2-KNOT GROUP TRISECTIONS

Sarah Blackwell

University of Georgia

J.W. Kirby, Klug, Longo, RuppiK
(g, K)-trisection

of (closed) 4-mfld \(X \) = decomposition \(X = X_1 \cup X_2 \cup X_3 \) st

1) \(X_i \cong \mathbb{H}^k (S' \times \beta^3) \)
2) \(X_i \cap X_j \cong H_g \)
3) \(X_1 \cap X_2 \cap X_3 \cong \Sigma_g \)
2-KNOT GROUP TRISECTIONS

\[(g, k) \text{- trisection of (closed) 4-mfld } X \]

\[\Sigma_g \times S^1 \times S^2 \]

\[H_g \]

\[\text{SVK} \]

\[\tilde{\Pi}_1 (\Sigma_g) \rightarrow \tilde{\Pi}_1 (X) \]

\[F_{\tilde{g}} \rightarrow F_{\tilde{k}} \]

\[(g, k) \text{- group trisection of } \tilde{\Pi}_1 (X) \]

j.w. Kirby, Klug, Longo, Ruppik
2-KNOT GROUP TRISECTIONS

Figure 4. A 2-bridge trisection of an unknotted 2-sphere, depicted with the tri-plane in 3-space, along with the corresponding tri-plane diagram.

Bridge trisection for a surface in S^3

[Meier + Zupan]

SVK

?

$\pi_1(B_3 \setminus \delta) \rightarrow \pi_1(S^3 \setminus U_{\beta\alpha})$

$\pi_1(S^2 \setminus \mathcal{U}_\ast) \rightarrow \pi_1(B^3_2 \setminus \delta) \rightarrow \pi_1(S^3 \setminus U_{\beta\alpha})$

$\pi_1(B^3_1 \setminus \alpha) \rightarrow \pi_1(S^3 \setminus U_{\alpha\beta}) \cong \pi_1(B^4_1 \setminus D_{\alpha\beta})$

Van Kampen diagram for the complement of a surface S in S^4
Figure 4. A 2-bridge trisection of an unknotted 2-sphere, depicted with the tri-plane in 3-space, along with the corresponding tri-plane diagram.

Bridge trisection for a surface in S^4

[Meier + Zupan]

Van Kampen diagram for the complement of a surface S in S^4

2-Knot Group Trisections
Small Quotients of Braid Groups

Noah Caplinger
Joint with Kevin Kordek

Georgia Institute of Technology

December 2020
Question

What is the smallest finite quotient of the braid group?
Question

What is the smallest finite quotient of the braid group?

Example 1. $B_n \to S_n$
What is the smallest finite quotient of the braid group?

Example 1. $B_n \to S_n$

Example 2. $B_n^{\text{ab}} \to \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$.
Main Question

Question

What is the smallest finite quotient of the braid group?

Example 1. \(B_n \rightarrow S_n\)

Example 2. \(B_n^{ab} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}/m\mathbb{Z}.*

Conjecture (Margalit)

For \(n \geq 5\), \(S_n\) is the smallest non-cyclic quotient of \(B_n\).
Main Theorem

Theorem

For \(n = 5, 6 \), \(S_n \) is the smallest non-cyclic quotient of \(B_n \).
Totally Symmetric Sets

Definition (Kordek, Margalit)

Let G be a group. A subset $S = \{g_1, \ldots, g_k\} \subset G$ is said to be a totally symmetric set if

1. The elements of S pairwise commute.
2. Every permutation of S can be realized by conjugation in G.
Two Facts about Totally Symmetric Sets

Fact

If \(f : G \to H \) is a homomorphism, and \(S \subset G \) is totally symmetric, then \(f(S) \) is totally symmetric of cardinality \(|S| \) or 1.

Totally symmetric sets can "collapse" under homomorphisms.
Two Facts about Totally Symmetric Sets

Fact
If $f : G \to H$ is a homomorphism, and $S \subset G$ is totally symmetric, then $f(S)$ is totally symmetric of cardinality $|S|$ or 1.

Totally symmetric sets can "collapse" under homomorphisms.

Fact
A well-chosen totally symmetric set $X_n \subset B_n$ collapses under a quotient of B_n if and only if the quotient is cyclic.
Proof Strategy

If H has no totally symmetric sets of cardinality $|X_n|$, it cannot be a non-cyclic quotient of B_n.
Proof Strategy

If H has no totally symmetric sets of cardinality $|X_n|$, it cannot be a non-cyclic quotient of B_n.

