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Rigid Subgraphs

No finite rigid subgraphs




The Flip
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The Flip Graph F(S)

vertices & triangulations on S
edges < flips
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Finite Rigidity of F(S)

Theorem (S., 2020)

Besides F((<)), every flip graph has a finite
rigid subgraph.



Why do we care about these
graphs?



(Extended) Mapping Class Group
Mod=(S)

homeomorphisms
S-S5
up to isotopy

« "Symmetries” of surface

» Algebraic invariant of
surface

» Modular group of
Teichmuller space
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Theorem (Korkmaz-Papadopoulus, 2012;
Aramayona-Koberda-Parlier, 2015; S., 2020)

Besides a few exceptional surfaces,

homeomorphisms

automorphisms
“ S-S
FS) = F6) up to isotopy



Inj. simplicial maps
X = F(S)

-

automorphisms
F(S) - F(S)

-

homeomorphisms
S-S5
up to isotopy



Proof Ideas



Finite Rigidity of F(S)

Theorem (S., 2020)

Besides F((<)), every flip graph has a finite
rigid subgraph.



Helpful properties

« Connected
* Locally finite

* Finitely many automorphism classes of
vertices
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Extension!
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Finite Rigidity of F(S)

Theorem (S., 2020)

Besides F((<)), every flip graph has a finite
rigid subgraph.



Finite Rigidity of F(S)

Theorem (S., 2020)

Besides F((<)), every flip graph has a finite
rigid subgraph.

F(ED)



Symplectic fillings of lens spaces

Agniva Roy
Joint work with John Etnyre

Georgia Tech

Tech Topology - December 2020



Contact structures and contact manifolds
M3

a 1-form such that a A (da) > 0
& = ker(a) 2-plane distribution

Example: R3, &5y = ker(dz — ydx)




Symplectic fillings

Ma))%: km(oi>
d\oc: W a a

(X, w) symplectic filling of (M, ¢)

Question: Given (M, &), can you classify all of its symplectic
fillings?



Lens spaces

< >
7
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Gluing two solid tori together



Lens spaces

F/%
a, Qs A, a,., a,., A
Surgery pictures, —g =a — —Lt—
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Tight structures on lens spaces - Giroux, Honda, 2000

Example: L(13,8)

Universally tight: Virtually overtwisted:

SO G
T oGy



Symplectic fillings of tight lens spaces (upto
diffeomorphism)

» Lisca in 2008 classified all minimal symplectic fillings of all
universally tight lens spaces. Mcduff had classified the fillings
of L(p,1).
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diffeomorphism)

» Lisca in 2008 classified all minimal symplectic fillings of all
universally tight lens spaces. Mcduff had classified the fillings
of L(p,1).

» Fillings of some classes of virtually overtwisted structures were
classified by Plamenevskaya-van Horn Morris (2012), Kaloti
(2015), Fossati(2018).



Symplectic fillings of tight lens spaces (upto
diffeomorphism)

» Lisca in 2008 classified all minimal symplectic fillings of all
universally tight lens spaces. Mcduff had classified the fillings
of L(p,1).

» Fillings of some classes of virtually overtwisted structures were
classified by Plamenevskaya-van Horn Morris (2012), Kaloti
(2015), Fossati(2018).

» Etnyre-R. and independently Christian-Li (2020) classified all
minimal symplectic fillings of all virtually overtwisted lens
spaces.



Main result

Theorem (Etnyre-R., independently Christian-Li): The
minimal symplectic fillings of (L(p, q),&vo), as smooth manifolds,
are a subset of the minimal symplectic fillings of (L(p, q),&ut)-

Technology: | Menke's(2018) result on symplectic fillings of

contact 3-manifolds containing mixed tori.



Constructing Stein fillings - algorithm

Example: Virtually overtwisted structure



Constructing minimal fillings - algorithm

Step 1: Remove knots to get a union of consistent chains




Constructing minimal fillings - algorithm

Step 2: Take fillings of consistent chains, add 2-handles along the
knots that were removed




Consequence:

Corollary 1: The minimal filling of a lens space with maximal b, is
unique and given by the plumbing.

Corollary 2: There exist no nontrivial Stein cobordisms from
(L(p,q),&1) to (L(p, q), &2), where & and & are tight.



More on symplectic cobordisms between tight lens spaces

Corollary 2’: If there exists a Stein cobordism from (L(p, g),¢&) to

(L(p',q"),&"), then I(p/q) < I(p’/q’). In case of equality, it must
be trivial.

