

Q: Where would we get inverses from, then?
Def: Knots $k, J \leqslant s^{3}$ are concordant if there is a smooth, properly embedded anumus $c \leqslant s^{3} \times I$ w. th $\partial c=k \mathbb{I}-J$ Cartoon:

Def A knot $k \leq S^{3}$ is slice if there is a smooth, properly embedded disk $\Delta \subseteq B^{4}$ ω th $\partial \Delta=k$

Theorem (Fox-Milnor '66)
The set of knots $K \subset S^{3}$ with the operation connected sum forms a monoid, this monoid modulo concordance forms the knot concordance group \mathcal{C}.
\mathcal{C} has the following properties:

- [Fox-Milnor '66] \mathcal{C} is abelian,
- [Fox-Milnor ' 66$] \mathcal{C}$ has elements of finite order (namely, order 2),
- [J. Levine '69] \mathcal{C} surjects onto $\mathcal{A} \cong \mathbb{Z}^{\infty} \oplus \mathbb{Z}_{2}^{\infty} \oplus \mathbb{Z}_{4}^{\infty}$.
- \mathcal{A} is known as the algebraic concordance group.
- [Casson-Gordon '75] The kernel of this map is nontrivial.
- [Jiang '81] The kernel of this map contains a \mathbb{Z}^{∞} subgroup.
- [Livingston-Naik '99] Many of the preimages of order 4 elements \mathcal{A} are infinite order in \mathcal{C}.
- [Cochran-Orr-Teichner '03] There is a geometric filtration of \mathcal{C} whose successive quotients are nontrivial.
- [Harvey '08] The successive quotients of the COT filtration have infinite rank.
Q: What about links?
There is a notion of line concordance
- Strong: n-cp linus L_{1}, L_{2} are
stromly whiordant if their components are concordantly d dis joint annal:
- Weak: L_{1}, L_{2} are wean concord at
if \exists smooth, papery embedded genus 0 sic $C_{S} \times 1$ 唯 $\partial \varepsilon=L, b-1.4$

There's a bigger problem here...
Connected sum isn't well-defined for links, even oriented, ordered ones,
Pf Consider

(1)
(2)

If L and H^{-}were concordant cane \# was well defined on concordance lases) then
$H^{-" \#} \#^{+} H^{+}$conc
$\binom{0}{3}^{11}=00$

L"\#'H+ = isitap-r to

Aside: In HF world, often define

$$
E v \#_{H-\sigma}(x)=
$$

Notice: $n-$ opt $\#_{H f} n-c p t=2 n-1$ cptlinn If you warta grope of n-component lime, this would do t for you (See Dorald-Owens) 2012
II The String Link Concordance Group
Idea: Base a link with a disk ind "connect sum" along the disk.
Ex

ordered, oriented $\operatorname{lin} a L \subseteq s^{3}$
(1) Representatives are not unique

Def

Two n-component string links σ_{1} and σ_{2} are concordant if there is a smooth embedding $H: \bigsqcup_{n}(I \times I) \rightarrow B^{3} \times I$ which is transverse to the
boundary such that boundary such that

Theorem (Habegger-Lin '98)
An n-component string link $\sigma \subset D^{2} \times I$ is concordant to the trivial An n-component string link $\sigma \subset D^{2} \times I$ is concordant to the trivial
string link if and only if its closure $\widehat{\sigma} \subset S^{3}$ is strongly concordant to the n-component unlink (ie. is strongly slice).

The String Link Concordance Group
Definition (Le Dime '88)
$\mathcal{C}(n)=\left(\frac{\mathrm{n} \text {-component string links }}{\text { string link concordance }}\right.$, stacking $)$ is a group.
Notice: . Spare braids\& Restring links $c^{c} 9$ tangles 3

- $\mathcal{C}(i) \hookrightarrow \mathcal{C}(j)$ for $i \leq j$.

- [Le Dime '88] The pure braid group $\mathcal{P}(n) \hookrightarrow \mathcal{C}(n)$.
- [Le Dime '88, De Campos ' 95 for $n=2$] $\mathcal{C}(n)$ is non-abelian;
- [Cochran-Orr-Teichner '03] There is a geometric filtration $\mathcal{F}_{(m)}$ of $\mathcal{C}(n)$ whose successive quotients are nontrivial.
- [Harvey '08] The abelianization of successive quotients of $\mathcal{F}_{(m)}$ has infinite rank.
- [Cha '08] There are infinitely many order 2 elements in $\mathcal{F}_{(m)}$ that are not in $\mathcal{F}_{(m+2)}$.

Q: How much if the non-abelian structure of $l(n)$ is inherited from $P(n)$?

Theorem (Kirk-Livingston-Wang '98)
The pure braid group $\mathcal{P}(n)$ is not a normal subgroup of $\mathcal{C}(n)$ for $n \geq 2$.