Bad idea: get a computer to check for totally symmetric sets in every group or order up to $n!$.
If H has no totally symmetric sets of cardinality $|X_n|$, it cannot be a non-cyclic quotient of B_n.

Bad idea: get a computer to check for totally symmetric sets in every group or order up to $n!$.

Better idea: Check for totally symmetric sets in simple groups of small order, then leverage this information to say something about braid groups.
For $n = 5, 6, 7, 8$, the alternating group A_n is the smallest non-trivial quotient of the commutator subgroup B'_n.
For $n = 5, 6, 7, 8$, the alternating group A_n is the smallest non-trivial quotient of the commutator subgroup B'_n.

For $n = 5, 6$, S_n is the smallest non-cyclic quotient of B_n.
Link Detection Results for Knot Floer Homology

Fraser Binns,

joint work with Gage Martin

Boston College

Tech Topology Conference 2020
Can we distinguish links?

Question
If I meet two links in the wild, can I distinguish them?
Knot Floer Homology is an invariant of links which takes values in the category of bi-graded \(\mathbb{Z}/2 \)-vector spaces.
What is knot Floer homology?

Knot Floer Homology is an invariant of links which takes values in the category of bi-graded \(\mathbb{Z}/2 \)-vector spaces.

Theorem (Ni, Ozsváth-Szabó)

\[\hat{HFK}(L) \text{ determines the genus of } L. \]
What is knot Floer homology?

Knot Floer Homology is an invariant of links which takes values in the category of bi-graded $\mathbb{Z}/2$-vector spaces.

Theorem (Ni, Ozsváth-Szabó)

$\widehat{HFK}(L)$ determines the genus of L.

Theorem (Ghiggini, Ni)

$\widehat{HFK}(L)$ determines whether or not L is fibered.
What is link Detection?

Definition

We say \(\widehat{HFK} \) detects \(L \) if whenever \(\widehat{HFK}(L') \cong \widehat{HFK}(L) \), \(L' \) is isotopic to \(L \).
What is link Detection?

Definition

We say $\widehat{\text{HFK}}$ detects L if whenever $\widehat{\text{HFK}}(L') \cong \widehat{\text{HFK}}(L)$, L' is isotopic to L.

Theorem (B-Martin)

Knot Floer homology detects $T(2,4)$.
Detection Results for knot Floer homology

Knot Floer homology detects:

- The unknot (Ozsváth-Szabó '04)
- The Hopf link (Ozsváth-Szabó '04, Ni '07)
- The trefoil, figure eight (Ghiggini '08)
- Unlinks (Ni '14, Hedden-Watson '18)

Knot Floer homology cannot distinguish:

- Infinitely many knots in each concordance class (Hedden-Watson '18)
- Non-trivial band sums of split links, where the bands differ by a twist (Wang '20)
Detection Results for knot Floer homology

Knot Floer homology detects:

- The unknot (Ozsváth-Szabó '04)
- The Hopf link (Ozsváth-Szabó '04, Ni '07)

Knot Floer homology cannot distinguish:

- Infinitely many knots in each concordance class (Hedden-Watson '18)
- Non-trivial band sums of split links, where the bands differ by a twist (Wang '20)
Detection Results for knot Floer homology

Knot Floer homology detects:

- The unknot (Ozsváth-Szabó '04)
- The Hopf link (Ozsváth-Szabó '04, Ni '07)
- The trefoil, figure eight (Ghiggini '08)
- Unlinks (Ni '14, Hedden-Watson '18)

Knot Floer homology cannot distinguish:

- Infinitely many knots in each concordance class (Hedden-Watson '18)
- Non-trivial band sums of split links, where the bands differ by a twist (Wang '20)
Detection Results for knot Floer homology

Knot Floer homology detects:

- The unknot (Ozsváth-Szabó '04)
- The Hopf link (Ozsváth-Szabó '04, Ni '07)
- The trefoil, figure eight (Ghiggini '08)
- Unlinks (Ni '14, Hedden-Watson '18)

Knot Floer homology cannot distinguish:

- Infinitely many knots in each concordance class (Hedden-Watson '18)
- Non-trivial band sums of split links, where the bands differ by a twist (Wang '20)
Which links are good candidates for detection results?

Definition

A 2-cable link is one which bounds an embedded annulus.

Remark

The torus links $T(2, 2n)$ are the 2-cables such that both components are unknotted.
Which links are good candidates for detection results?