=a— —+— = I(p/q):=n

Qo

Question: Does there exist a Stein cobordism from a virtually
overtwisted lens space to an universally tight lens space?



Contact lens space realisation

Question: Which tight lens spaces can be obtained by Legendrian
surgery on a single knot in (53, &54)?



Contact lens space realisation

Question: Which tight lens spaces can be obtained by Legendrian
surgery on a single knot in (53, &54)?

Conjecture: Only the following families:

L(nm+ 1, m?) L(3n* +3n+1,3n+1)

(n, —m) torus knot A type of Berge knot



Vector fields, mapping class groups,
and holomorphic 1-forms

Aaron Calderon

Yale University

(joint work w/ Nick Salter)




Framed surfaces

Framing = nonvanishing vector field

Signature = (ky, ..., k,,)
k; =— (index of i boundary)
Poincaré—Hopf: X k; = 2g-2

winding number functions:

wn(f):  {curves} — 7

wn(F): {curves} U {arcs} — Z f: punctures F: boundary




Framed surfaces

Framing = nonvanishing vector field

Signature = (ky, ..., k,,)
k; =— (index of i boundary)
Poincaré—Hopf: X k; = 2g-2

winding number functions:

wn(f):  {curves} — 7
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Framed surfaces

Framing = nonvanishing vector field

Signature = (k4 ..., k)

k= (index of /" boundary) Framed MCGs: fMod & FMod
Poincare—Hopf: X k; = 2g-2 (punctures)  (boundary)

stabilize f/F up to isotopy

winding number functions: o
< preserve all winding #s

wn(f):  {curves} — 7

L — —
wn(F): {curves} Ul {arcs} — Z infinite index, not normal



Framed surfaces

Framed MCGs: fMod & FMod

(punctures)  (boundary)

stabilize f/F up to isotopy
& preserve all winding #s

infinite index, not normal



Framed surfaces

Twist-linearity:
Y an arc or curve, C a curve.
wn(T.¥) = wn(y) + (y,c) wn(c)

wn(c) = 0 “admissible”
> T_ € fMod and FMod

C separating
> T. € fMod but not FMod

Framed MCGs: fMod & FMod

(punctures)  (boundary)

stabilize f/F up to isotopy
& preserve all winding #s

infinite index, not normal



Theorem: [C.—Salter, 20]

Let k be a partition of 2g — 2 with g 2 5.

Every framed mapping class group of signature k is

generated by an™ explicit finite set of Dehn twists.

*actually, we give a general inductive
criterion for when a set of Dehn twists
generates in terms of “stabilization.”

FMod: admissible twists

fMod: admissible + separating twists

Corollary: general criterion for twists

to generate closed MCGs



Generating sets

e.qg. signature (4,3,3) w» genus 6

FMod: admissible twists




Generating sets

e.qg. signature (4,3,3) w» genus 6

FMod: admissible twists




Generating sets

e.qg. signature (4,3,3) w» genus 6

FMod: admissible twists fMod: admissible + separating twists




Holomorphic 1-forms

7%dz

Locally, w = dz or z"dz

Vector field 1/w v
framing f of S\ Zeros(w)

QM(ky, ..., k,) = “stratum”

= moduli space of w’s with
zeros of orders ky, ..., kK,

w» framing f has signature (ky, ..., k,)

Loops in QM(ky, ..., k,) induce
homeos of S preserving Zeros(w)

i, (H ,w) — Mod(S \ Zeros(w))

H = component of QM(ky, ..., k)

(classified by Kontsevich—Zorich)



Theorem: [C.—Salter, 20]

Let H be a component of QM(ky, ..., k,).*
Then the image of the monodromy

,(H ,w) — Mod(S \ Zeros(w))

is the framed mapping class group preserving 1/w.

Open Q: kernel? (we *for g = 5 and JH non-hyperelliptic

only know not injective (the hyperelliptic case is both rare
in 2 very special cases!) and classically understood)



Parallel transport: Stabilizes:

Zeros surface with punctures |framing (~isotopy)

prong surface with boundary | framing (~ relative isotopy)

all prongs “pronged” surface framing (~ pronged isotopy)

only surface closed surface “r-spin structure”

(C.—Salter, ‘19] = framing mod r = gcd(k)

only homology |H4(S, Zeros(w)) total mod 2 winding numbers

prong P
l/ o Monodromy of a stratum always

( Tracking different data stabilizes some sort of framing”

}‘ ~ w different monodromy maps
/\l

~



Main theorems: (et (ky, ..., k,) be a partition of 2g — 2 with g > 5.

