Finite Rigid Sets in Flip Graphs

Emily Shinkle

: ILLINOIS

Rigid Subgraphs

\bullet is a rigid subgraph

Rigid Subgraphs

 is a rigid subgraph

Rigid Subgraphs

No finite rigid subgraphs

The Flip
 Graph

The Flip Graph $\mathcal{F}(S)$

vertices \leftrightarrow triangulations on S edges \leftrightarrow flips

Examples

Examples

$$
\mathcal{F}(\Theta)
$$

Examples
$\mathcal{F}(\bigcirc))$

Finite Rigidity of $\mathcal{F}(S)$

Theorem (S., 2020) Besides $\mathcal{F}\left(\bigotimes^{\circ}\right)$, every flip graph has a finite rigid subgraph.

Why do we care about these graphs?

(Extended) Mapping Class Group $\operatorname{Mod}^{ \pm}(S)$

- "Symmetries" of surface
- Algebraic invariant of surface
- Modular group of Teichmüller space

$\operatorname{Mod}^{ \pm}(S) \curvearrowright \mathcal{F}(S)$

Theorem (Korkmaz-Papadopoulus, 2012; Aramayona-Koberda-Parlier, 2015; S., 2020)

Besides a few exceptional surfaces,
automorphisms
$\mathcal{F}(\mathrm{S}) \rightarrow \mathcal{F}(\mathrm{S})$
homeomorphisms
$S \rightarrow S$ up to isotopy

Proof Ideas

Finite Rigidity of $\mathcal{F}(S)$

Theorem (S., 2020) Besides $\mathcal{F}\left(\bigotimes^{\circ}\right)$, every flip graph has a finite rigid subgraph.

Helpful properties

-Connected

- Locally finite
- Finitely many automorphism classes of vertices

Almost extension

Four-cycle

Five-cycle

Almost extension

Almost extension

Almost extension

Extension!

Finite Rigidity of $\mathcal{F}(S)$

Theorem (S., 2020) Besides $\mathcal{F}\left(\bigotimes^{\circ}\right)$, every flip graph has a finite rigid subgraph.

Finite Rigidity of $\mathcal{F}(S)$

Theorem (S., 2020) Besides $\mathcal{F}\left(\Theta^{\circ}\right)$, every flip graph has a finite rigid subgraph.

Thank you for your time!

Symplectic fillings of lens spaces

Agniva Roy
Joint work with John Etnyre

Georgia Tech

Tech Topology - December 2020

Contact structures and contact manifolds

M^{3}
α 1-form such that $\alpha \wedge(d \alpha)>0$
$\xi=\operatorname{ker}(\alpha)$ 2-plane distribution

Example: $\mathbb{R}^{3}, \xi_{s t d}=\operatorname{ker}(d z-y d x)$

$\mathbb{R}^{3}, \xi_{s t d}$

Symplectic fillings

(X, w) symplectic filling of (M, ξ)
Question: Given (M, ξ), can you classify all of its symplectic fillings?

Lens spaces

Gluing two solid tori together

Lens spaces

Surgery pictures, $-\frac{p}{q}=a_{1}-\frac{1}{a_{2}-\frac{1}{\cdots-\frac{1}{a_{n}}}}$

Tight structures on lens spaces - Giroux, Honda, 2000

Example: $L(13,8)$

$$
-\frac{13}{8}=-3-\frac{1}{-4-\frac{1}{-2}}
$$

Universally tight:

Symplectic fillings of tight lens spaces (upto diffeomorphism)

- Lisca in 2008 classified all minimal symplectic fillings of all universally tight lens spaces. Mcduff had classified the fillings of $L(p, 1)$.

Symplectic fillings of tight lens spaces (upto diffeomorphism)

- Lisca in 2008 classified all minimal symplectic fillings of all universally tight lens spaces. Mcduff had classified the fillings of $L(p, 1)$.
- Fillings of some classes of virtually overtwisted structures were classified by Plamenevskaya-van Horn Morris (2012), Kaloti (2015), Fossati(2018).

Symplectic fillings of tight lens spaces (upto diffeomorphism)

- Lisca in 2008 classified all minimal symplectic fillings of all universally tight lens spaces. Mcduff had classified the fillings of $L(p, 1)$.
- Fillings of some classes of virtually overtwisted structures were classified by Plamenevskaya-van Horn Morris (2012), Kaloti (2015), Fossati(2018).
- Etnyre-R. and independently Christian-Li (2020) classified all minimal symplectic fillings of all virtually overtwisted lens spaces.

Main result

Theorem (Etnyre-R., independently Christian-Li): The minimal symplectic fillings of $\left(L(p, q), \xi_{v o}\right)$, as smooth manifolds, are a subset of the minimal symplectic fillings of $\left(L(p, q), \xi_{u t}\right)$.

