Pure Braids and Link Concordance

Miriam Kuzbary

Georgia Tech

December 5, 2020

Tech Topology Conference X

Talk Outline: I. Background II. String Link Concordance Group II. Milnor's Invariants

I. Background In this talk: everything is smooth and wiented Recall: There is a binary op UN KNOTS ES3 $K\#S:=(S^{3},K)\#(S^{3},\overline{f})$ Fact: (SKES?, H) is a monoil, not a group! Exercise: Inverses don't exist b/c genus is addition under H

Q: Where would we get inverses from then?

Def: Knots K,JES³ are concordant if there is a smooth, properly embedded annulus CESXIWH DC=KI

Def A knot
$$K \subseteq S^3$$
 is slice if there is
a smooth, properly embedded disk $A \subseteq B^4$
with $\partial A = K$
 $\partial B^4 = 5^3$

The Knot Concordance Group

Theorem (Fox-Milnor '66)

The set of knots $K \subset S^3$ with the operation connected sum forms a monoid, this monoid modulo concordance forms the knot concordance group C.

 ${\mathcal C}$ has the following properties:

- [Fox-Milnor '66] \mathcal{C} is abelian,
- [Fox-Milnor '66] C has elements of finite order (namely, order 2),
- [J. Levine '69] \mathcal{C} surjects onto $\mathcal{A} \cong \mathbb{Z}^{\infty} \oplus \mathbb{Z}_2^{\infty} \oplus \mathbb{Z}_4^{\infty}$.
 - $\blacktriangleright~\mathcal{A}$ is known as the algebraic concordance group.
 - [Casson-Gordon '75] The kernel of this map is nontrivial.
 - [Jiang '81] The kernel of this map contains a \mathbb{Z}^∞ subgroup.
 - [Livingston-Naik '99] Many of the preimages of order 4 elements \mathcal{A} are infinite order in \mathcal{C} .

• [Cochran-Orr-Teichner '03] There is a geometric filtration of \mathcal{C} whose successive quotients are non-trivial.

• [Harvey '08] The successive quotients of the COT filtration have infinite rank.

Q: What about links? There is a notion of link concordance • Strong: n-cpt links L, L2 are Strongly concordant if their components are concordantly disjoint annal: • Weak: L, L2 are weaky concordant If I smoth, properly embedded genus Oster CSYI with IEL 1.4

Aside: In HF world, often define E = E + R = E + RNotice: N-ept # HEN-cpt=2n-1 cpt link If you want a group of N-component binks, this would do I for you [See Donald-Owens] 2012 I. The String Link Concerdance Group I dea: Base a link with a disk und "connect sum "along the disk ordered, oriented ordered, n-cpt String kin o S D2 X I Ima LES3

Representatives are not unique

Def

Two *n*-component string links σ_1 and σ_2 are concordant if there is a smooth embedding $H: \bigsqcup_n (I \times I) \to B^3 \times I$ which is transverse to the boundary such that

$$\begin{array}{c} H|_{(\bigsqcup_{n}I\times\{0\})} = \sigma_{1} \\ H|_{(\bigsqcup_{n}I\times\{1\})} = \sigma_{2} \\ H|_{(\bigsqcup_{n}\partial I\times I)} = j_{0}\times id_{I} \text{ with } j_{0}: \bigsqcup_{n}\partial I \to S^{2}. \end{array}$$

Theorem (Habegger-Lin '98)

An n-component string link $\sigma \subset D^2 \times I$ is concordant to the trivial string link if and only if its closure $\hat{\sigma} \subset S^3$ is strongly concordant to the n-component unlink (i.e. is strongly slice).

The String Link Concordance Group

Definition (Le Dimet '88)

 $C(n) = (\frac{\text{n-component string links}}{\text{string link concordance}}, \text{stacking})$ is a group.

Notice: · Conrebraids) & Rotory links) & Gtangles) · l(1) = l = Knot concordance group

•
$$C(i) \hookrightarrow C(j)$$
 for $i \leq j$.

• [Le Dimet '88] The pure braid group $\mathcal{P}(n) \hookrightarrow \mathcal{C}(n)$.