(Generating framed MCGs) (Characterization of monodromy)

We give (many!) explicit The image of the map

generating sets for every
framed mapping class group 4 (H ,w) —> Mod(S \ Zeros(w))

of signature (kq, ..., k). is the framed mapping class group
preserving 1/w.




Estimating Link Volumes via Subdivision

Lily Li
Tech Topology Conference, December 2020

Joint Work with Michele Capovilla-Searle, Darin Li, Jack
McErlean, Alex Simons, Natalie Stewart, Miranda Wang
Mentor: Prof. Colin Adams

SMALL 2020



Lower Bounds on Volume

Theorem (Lackenby)

If L is a prime alternating link in S®, then
v3(t(L) —2)/2 < vol(S? — K)

where t(L) is the twisting number of L, and vs ~ 1.0149.

SMALL 2020



Lower Bounds on Volume

Theorem (Lackenby)

If L is a prime alternating link in S®, then
v3(t(L) —2)/2 < vol(S? — K)

where t(L) is the twisting number of L, and vs ~ 1.0149.

Theorem (Agol-Storm-Thurston)

Let M be a hyperbolic manifold, and let 3. be a totally geodesic
surface in M. If M is cut along % and reglued to form a manifold
M’ that is also hyperbolic, then vol(M') > vol(M).

Theorem

Let M be a Riemannian manifold and F' the fix point set of an
isometry of M. Then each connected component of F' is a closed
totally geodesic submanifold of M.

SMALL 2020



Links in solid tori

Definition
A cylindrical tangle is a disjoint embedding of finitely
many circles and arcs ending at the “top/bottom caps.”

SMALL 2020



Links in solid tori

Definition
A cylindrical tangle is a disjoint embedding of finitely
many circles and arcs ending at the “top/bottom caps.”

Suppose link L in a solid torus
decomposes into a cycle of
tangles (7;), with strands
connecting adjacent tangles.

SMALL 2020



Hyperbolic tangles

A tangle T yields a link in a solid
torus called the double D(T).

T is hyperbolic if D(T) is. In @ - @
this case, we define the volume

vol(D(T))
2

vol(T) :=

SMALL 2020



Hyperbolic tangles

A tangle T yields a link in a solid

torus called the double D(T).

T is hyperbolic if D(T) is. In

this case, we define the volume
vol(T) := VOI(Z @)

Theorem

Suppose L decomposes into a cycle ( i), of hyperbolic tangles.
Then, L is hyperbolic with volume

vol(L) > > vol(T;
=1




Square Tangles in a Thickened Torus

SMALL 2020



Square tangles

Definition
A square tangle 7T is the projection of a tangle living in a square,
where the tangle 7 will have a collection of strands meeting each

edge of the square.

5 = §

SMALL 2020




Square Tangles in a Thickened Torus

Theorem

Consider a link L in a thickened torus, that decomposes into an
n x m grid of square tangles T; ;. Then:

n,m

1
vol (Tmxn) = 1 Z volca(Ti 5)

ij=1

e
SO

SMALL 2020



Necklace links in S

Theorem

Suppose L is a bracelet link
made of a cycle (7T;)", of

m > 2n saucer tangles such that
each T; is 2n-hyperbolic.

@ Then L is hyperbolic.
If m = 2n, then the volumes
@ satisfy

vol(L) > Z volgn (77).

SMALL 2020



An example

_\’//._4
L | ey e (o000
volL | | .
N ]
\\G‘ﬁ‘ 1

SMALL 2020



An example

q//:ﬂj
_\’//._4
] Lol | 25wt (/) s ver (20000)
TN

o T

volL

Lackenby’s bound: 2.02988
Our bound: 32.7858
Actual volume: 32.9818

SMALL 2020



Other Linking Patterns

We've seen three configurations thus far. It turns out there are
many more.