Technology: Menke's(2018) result on symplectic fillings of contact 3 -manifolds containing mixed tori.

Constructing Stein fillings - algorithm

Example: Virtually overtwisted structure

Constructing minimal fillings - algorithm

Step 1: Remove knots to get a union of consistent chains

Constructing minimal fillings - algorithm

Step 2: Take fillings of consistent chains, add 2-handles along the knots that were removed

Consequence:

Corollary 1: The minimal filling of a lens space with maximal b_{2} is unique and given by the plumbing.

Corollary 2: There exist no nontrivial Stein cobordisms from $\left(L(p, q), \xi_{1}\right)$ to $\left(L(p, q), \xi_{2}\right)$, where ξ_{1} and ξ_{2} are tight.

More on symplectic cobordisms between tight lens spaces

Corollary 2': If there exists a Stein cobordism from $(L(p, q), \xi)$ to $\left(L\left(p^{\prime}, q^{\prime}\right), \xi^{\prime}\right)$, then $I(p / q) \leq I\left(p^{\prime} / q^{\prime}\right)$. In case of equality, it must be trivial.

$$
-\frac{p}{q}=a_{1}-\frac{1}{a_{2}-\frac{1}{\cdots-\frac{1}{a_{n}}}} \Longrightarrow I(p / q):=n
$$

Question: Does there exist a Stein cobordism from a virtually overtwisted lens space to an universally tight lens space?

Contact lens space realisation

Question: Which tight lens spaces can be obtained by Legendrian surgery on a single knot in $\left(S^{3}, \xi_{s t d}\right)$?

Contact lens space realisation

Question: Which tight lens spaces can be obtained by Legendrian surgery on a single knot in $\left(S^{3}, \xi_{s t d}\right)$?

Conjecture: Only the following families:

$$
L\left(n m+1, m^{2}\right)
$$

$$
L\left(3 n^{2}+3 n+1,3 n+1\right)
$$

($n,-m$) torus knot

Vector fields, mapping class groups, and holomorphic 1-forms

Aaron Calderon
Yale University

(joint work w/ Nick Salter)

Framed surfaces

Framing \approx nonvanishing vector field

Signature $=\left(k_{1}, \ldots, k_{n}\right)$
$k_{i}=-$ (index of $i^{\text {th }}$ boundary)
Poincaré-Hopf: $\sum k_{i}=2 g-2$
winding number functions:
wn(f): $\xrightarrow\left[\text { wn(F): }\left\{\begin{array}{l}\text { curves }\} \\ \text { curves }\end{array}\{\overrightarrow{\text { arcs }\}} \longrightarrow \mathbb{Z}]{\longrightarrow \mathbb{Z}}\right.\right.$

Framed surfaces

Framing \approx nonvanishing vector field

Signature $=\left(k_{1}, \ldots, k_{n}\right)$
$k_{i}=-$ (index of $i^{\text {th }}$ boundary)
Poincaré-Hopf: $\sum k_{\mathrm{i}}=2 g-2$
winding number functions:

Framed surfaces

Framing \approx nonvanishing vector field

Signature $=\left(k_{1}, \ldots, k_{n}\right)$
$k_{i}=-$ (index of $i^{\text {th }}$ boundary)
Poincaré-Hopf: $\sum k_{\mathrm{i}}=2 g-2$
winding number functions:
wn(f):
wn(F): $\left\{\begin{array}{l}\text { curves }\} \\ \{\overrightarrow{\text { curves }}\} \\ \text { arcs }\}\end{array} \longrightarrow \mathbb{Z}\right.$

Framed MCGs: fMod \& FMod (punctures) (boundary)
stabilize f/F up to isotopy
\Leftrightarrow preserve all winding \#s
infinite index, not normal

Framed surfaces

Framed MCGs: fMod \& FMod (punctures) (boundary)
stabilize f/F up to isotopy
\Leftrightarrow preserve all winding \#s
infinite index, not normal

Framed surfaces

```
Twist-linearity:
\gamma an arc or curve, c a curve.
wn}(\mp@subsup{T}{c}{}\gamma)=wn(\gamma)+\langle\gamma,c\ranglewn(c
```

$w n(c)=0$ "admissible"
$w \rightarrow T_{c} \in f$ Mod and FMod
c separating
$w \rightarrow T_{c} \in$ fMod but not FMod

Framed MCGs: fMod \& FMod (punctures) (boundary)
stabilize f/F up to isotopy
\Leftrightarrow preserve all winding \#s
infinite index, not normal

Theorem: [C.-Salter, '20]

Let \underline{k} be a partition of $2 g-2$ with $g \geq 5$.
Every framed mapping class group of signature \underline{k} is generated by an* explicit finite set of Dehn twists.