The (k. 2020)
$\frac{\zeta(n)}{N \subset I(P(n))}$ is non-abelian far all.

$$
N_{c} \mid(P(n))
$$

Morally, this a complementary result to the celebrated classification of links up to link homotopy by -abegger - Lin 190, where thy show

$$
\frac{6(n)}{\text { link hippy }} \rightarrow \frac{P_{(n)}}{\text { link ht by }}
$$

III Minor's Invariants
The main tool in the proof of this theorem is a specific subset of Wilma's invariants which are trivial for elements of $\mathrm{NCl}\left(P_{(n)}\right)$
Recall
If L is an n-component link with L_{i} the 0 -framed longitude of the $i^{t h}$ component,

$$
\left[L_{i}\right]=\sum_{i=1}^{n} \operatorname{lk}\left(L_{i}, L_{j}\right) x_{j} \in \mathrm{H}_{1}\left(S^{3} \backslash \nu(L)\right)
$$

where x_{i} generate $\mathrm{H}_{1}\left(S^{3} \backslash \nu(L)\right)$.
Let $G=\pi_{1}\left(s^{3}\right) v(L, x)$.
Notice that

$$
H_{1}\left(s^{3} \backslash v(L)\right) \cong G_{G} G_{G} \cong L^{n}
$$

Q: what happens if you loon at image of the isth longitude in another quotient of G ?
Recall: The lower central series of G is

$$
G_{1}=G, \quad G_{n+1}=\left[G, G_{n}\right]
$$

Concordance Data in the Lower central Series

Theorem (Casson '75)
If L_{1} and L_{2} are concordant links in S^{3} with groups
$G=\pi_{1}\left(S^{3} \backslash \nu\left(L_{1}\right), *\right)$ and $H=\pi_{1}\left(S^{3} \backslash \nu\left(L_{2}\right), *\right)$, then G / G_{q} and H / H_{q} are isomorphic for all q.
Corollary (Casson '75)
If L_{1} and L_{2} are concordant links in S^{3} whose 0 -framed longitudes are y_{1}, \ldots, y_{n} and z_{1}, \ldots, z_{n}, then $y_{i} \in G_{q}$ if and only if $z_{i} \in H_{q}$.
Rough definition (Minor '54)
The Minor invariants of an n-component link $L \subset S^{3}$ with link group G are a set of integer-valued link (and string link) concordance invariants

$$
\bar{\mu}_{L}(I) \in \mathbb{Z}
$$

with $I=\left(i_{1} \ldots i_{k}\right)$ and $i_{j} \in\{1, \ldots, n\}$. They detect how deep the $i_{k}^{\text {th }}$ longitude of L is in G_{q}.
Idea: $\bar{\mu} L(I)$ are higher wo der liming's
$\underline{E x} \cdot \bar{\mu}_{L}(i j)=l k\left(L_{i,} L_{j}\right)$

- $\bar{\mu}_{L}(i j k)=$ triple limen \neq

$$
B R=\sim^{\text {has }} \bar{\mu}_{B R}(123)=1
$$

Unfortunate Fact
$\bar{\mu}_{L}(I)$ are generally defined only up to the ged of a subset of $\bar{\mu}_{L}(I)$ of lower order.

Fortunate Fact
If we are computing Milnor's invariants for string links instead of links, they are well defined without quotienting by anything! (see Levine, Habegger-Lin)

Properties of Minor's Invariants

- [Casson ' 75$] \bar{\mu}_{L}(I)$ are link concordance invariants.
- [Turaev ' 79 , Porter ' 80$] \bar{\mu}_{L}(I)$ can be computed by evaluating Massey products on $\partial\left(S^{3} \backslash \nu(L)\right)$.
- [Cochran '90] The first non-vanishing $\bar{\mu}_{L}(I)$ can be computed using iterated intersections of surfaces.
- [Conant-Schneiderman-Teichner '15] The first non-vanishing $\bar{\mu}_{L}(I)$ can be computed using intersection trees of twisted Whitney towers.
- [Gorsky-Liu-Moore '20] For 2-component links with linking number 0, can compute $\bar{\mu}_{L}(1122)$ from link Floe homology.
- [Gorsky-Lidman-Liu-Moore '20] For 3-component links, can compute $\bar{\mu}_{L}(123)$ from link Floer homology.

Further Questions

- What is the abelianization of le (n)Nol(R(w)?
- Is $l(n)$ solvable?
- Does $\frac{C(n)}{N C I(P(n))}$ have finte or der elements? Note that $P(n)$ is torsion - What is the straction of $\mathrm{Nc}\left(\mathrm{P}_{a}\right)$? - Are there boundary links in t ?
- (Harrey-Park-Ray) How does the pure braid group interact with the (n) - solvable filtration?