Other configurations:
Hexagonal tiling of the thickened torus;
Truncated square tiling of the thickened torus;

Archimedean Solids;

SMALL 2020



Pseudo-Anosov Stretch Factors and Coxeter

Transformations

Joshua Pankau (Joint with Livio Liechti)
Tech Topology Conference

12/04,/2020 - 12/06,/2020

The University of lowa
Visiting Assistant Professor



Preliminaries

Let f be a pseudo-Anosov element of Mod(Sg).
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Preliminaries

Let f be a pseudo-Anosov element of Mod(Sg).

Associated to f is a real number A > 1 known as the stretch
factor of f.

Theorem (Thurston 1974)
If X > 1 is the stretch factor of a pseudo-Anosov map of Sz then A

is an algebraic unit where [Q()) : Q] < 6g — 6.



Fried’s conjecture

Theorem (Fried 1985)
Every stretch factor is a bi-Perron unit.
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Fried’s conjecture

Theorem (Fried 1985)
Every stretch factor is a bi-Perron unit.

e bi-Perron unit - Real algebraic unit whose Galois conjugates

) 1.
lie between A\ and " in absolute value.

Open Question
Which bi-Perron units are stretch factors of pseudo-Anosov maps?

Fried’s Conjecture
Every bi-Perron unit has a power that is a stretch factor.



Theorem A (P. 2017)
Fried's conjecture is true for the class of Salem numbers.



Theorem A (P. 2017)
Fried's conjecture is true for the class of Salem numbers.

Theorem B (Liechti, P. 2020)
Fried's conjecture holds for all bi-Perron units A where A + A~1 is

totally real.






o Let Ta= T2 T2 T,, and Tg = T2 T3,.

a1 " a2



o Let Ty = T§1 TC%Z Toy and Tg = TB21 TB22'

e Thurston's construction guarantees that T4 Tg is

pseudo-Anosov.



o Let Ta= T2 T2 T,, and Tg = T2 T3,.

a1 " a2

e Thurston's construction guarantees that T4 Tg is

5+ /17 + /38 + 10V/17
2

pseudo-Anosov.

e Stretch Factor A =
number.

, a Salem



Further Results

Proposition C (Liechti, P. 2020)
Let A be a bi-Perron number. Then Q(\ + A71) = Q(\* + A7K)

for all positive integers k.



Further Results

Proposition C (Liechti, P. 2020)
Let A be a bi-Perron number. Then Q(\ + A71) = Q(\* + A7K)

for all positive integers k.

Theorem D (Liechti, P. 2020
For a bi-Perron number A, the following are equivalent.

(a) For some positive integer k, A\ is the stretch factor of a
pseudo-Anosov homeomorphism arising from Thurston's
construction.

(b) For some positive integer k, A\ is the spectral radius of a
bipartite Coxeter transformation of a bipartite Coxeter

diagram with simple edges.



The End

Thank you!



Weinstein handlebodies of
complements of toric divisors in toric 4-manifolds

joint work in progress with:
Bahar Acu, Agnés Gadbled,
Aleksandra Marinkovic, Emmy Murphy,
Laura Starkston, and Angela Wu

Orsola Capovilla-Searle

Duke University

November 24, 2020

Orsola Capovilla-Searle (Duke University) Weinstein handlebodies of complements of to November 24, 2020

1/9



For any symplectic manifold (M?",w) there exists a symplectic divisor,
(X272 j*w) C (M?",w), such that the complement M\v(X) is an exact
symplectic manifold and has a Weinstein handle decomposition
[Donaldson, Giroux].

Goal: Find the Weinstein handlebody decomposition of M\v(%) for
specific ¥ and M.

Orsola Capovilla-Searle (Duke University) Weinstein handlebodies of complements of to November 24, 2020 2/9



Definition
A Weinstein domain (X,w = d), ¢) is a compact exact symplectic
manifold with boundary such that

© There exists a Liouville vector field Z, defined by tzw = A

@ Z is transverse to the boundary and therefore \|yx is a contact form.

© ¢: X — Ris a Morse function that is gradient like with respect to Z

Orsola Capovilla-Searle (Duke University) Weinstein handlebodies of complements of to November 24, 2020 3/9



Eliashberg gave a topological characterization of Weinstein 2n-manifolds:
you can only build them with handles of index k < n.

Weinstein handlebody diagrams for Weinstein 4-manifolds are given by
projections of Legendrian links in (#*(S! x S2), £4tq).

Orsola Capovilla-Searle (Duke University) Weinstein handlebodies of complements of to November 24, 2020 4/9



A toric 4-manifold (M, w) is a symplectic 4-manifold equipped with a
effective Hamiltonian torus action. Then there exists a moment map

d: M — R?

that encodes the Hamiltonian torus action.