FMod: admissible twists
fMod: admissible + separating twists

*actually, we give a general inductive criterion for when a set of Dehn twists generates in terms of "stabilization."
Corollary: general criterion for twists

to generate closed MCGs

Generating sets
e.q. signature $(4,3,3) \mathrm{ms}$ genus 6

FMod: admissible twists

Generating sets
e.q. signature $(4,3,3) \mathrm{ms}$ genus 6

FMod: admissible twists

Generating sets
e.q. signature $(4,3,3) \mathrm{ms}$ genus 6

FMod: admissible twists
fMod: admissible + separating twists

Holomorphic 1-forms

Locally, $\omega=d z$ or $z^{n} d z$
Vector field $1 / \omega \leftrightarrow \sim$ framing f of $S \backslash \operatorname{Zeros}(\omega)$
$\Omega \mathcal{M}\left(k_{1}, \ldots, k_{n}\right)=$ "stratum"
$=$ moduli space of ω 's with zeros of orders k_{1}, \ldots, k_{n}
$w \rightarrow$ framing f has signature $\left(k_{1}, \ldots, k_{n}\right)$

Loops in $\Omega \mathcal{M}\left(k_{1}, \ldots, k_{n}\right)$ induce homeos of S preserving Zeros(ω)

$$
\left.\begin{array}{c}
\pi_{1}(\mathcal{H}, \omega) \longrightarrow \operatorname{Mod}(S \backslash \operatorname{Zeros}(\omega)) \\
\mathcal{H}=\text { component of } \Omega \mathcal{M}\left(k_{1}, \ldots, k_{n}\right) \\
\text { (classified by Kontsevich-Zorichi) }
\end{array}\right)
$$

Theorem: [C.-Salter, '20]

Let \mathcal{H} be a component of $\Omega \mathcal{M}\left(k_{1}, \ldots, k_{n}\right)$.*
Then the image of the monodromy

$$
\pi_{1}(\mathcal{H}, \omega) \longrightarrow \operatorname{Mod}(S \backslash \operatorname{Zeros}(\omega))
$$

is the framed mapping class group preserving $1 / \omega$.

Open Q: kernel? (we only know not injective
in 2 very special cases!)
*for $g \geq 5$ and \mathcal{H} non-hyperelliptic (the hyperelliptic case is both rare and classically understood)

Track:	Parallel transport:	Stabilizes:
zeros	surface with punctures	framing (~isotopy)
prong	surface with boundary	framing (\sim relative isotopy)
all prongs	"pronged" surface	framing (\sim pronged isotopy)
only surface [C.-Salter, "19]	closed surface	" r-spin structure" $=$ framing mod $r=\operatorname{gcd}(\underline{k})$
only homology	$\mathrm{H}_{1}(\mathrm{~S}$, Zeros $(\omega))$	total $\bmod 2$ winding numbers

Tracking different data $w \rightarrow$ different monodromy maps

Main theorems: Let $\left(k_{1}, \ldots, k_{n}\right)$ be a partition of $2 g-2$ with $g \geq 5$.
(Generating framed MCGs)
We give (many!) explicit generating sets for every framed mapping class group of signature $\left(k_{1}, \ldots, k_{n}\right)$.

(Characterization of monodromy)
The image of the map

$$
\pi_{1}(\mathcal{H}, \omega) \longrightarrow \operatorname{Mod}(S \backslash Z \operatorname{eros}(\omega))
$$

is the framed mapping class group preserving $1 / \omega$.

Estimating Link Volumes via Subdivision

Lily Li

Tech Topology Conference, December 2020
Joint Work with Michele Capovilla-Searle, Darin Li, Jack McErlean, Alex Simons, Natalie Stewart, Miranda Wang Mentor: Prof. Colin Adams

Lower Bounds on Volume

Theorem (Lackenby)

If L is a prime alternating link in S^{3}, then

$$
v_{3}(t(L)-2) / 2 \leq \operatorname{vol}\left(S^{3}-K\right)
$$

where $t(L)$ is the twisting number of L, and $v_{3} \approx 1.0149$.

Theorem (Agol-Storm-Thurston)
Let M be a hyperbolic manifold, and let Σ be a totally geodesic surface in M. If M is cut along Σ and reglued to form a manifold M^{\prime} that is also hyperbolic, then $\operatorname{vol}\left(M^{\prime}\right) \geq \operatorname{vol}(M)$

Theorem

Let M be a Riemannian manifold and F the fix point set of an isometry of M. Then each connected component of F is a closed totally geodesic submanifold of M

Lower Bounds on Volume

Theorem (Lackenby)

If L is a prime alternating link in S^{3}, then

$$
v_{3}(t(L)-2) / 2 \leq \operatorname{vol}\left(S^{3}-K\right)
$$

where $t(L)$ is the twisting number of L, and $v_{3} \approx 1.0149$.

