in Map S






















































Cor Let Pcs be an embedded pairofpants withboundary curves Y ZzandZz
stabH nstab k Astab123

is atorsionfree neighborhood of 1 in Map S
Thiscorollary is key to proving the following

Thm If G is atopologicalgroup containing torsion
limitingto l then there is no continuous injection

MapCSS
ThmCompactsubgroups ofMapes are finite

and locally compact subgroups are discrete
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