O\ CeD /
\

Figure: Moment map image of CP? Figure: Toric divisor in CP?

Orsola Capovilla-Searle (Duke University) Weinstein handlebodies of complements of to November 24, 2020

5/9



Toric Divisors

The complement of any singular toric divisor ¥ C M is D* T2
Goal: Consider smoothings ¥ of ¥ and if possible find the Weinstein
handlebody decompostion of M\v(X)

Figure: Singular toric divisor in CP?

Orsola Capovilla-Searle (Duke University) Weinstein handlebodies of complements of to November 24, 2020 6/9



The divisor & smoothed at the blue node has a complement given by
attaching a two handle h/\(1 _y to D*T?.

Figure: D*T2 U hag

Figure: Difference of inward normals
is (1,-1)

o> B

Figure: The complement of any toric divisor smoothed at one node.

Orsola Capovilla-Searle (Duke University) Weinstein handlebodies of complements of to November 24, 2020

7/9



Weinstein Complements of smoothed toric divisors

Theorem (Acu, C-S, Gadbled, Marinkovic, Murphy, Starkston, & Wu)

For certain toric 4-manifold X, the complement of the toric divisor

smoothed at (V4, ..., V,) nodes supports a Weinstein structure given by
taking the completion of

* 72
D*T Uh/\(qppi)

where hy, arp) AT€ 2-handles attached along the Legendrian conormal lift of
(gi, pi) C T2 and (qj, p;) are the difference of the inward normals at V;

v

Orsola Capovilla-Searle (Duke University) Weinstein handlebodies of complements of to November 24, 2020 8/9



Orsola Capovilla-Searle (Du

Thank you!

]
iversity) Weinstein handlebodies of complements of to
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Integral Klein bottle surgeries and Heegaard
Floer homology

Robert DeYeso |l

Monday 23" November, 2020

NC STATE
UNIVERSITY

DeYeso Il Klein bottle surgeries & HF



Dehn surgery

Immersed curves

Why Dehn surgery?

For K C S3, excise vK to obtain S3 \ ¥K and glue D? x S1 back
in. Determined by im(S* x {pt}) = pu + g; result is Sg/q(K).

DeYeso Il Klein bottle surgeries & HF
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same manifold.
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Dehn surgery
Immersed curves

Why Dehn surgery?

For K C S3, excise vK to obtain S3 \ ¥K and glue D? x S1 back
in. Determined by im(S* x {pt}) = pu + g; result is Sg/q(K).

@ Open problems:
o Cabling conjecture - Only cabled knots admit a reducible surgery.
o Berge conjecture - Only Berge knots admit lens space surgeries.
o Cosmetic Surgery conjecture - Different slopes never produce the
same manifold.

o If Sg/q(K) contains a Klein bottle, then

e pis divisible by 4.
o If K is non-cabled, then ¢ = +1. (Teragaito)
o |p/q| < 4g(K)+ 4. (Ichihara & Teragaito)

DeYeso Il Klein bottle surgeries & HF



Dehn surgery

Immersed curves

Pairings

Let X = S3(K) with g(K) = 2 contain a Klein bottle. We have
X = (Y \vJ)Up N, where N is the twisted /-bundle over the Klein
bottle.

DeYeso Il Klein bottle surgeries & HF



Dehn surgery
Immersed curves

Pairings

Let X = S3(K) with g(K) = 2 contain a Klein bottle. We have
X = (Y \vJ)Up N, where N is the twisted /-bundle over the Klein

bottle.

Theorem (D.)

If X = (S3\ vJ) Uy N, then X is an L-space. Further,

o IfJ=U, then X =(-1;3,5,2) and K = T(2,5).

e IfJ# U, then J is a trefoil and K has the same knot Floer
homology as that of T(2,5).