Theorem (Agol-Storm-Thurston)

Let M be a hyperbolic manifold, and let Σ be a totally geodesic surface in M. If M is cut along Σ and reglued to form a manifold M^{\prime} that is also hyperbolic, then $\operatorname{vol}\left(M^{\prime}\right) \geq \operatorname{vol}(M)$.

Theorem

Let M be a Riemannian manifold and F the fix point set of an isometry of M. Then each connected component of F is a closed totally geodesic submanifold of M.

Links in solid tori

Definition

A cylindrical tangle is a disjoint embedding of finitely many circles and arcs ending at the "top/bottom caps."

Suppose link L in a solid torus decomposes into a cycle of tangles $\left(T_{i}\right)$, with strands connecting adjacent tangles.

Links in solid tori

Definition

A cylindrical tangle is a disjoint embedding of finitely many circles and arcs ending at the "top/bottom caps."

Suppose link L in a solid torus decomposes into a cycle of tangles $\left(T_{i}\right)$, with strands connecting adjacent tangles.

Hyperbolic tangles

Definition

A tangle T yields a link in a solid torus called the double $D(T)$.
T is hyperbolic if $D(T)$ is. In this case, we define the volume

$$
\operatorname{vol}(T):=\frac{\operatorname{vol}(D(T))}{2}
$$

Theorem
Suppose L decomposes into a cycle $\left(T_{i}\right)_{i=1}^{n}$ of hyperbolic tangles. Then, L is hyperbolic with volume

Hyperbolic tangles

Definition

A tangle T yields a link in a solid torus called the double $D(T)$.
T is hyperbolic if $D(T)$ is. In this case, we define the volume

$$
\operatorname{vol}(T):=\frac{\operatorname{vol}(D(T))}{2}
$$

Theorem

Suppose L decomposes into a cycle $\left(T_{i}\right)_{i=1}^{n}$ of hyperbolic tangles. Then, L is hyperbolic with volume

$$
\operatorname{vol}(L) \geq \sum_{i=1}^{n} \operatorname{vol}\left(T_{i}\right)
$$

Square Tangles in a Thickened Torus

Square tangles

Definition

A square tangle \mathcal{T} is the projection of a tangle living in a square, where the tangle \mathcal{T} will have a collection of strands meeting each edge of the square.

Square Tangles in a Thickened Torus

Theorem

Consider a link L in a thickened torus, that decomposes into an $n \times m$ grid of square tangles $\mathcal{T}_{i, j}$. Then:

$$
\operatorname{vol}\left(\mathcal{T}_{m \times n}\right) \geq \frac{1}{4} \sum_{i, j=1}^{n, m} \operatorname{vol}_{C 4}\left(\mathcal{T}_{i, j}\right)
$$

Theorem

Suppose L is a bracelet link made of a cycle $\left(\mathcal{T}_{i}\right)_{i=1}^{m}$ of $m \geq 2 n$ saucer tangles such that each \mathcal{T}_{i} is $2 n$-hyperbolic.
Then L is hyperbolic. If $m=2 n$, then the volumes satisfy

$$
\operatorname{vol}(L) \geq \sum_{i} \operatorname{vol}_{2 n}\left(\mathcal{T}_{i}\right)
$$

An example

Lackenby's bound: 2.02988
Our bound: 32.7858
Actual volume: 32.9818

An example

Lackenby's bound: 2.02988
Our bound: 32.7858
Actual volume: 32.9818

Other Linking Patterns

We've seen three configurations thus far. It turns out there are many more.

Other configurations:
Hexagonal tiling of the thickened torus;
Truncated square tiling of the thickened torus;
Archimedean Solids;

Pseudo-Anosov Stretch Factors and Coxeter Transformations

Joshua Pankau (Joint with Livio Liechti)
Tech Topology Conference
12/04/2020-12/06/2020

The University of Iowa
Visiting Assistant Professor

Preliminaries

Let f be a pseudo-Anosov element of $\operatorname{Mod}\left(S_{g}\right)$.

Preliminaries

Let f be a pseudo-Anosov element of $\operatorname{Mod}\left(S_{g}\right)$.

Associated to f is a real number $\lambda>1$ known as the stretch factor of f.

Preliminaries

Let f be a pseudo-Anosov element of $\operatorname{Mod}\left(S_{g}\right)$.

Associated to f is a real number $\lambda>1$ known as the stretch factor of f.

Theorem (Thurston 1974)
If $\lambda>1$ is the stretch factor of a pseudo-Anosov map of S_{g} then λ is an algebraic unit where $[\mathbb{Q}(\lambda): \mathbb{Q}] \leq 6 g-6$.