• [Le Dimet '88, De Campos '95 for n = 2] C(n) is non-abelian;

- [Cochran-Orr-Teichner '03] There is a geometric filtration $\mathcal{F}_{(m)}$ of $\mathcal{C}(n)$ whose successive quotients are non-trivial.
- [Harvey '08] The abelianization of successive quotients of $\mathcal{F}_{(m)}$ has infinite rank.
- [Cha '08] There are infinitely many order 2 elements in $\mathcal{F}_{(m)}$ that are not in $\mathcal{F}_{(m+2)}$.

Theorem (Kirk-Livingston-Wang '98)

The pure braid group $\mathcal{P}(n)$ is not a normal subgroup of $\mathcal{C}(n)$ for $n \geq 2$.

Morally, this a complementary
result to the celebrated classification
of links up to link homotopy by
tabegger - Lin '90, where thy show
$$\frac{G(n)}{1.nkhtpy} \xrightarrow{P(n)}{1.nkhtpy}$$

If L is an n-component link with L_i the 0-framed longitude of the i^{th} component,

$$[L_i] = \sum_{i=1}^n \operatorname{lk}(L_i, L_j) \ x_j \in \operatorname{H}_1(S^3 \setminus \nu(L))$$

where x_i generate $H_1(S^3 \setminus \nu(L))$.

Theorem (Casson '75)

If L_1 and L_2 are concordant links in S^3 with groups $G = \pi_1(S^3 \setminus \nu(L_1), *)$ and $H = \pi_1(S^3 \setminus \nu(L_2), *)$, then G/G_q and H/H_q are isomorphic for all q.

Corollary (Casson '75)

If L_1 and L_2 are concordant links in S^3 whose 0-framed longitudes are $y_1, ..., y_n$ and $z_1, ..., z_n$, then $y_i \in G_q$ if and only if $z_i \in H_q$.

Rough definition (Milnor '54)

The Milnor invariants of an $n\text{-}{\rm component}$ link $L\subset S^3$ with link group G are a set of integer-valued link (and string link) concordance invariants

$$\overline{\mu}_L(I) \in \mathbb{Z}$$

with $I = (i_1...i_k)$ and $i_j \in \{1, ..., n\}$. They detect how deep the i_k^{th} longitude of L is in G_q .

$$E \sim \overline{\mathcal{M}}(cj) = \mathcal{L}\mathcal{K}(\mathcal{L}_{i},\mathcal{L}_{j})$$

$$= \overline{\mathcal{M}}(cj\mathcal{L}) = + iple (inding \#)$$

$$BR = O has \overline{\mathcal{M}}_{gR}(123) = ($$

Unfortunate Fact

 $\overline{\mu}_L(I)$ are generally defined only up to the gcd of a subset of $\overline{\mu}_L(I)$ of lower order.

Fortunate Fact

If we are computing Milnor's invariants for string links instead of links, they are well defined without quotienting by anything! (see Levine, Habegger-Lin)

Properties of Milnor's Invariants

- [Casson '75] $\overline{\mu}_L(I)$ are link concordance invariants.
- [Turaev '79, Porter '80] $\overline{\mu}_L(I)$ can be computed by evaluating Massey products on $\partial(S^3 \setminus \nu(L))$.
- [Cochran '90] The first non-vanishing $\overline{\mu}_L(I)$ can be computed using iterated intersections of surfaces.
- [Conant-Schneiderman-Teichner '15] The first non-vanishing $\overline{\mu}_L(I)$ can be computed using intersection trees of twisted Whitney towers.
- [Gorsky-Liu-Moore '20] For 2-component links with linking number 0, can compute $\overline{\mu}_L(1122)$ from link Floer homology.
- [Gorsky-Lidman-Liu-Moore '20] For 3-component links, can compute $\overline{\mu}_L(123)$ from link Floer homology.

Further Questions • What is the abelian; zation of E(W) Noll(Paw)? • Is 6(n) solvable?

- Does to(n) have finte
 Ncl(P(n)) have finte
 Ncl(P(n))
 Note that P(n) is forsion
 free
 What is the structure of Ncl(Pa)?
 Are there boundary links in t?
- (Harvey-Park Ray) How does the pure braid group interact with the (W-solvable filtration ?. Thank you!!!