DeYeso Il Klein bottle surgeries & HF



Dehn surgery

Immersed curves

Heegaard Floer homology

To a 3-manifold Y, Ozsvath & Szabd associate a finitely-generated
vector space over F = [F» that decomposes as

HEY)= @ HF(Y,s).
s€Spin°(Y)
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Dehn surgery

Immersed curves

Heegaard Floer homology

To a 3-manifold Y, Ozsvath & Szabd associate a finitely-generated
vector space over F = [F» that decomposes as

HEY)= @ HF(Y,s).
s€Spin°(Y)

o We may identify Spin°(Y) with H2(Y;Z) = Hy(Y; Z).
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Immersed curves

Heegaard Floer homology

To a 3-manifold Y, Ozsvath & Szabd associate a finitely-generated
vector space over F = [F» that decomposes as

HEY)= @ HF(Y,s).
s€Spin°(Y)
o We may identify Spin°(Y) with H2(Y;Z) = Hy(Y; Z).
@ Strong connection between F/ﬁ:(SS/q(K)) and I-TF\K(K)

DeYeso Il Klein bottle surgeries & HF



Dehn surgery

Immersed curves

Heegaard Floer homology

To a 3-manifold Y, Ozsvath & Szabd associate a finitely-generated
vector space over F = [F» that decomposes as

HEY)= @ HF(Y,s).
s€Spin°(Y)

o We may identify Spin°(Y) with H2(Y;Z) = Hy(Y; Z).
@ Strong connection between F/ﬁ:(SS/q(K)) and HFK(K).

Proposition

IfF X = S3(K) with g(K) = 2, then dim HF(X,s) =1 for 5 of 8
spin© structures s.

DeYeso Il Klein bottle surgeries & HF



Dehn surgery
Immersed curves

Bordered invariants as immersed curves

To a 3-manifold M with torus boundary, Hanselman, Rasmussen,
and Watson associate an invariant HF(M) in Ty, = OM \ {z}.

DeYeso Il Klein bottle surgeries & HF



Dehn surgery
Immersed curves

Bordered invariants as immersed curves

To a 3-manifold M with torus boundary, Hanselman, Rasmussen,
and Watson associate an invariant HF(M) in Ty, = OM \ {z}.

o HF(S3\ vJ) may be lifted to the infinite cylinder T .
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Dehn surgery
Immersed curves

Bordered invariants as immersed curves

To a 3-manifold M with torus boundary, Hanselman, Rasmussen,
and Watson associate an invariant HF(M) in Ty, = OM \ {z}.

o HF(S3\ vJ) may be lifted to the infinite cylinder T .

Figure: Pulling HF(S3\ v(T(2,3)#T(2,3))) tight

DeYeso Il Klein bottle surgeries & HF



Dehn surgery
Immersed curves

Pairing theorem

Theorem (Hanselman, Rasmussen, Watson)
Let X = My Up My. Then

HF(X) = HF(HF(My), h(HF(Mz)),
computed in Ty, and respecting Spin® decomposition.

DeYeso Il Klein bottle surgeries & HF



Dehn surgery
Immersed curves

Pairing theorem

Theorem (Hanselman, Rasmussen, Watson)
Let X = My Up My. Then

HF(X) = HF(HF(My), h(HF(Mz)),
computed in Ty, and respecting Spin® decomposition.

e Example for S3(T(2,5)) =
(S*\vT(2,5)) Un (D? x SY).
o 4 lifts of h(HF(D? x S1))
needed to lift all intersections.
e S3(T(2,5)) is an L-space.

DeYeso Il Klein bottle surgeries & HF



Dehn surgery
Immersed curves

Proof of main theorem

Let X = S3(K) with g(K) = 2 contain a Klein bottle, and be
expressed as X = (S3\ vJ) U, N.
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Immersed curves

Proof of main theorem

Let X = S3(K) with g(K) = 2 contain a Klein bottle, and be
expressed as X = (S3\ vJ) U, N.

o h(HF(N)) fills with slope 2,
and needs 2 copies to lift all
intersections.
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Immersed curves

Proof of main theorem

Let X = S3(K) with g(K) = 2 contain a Klein bottle, and be
expressed as X = (S3\ vJ) U, N.

o h(HF(N)) fills with slope 2,
and needs 2 copies to lift all
intersections.

e Cannot have 4 of 8 curves
intersecting HF(S3 \ vJ)
multiple times.
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Dehn surgery

Immersed curves

Proof of main theorem

Let X = S3(K) with g(K) = 2 contain a Klein bottle, and be
expressed as X = (S3\ vJ) U, N.

o h(HF(N)) fills with slope 2,
and needs 2 copies to lift all
intersections.

e Cannot have 4 of 8 curves
intersecting HF(S3 \ vJ)
multiple times.

° I-/I7-'(S3 \ vJ) is heavily
constrained. No interesting
components and g(J) must be
small. O
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