Fried's conjecture

Theorem (Fried 1985)
Every stretch factor is a bi-Perron unit.

Fried's conjecture

Theorem (Fried 1985)
Every stretch factor is a bi-Perron unit.

- bi-Perron unit - Real algebraic unit whose Galois conjugates lie between λ and $\frac{1}{\lambda}$ in absolute value.

Fried's conjecture

Theorem (Fried 1985)
Every stretch factor is a bi-Perron unit.

- bi-Perron unit - Real algebraic unit whose Galois conjugates lie between λ and $\frac{1}{\lambda}$ in absolute value.

Open Question

Which bi-Perron units are stretch factors of pseudo-Anosov maps?

Fried's conjecture

Theorem (Fried 1985)
Every stretch factor is a bi-Perron unit.

- bi-Perron unit - Real algebraic unit whose Galois conjugates lie between λ and $\frac{1}{\lambda}$ in absolute value.

Open Question

Which bi-Perron units are stretch factors of pseudo-Anosov maps?

Fried's Conjecture
Every bi-Perron unit has a power that is a stretch factor.

Results

Theorem A (P. 2017)
Fried's conjecture is true for the class of Salem numbers.

Results

Theorem A (P. 2017)
Fried's conjecture is true for the class of Salem numbers.

Theorem B (Liechti, P. 2020)
Fried's conjecture holds for all bi-Perron units λ where $\lambda+\lambda^{-1}$ is totally real.

Example

Example

- Let $T_{A}=T_{\alpha_{1}}^{2} T_{\alpha_{2}}^{2} T_{\alpha_{3}}$ and $T_{B}=T_{\beta_{1}}^{2} T_{\beta_{2}}^{2}$.

Example

- Let $T_{A}=T_{\alpha_{1}}^{2} T_{\alpha_{2}}^{2} T_{\alpha_{3}}$ and $T_{B}=T_{\beta_{1}}^{2} T_{\beta_{2}}^{2}$.
- Thurston's construction guarantees that $T_{A} T_{B}$ is pseudo-Anosov.

Example

- Let $T_{A}=T_{\alpha_{1}}^{2} T_{\alpha_{2}}^{2} T_{\alpha_{3}}$ and $T_{B}=T_{\beta_{1}}^{2} T_{\beta_{2}}^{2}$.
- Thurston's construction guarantees that $T_{A} T_{B}$ is pseudo-Anosov.
- Stretch Factor $\lambda=\frac{5+\sqrt{17}+\sqrt{38+10 \sqrt{17}}}{2}$, a Salem number.

Further Results

Proposition C (Liechti, P. 2020)

Let λ be a bi-Perron number. Then $\mathbb{Q}\left(\lambda+\lambda^{-1}\right)=\mathbb{Q}\left(\lambda^{k}+\lambda^{-k}\right)$ for all positive integers k.

Further Results

Proposition C (Liechti, P. 2020)
Let λ be a bi-Perron number. Then $\mathbb{Q}\left(\lambda+\lambda^{-1}\right)=\mathbb{Q}\left(\lambda^{k}+\lambda^{-k}\right)$ for all positive integers k.

Theorem D (Liechti, P. 2020)
For a bi-Perron number λ, the following are equivalent.
(a) For some positive integer k, λ^{k} is the stretch factor of a pseudo-Anosov homeomorphism arising from Thurston's construction.
(b) For some positive integer k, λ^{k} is the spectral radius of a bipartite Coxeter transformation of a bipartite Coxeter diagram with simple edges.

The End

Thank you!

Weinstein handlebodies of complements of toric divisors in toric 4-manifolds
 joint work in progress with:
 Bahar Acu, Agnès Gadbled, Aleksandra Marinkovic, Emmy Murphy,
 Laura Starkston, and Angela Wu

Orsola Capovilla-Searle

Duke University
November 24, 2020

For any symplectic manifold ($M^{2 n}, \omega$) there exists a symplectic divisor, $\left(\Sigma^{2 n-2}, i^{*} \omega\right) \subset\left(M^{2 n}, \omega\right)$, such that the complement $M \backslash \nu(\Sigma)$ is an exact symplectic manifold and has a Weinstein handle decomposition [Donaldson, Giroux].

Goal: Find the Weinstein handlebody decomposition of $M \backslash \nu(\widetilde{\Sigma})$ for specific Σ and M.

Definition

A Weinstein domain $(X, \omega=d \lambda, \phi)$ is a compact exact symplectic manifold with boundary such that
(1) There exists a Liouville vector field Z, defined by $\iota_{Z} \omega=\lambda$
(2) Z is transverse to the boundary and therefore $\left.\lambda\right|_{\partial X}$ is a contact form.
(3) $\phi: X \rightarrow \mathbb{R}$ is a Morse function that is gradient like with respect to Z

Eliashberg gave a topological characterization of Weinstein $2 n$-manifolds: you can only build them with handles of index $k \leq n$. Weinstein handlebody diagrams for Weinstein 4-manifolds are given by projections of Legendrian links in $\left(\#^{k}\left(S^{1} \times S^{2}\right), \xi_{\text {std }}\right)$.

Figure: $D^{*} T^{2}$

A toric 4-manifold (M, ω) is a symplectic 4-manifold equipped with a effective Hamiltonian torus action. Then there exists a moment map

$$
\Phi: M \rightarrow \mathbb{R}^{2}
$$

that encodes the Hamiltonian torus action.

Figure: Moment map image of $\mathbb{C} P^{2}$

Figure: Toric divisor in $\mathbb{C} P^{2}$

Toric Divisors

The complement of any singular toric divisor $\Sigma \subset M$ is $D^{*} T^{2}$.
Goal: Consider smoothings $\widetilde{\Sigma}$ of Σ and if possible find the Weinstein handlebody decompostion of $M \backslash \nu(\widetilde{\Sigma})$

Figure: Singular toric divisor in $\mathbb{C} P^{2}$

The divisor $\widetilde{\Sigma}$ smoothed at the blue node has a complement given by attaching a two handle $h_{\Lambda_{(1,-1)}}$ to $D^{*} T^{2}$.

Figure: $D^{*} T^{2} \cup h_{\Lambda_{(1,-1)}}$

Figure: Difference of inward normals is $(1,-1)$

Figure: The complement of any toric divisor smoothed at one node.

Weinstein Complements of smoothed toric divisors

Theorem (Acu, C-S, Gadbled, Marinkovic, Murphy, Starkston, \& Wu) For certain toric 4-manifold X, the complement of the toric divisor smoothed at $\left(V_{1}, \ldots, V_{n}\right)$ nodes supports a Weinstein structure given by taking the completion of

$$
D^{*} T^{2} \cup h_{\wedge_{\left(q_{i}, p_{i}\right)}}
$$

where $h_{\Lambda_{\left(q_{i}, p_{i}\right)}}$ are 2-handles attached along the Legendrian conormal lift of $\left(q_{i}, p_{i}\right) \subset T^{2}$, and $\left(q_{i}, p_{i}\right)$ are the difference of the inward normals at V_{i}

Thank you!

Integral Klein bottle surgeries and Heegaard Floer homology

Robert DeYeso III

Monday $23^{\text {rd }}$ November, 2020

NC STATE UNIVERSITY

Why Dehn surgery?

For $K \subset S^{3}$, excise νK to obtain $S^{3} \backslash \nu K$ and glue $D^{2} \times S^{1}$ back in. Determined by $\operatorname{im}\left(S^{1} \times\{p t\}\right)=p \mu+q \lambda$; result is $S_{p / q}^{3}(K)$.

Why Dehn surgery?

For $K \subset S^{3}$, excise νK to obtain $S^{3} \backslash \nu K$ and glue $D^{2} \times S^{1}$ back in. Determined by $\operatorname{im}\left(S^{1} \times\{p t\}\right)=p \mu+q \lambda$; result is $S_{p / q}^{3}(K)$.

- Open problems:
- Cabling conjecture - Only cabled knots admit a reducible surgery.
- Berge conjecture - Only Berge knots admit lens space surgeries.
- Cosmetic Surgery conjecture - Different slopes never produce the same manifold.

Why Dehn surgery?

For $K \subset S^{3}$, excise νK to obtain $S^{3} \backslash \nu K$ and glue $D^{2} \times S^{1}$ back in. Determined by $\operatorname{im}\left(S^{1} \times\{\mathrm{pt}\}\right)=p \mu+q \lambda$; result is $S_{p / q}^{3}(K)$.

- Open problems:
- Cabling conjecture - Only cabled knots admit a reducible surgery.
- Berge conjecture - Only Berge knots admit lens space surgeries.
- Cosmetic Surgery conjecture - Different slopes never produce the same manifold.
- If $S_{p / q}^{3}(K)$ contains a Klein bottle, then
- p is divisible by 4 .
- If K is non-cabled, then $q= \pm 1$. (Teragaito)
- $|p / q| \leq 4 g(K)+4$. (Ichihara \& Teragaito)

Pairings

Let $X=S_{8}^{3}(K)$ with $g(K)=2$ contain a Klein bottle. We have $X=(Y \backslash \nu J) \cup_{h} N$, where N is the twisted I-bundle over the Klein bottle.

Pairings

Let $X=S_{8}^{3}(K)$ with $g(K)=2$ contain a Klein bottle. We have $X=(Y \backslash \nu J) \cup_{h} N$, where N is the twisted I-bundle over the Klein bottle.

Theorem (D.)

If $X=\left(S^{3} \backslash \nu J\right) \cup_{h} N$, then X is an L-space. Further,

- If $J=U$, then $X=\left(-1 ; \frac{1}{2}, \frac{1}{2}, \frac{2}{5}\right)$ and $K=T(2,5)$.
- If $J \neq U$, then J is a trefoil and K has the same knot Floer homology as that of $T(2,5)$.

Heegaard Floer homology

To a 3-manifold Y, Ozsváth \& Szabó associate a finitely-generated vector space over $\mathbb{F}=\mathbb{F}_{2}$ that decomposes as

$$
\widehat{H F}(Y)=\bigoplus_{\mathfrak{s} \in \operatorname{Spin}^{c}(Y)} \widehat{H F}(Y, \mathfrak{s})
$$

Heegaard Floer homology

To a 3-manifold Y, Ozsváth \& Szabó associate a finitely-generated vector space over $\mathbb{F}=\mathbb{F}_{2}$ that decomposes as

$$
\widehat{H F}(Y)=\bigoplus_{\mathfrak{s} \in \operatorname{Spin}^{c}(Y)} \widehat{H F}(Y, \mathfrak{s})
$$

- We may identify $\operatorname{Spin}^{c}(Y)$ with $H^{2}(Y ; \mathbb{Z}) \cong H_{1}(Y ; \mathbb{Z})$.

Heegaard Floer homology

To a 3-manifold Y, Ozsváth \& Szabó associate a finitely-generated vector space over $\mathbb{F}=\mathbb{F}_{2}$ that decomposes as

$$
\widehat{H F}(Y)=\bigoplus_{\mathfrak{s} \in \operatorname{Spin}^{c}(Y)} \widehat{H F}(Y, \mathfrak{s})
$$

- We may identify $\operatorname{Spin}^{c}(Y)$ with $H^{2}(Y ; \mathbb{Z}) \cong H_{1}(Y ; \mathbb{Z})$.
- Strong connection between $\widehat{H F}\left(S_{p / q}^{3}(K)\right)$ and $\widehat{H F K}(K)$.

Heegaard Floer homology

To a 3-manifold Y, Ozsváth \& Szabó associate a finitely-generated vector space over $\mathbb{F}=\mathbb{F}_{2}$ that decomposes as

$$
\widehat{H F}(Y)=\bigoplus_{\mathfrak{s} \in \operatorname{Spin}^{c}(Y)} \widehat{H F}(Y, \mathfrak{s})
$$

- We may identify $\operatorname{Spin}^{c}(Y)$ with $H^{2}(Y ; \mathbb{Z}) \cong H_{1}(Y ; \mathbb{Z})$.
- Strong connection between $\widehat{H F}\left(S_{p / q}^{3}(K)\right)$ and $\widehat{H F K}(K)$.

Proposition

If $X=S_{8}^{3}(K)$ with $g(K)=2$, then $\operatorname{dim} \widehat{H F}(X, \mathfrak{s})=1$ for 5 of 8 spin c structures \mathfrak{s}.

Bordered invariants as immersed curves

To a 3-manifold M with torus boundary, Hanselman, Rasmussen, and Watson associate an invariant $\widehat{H F}(M)$ in $T_{M}=\partial M \backslash\{z\}$.

Bordered invariants as immersed curves

To a 3-manifold M with torus boundary, Hanselman, Rasmussen, and Watson associate an invariant $\widehat{H F}(M)$ in $T_{M}=\partial M \backslash\{z\}$. - $\widehat{H F}\left(S^{3} \backslash \nu J\right)$ may be lifted to the infinite cylinder \bar{T}_{M}.

Bordered invariants as immersed curves

To a 3-manifold M with torus boundary, Hanselman, Rasmussen, and Watson associate an invariant $\widehat{H F}(M)$ in $T_{M}=\partial M \backslash\{z\}$.

- $\widehat{H F}\left(S^{3} \backslash \nu J\right)$ may be lifted to the infinite cylinder \bar{T}_{M}.

Figure: Pulling $\widehat{\operatorname{HF}}\left(S^{3} \backslash \nu(T(2,3) \# T(2,3))\right)$ tight

Pairing theorem

Theorem (Hanselman, Rasmussen, Watson)
Let $X=M_{1} \cup_{h} M_{2}$. Then

$$
\widehat{H F}(X)=H F\left(\widehat{H F}\left(M_{1}\right), h\left(\widehat{H F}\left(M_{2}\right)\right)\right),
$$

computed in $T_{M_{1}}$ and respecting Spin ${ }^{c}$ decomposition.

Pairing theorem

Theorem (Hanselman, Rasmussen, Watson)

Let $X=M_{1} \cup_{h} M_{2}$. Then

$$
\widehat{H F}(X)=H F\left(\widehat{H F}\left(M_{1}\right), h\left(\widehat{H F}\left(M_{2}\right)\right)\right),
$$

computed in $T_{M_{1}}$ and respecting Spin ${ }^{c}$ decomposition.

- Example for $S_{4}^{3}(T(2,5))=$ $\left(S^{3} \backslash \nu T(2,5)\right) \cup_{h}\left(D^{2} \times S^{1}\right)$.
- 4 lifts of $h\left(\widehat{H F}\left(D^{2} \times S^{1}\right)\right)$ needed to lift all intersections.
- $S_{4}^{3}(T(2,5))$ is an L-space.

Proof of main theorem

Let $X=S_{8}^{3}(K)$ with $g(K)=2$ contain a Klein bottle, and be expressed as $X=\left(S^{3} \backslash \nu J\right) \cup_{h} N$.

Proof of main theorem

Let $X=S_{8}^{3}(K)$ with $g(K)=2$ contain a Klein bottle, and be expressed as $X=\left(S^{3} \backslash \nu J\right) \cup_{h} N$.

Proof of main theorem

Let $X=S_{8}^{3}(K)$ with $g(K)=2$ contain a Klein bottle, and be expressed as $X=\left(S^{3} \backslash \nu J\right) \cup_{h} N$.

- $h(\widehat{H F}(N))$ fills with slope 2 , and needs 2 copies to lift all intersections.

Proof of main theorem

Let $X=S_{8}^{3}(K)$ with $g(K)=2$ contain a Klein bottle, and be expressed as $X=\left(S^{3} \backslash \nu J\right) \cup_{h} N$.

- $h(\widehat{H F}(N))$ fills with slope 2 , and needs 2 copies to lift all intersections.
- Cannot have 4 of 8 curves intersecting $\widehat{H F}\left(S^{3} \backslash \nu J\right)$ multiple times.

Proof of main theorem

Let $X=S_{8}^{3}(K)$ with $g(K)=2$ contain a Klein bottle, and be expressed as $X=\left(S^{3} \backslash \nu J\right) \cup_{h} N$.

- $h(\widehat{H F}(N))$ fills with slope 2 , and needs 2 copies to lift all intersections.
- Cannot have 4 of 8 curves intersecting $\widehat{H F}\left(S^{3} \backslash \nu J\right)$ multiple times.
- $\widehat{H F}\left(S^{3} \backslash \nu J\right)$ is heavily constrained. No interesting components and $g(J)$ must be small.

Nielsen Realization for
Infinite-Type Surfaces
Rule Lyman Rutgers University -Newark
joint work with Santana Afton, Danny Calegari

An orientable surface is of infinite type
if it has infinite genus or infinitely many punctures
Tum (Kerékjártó, Richards '63)
An orientable surface (without boundary) is classified by its genus, its space of ends (a closed subset of the (antor set) and the closed subspace of ends accumulated by genus

The flute surface

Thin (Afton-Calegari-Chen-L, 20) Let S be an orientable surface of infinite type. Finite subgroups of the mapping class group of s anise as groups of isometries of hyperbolic

This theorem extends Kerckhoff's 1983 solution to the Nielsen realization problem to the infinite-type case.
(Afton-Calegari-Chen-L '20) Let S be an orientable surface of infinite type. Finite subgroups of the mapping ass group of S anise as groups of isometries of Metrics on hyperbolic

This theorem extends Kerckhoff's 1983 solution to the Nielsen realization problem to the infinite-type case.

The idea of the proof is to find an invariant exhaustion of s by finite-type subsurfaces and carefully apply Kerckhoffs theorem to the terms of the exhaustion.

Let PCS be an embedded pair of pants with boundary curves γ_{1}, γ_{2} and γ_{3}.

$$
\operatorname{stab}\left(\gamma_{1}\right) \cap \operatorname{stab}\left(\gamma_{2}\right) \cap \operatorname{stab}\left(\gamma_{3}\right)
$$

is a torsion-free neighborhood of 1 in $\mu_{a p}(S)$.

Let PCS be an embedded pair of pants with boundary curves γ_{1}, γ_{2} and γ_{3}.

$$
\operatorname{stab}\left(\gamma_{1}\right) \cap \operatorname{stab}\left(\gamma_{2}\right) \cap \operatorname{stab}\left(\gamma_{3}\right)
$$

is a torsion-free neighborhood of 1 in $\mu_{a p}(S)$.
This corollary is key to proving the following. If G is a topological group containing torsion limiting to 1 , then there is no continuous injection

$$
G \hookrightarrow M_{2 \rho}(s) .
$$

Thu Compact subgroups of $M_{\text {ap }}(s)$ are finite, and locally compact subgroups are discrete.