Definition

A *2-cable link* is one which bounds an embedded annulus.

Remark

The torus links $T(2, 2n)$ are the 2-cables such that both components are unknotted.
Which links are good candidates for detection results?

Definition

A 2-cable link is one which bounds an embedded annulus.

Remark

The torus links $T(2, 2n)$ are the 2-cables such that both components are unknotted.
Theorem (B-Martin)

Knot Floer Homology detects:

\[T(2, 2n) \]
\[T(2, 4), \ T(2, 6) \]
Detection results

Theorem (B-Martin)

Knot Floer Homology detects:

\[T(2, 2n), \quad T(2, 4), \quad T(2, 6), \quad T(3, 3), \quad L7n1 \]
Mapping class groups vs. handlebody groups

Marissa Miller
University of Illinois at Urbana-Champaign
Mapping class group

S_g closed, orientable, genus g surface:

\[MCG(S_g) = \text{Homeo}^+(S_g) / \text{isotopy} \]
Curve graph $C(S_g)$

Vertices: Isotopy classes of essential simple closed curves

Edge: If two isotopy classes can be made disjoint
Curve graph $C(S_g)$

Vertices: Isotopy classes of essential simple closed curves

Edge: If two isotopy classes can be made disjoint
Handlebody group

Handlebody, V_g: 3-ball with g 1-handles attached (a 3-manifold)

$$H_g = MCG(V_g) = \text{Homeo}^+(V_g)/\text{isotopy}$$
Disk graph $D(V_g)$

Vertices: Isotopy classes of essential simple closed curves on ∂V_g bounding disks in V_g

Edge: If two isotopy classes can be made disjoint
Disk graph $D(V_g)$

Vertices: Isotopy classes of essential simple closed curves on ∂V_g bounding disks in V_g

Edge: If two isotopy classes can be made disjoint
Disk graph $D(V_g)$

Vertices: Isotopy classes of essential simple closed curves on ∂V_g bounding disks in V_g

Edge: If two isotopy classes can be made disjoint.

$D(V_g) \subseteq C(\partial V_g)$
A closer look...

1. $H_g \subset MCG(\partial V_g)$, but is badly distorted
2. $D(V_g) \subset C(\partial V_g)$, but is badly distorted

The geometries of H_g and $D(V_g)$ do not reflect the ambient geometries of $MCG(\partial V_g)$ and $C(\partial V_g)$
Hierarchically hyperbolic spaces?

\textbf{HHS} \approx \text{Almost hyperbolic; obstructed by product regions}
Hierarchically hyperbolic spaces?

HHS ≈ Almost hyperbolic; obstructed by product regions

Mapping class groups: inspiration for HHSs (Behrstock-Hagen-Sisto)
Hierarchically hyperbolic spaces?

HHS \approx Almost hyperbolic; obstructed by product regions

Mapping class groups: inspiration for HHSs (Behrstock-Hagen-Sisto)

Handlebody groups:
- Yes for genus two! (Miller)
- No for higher genus (Hamenstädt-Hensel, Behrstock-Hagen-Sisto)
Characterization of stable subgroups

Stable subgroup ∼ subgroups of finitely generated groups that exhibit hyperbolic-like behavior
Characterization of stable subgroups

Stable subgroup \(\approx\) subgroups of finitely generated groups that exhibit hyperbolic-like behavior

Mapping class groups: stable \(\Leftrightarrow\) quasi-isometrically embed in curve graph
(Durham-Taylor, Hamenstädt, Kent-Leininger)
Characterization of stable subgroups

Stable subgroup \(\approx\) subgroups of finitely generated groups that exhibit hyperbolic-like behavior

Mapping class groups: stable \(\iff\) quasi-isometrically embed in curve graph (Durham-Taylor, Hamenstädt, Kent-Leininger)

Handlebody groups:

- Genus two: stable \(\iff\) quasi-isometrically embed in disk graph (Miller)
- Higher genus: exist quasi-isometrically embedded subgroups that aren’t stable (Miller)
Thank you!
Symmetric unions and reducible fillings

Feride Ceren Kose

Tech Topology Conference 2020
Symmetric unions

Definition

A symmetric union \((D \cup -D)(n_1, \ldots, n_k)\) \((n_i \in \mathbb{Z})\) is a knot diagram defined as follows:

\[
\begin{align*}
0: & \quad () \\
1: & \quad \begin{array}{c}
\times \\
-1: \quad \begin{array}{c}
\times
\end{array}
\end{array} \\
2: & \quad \begin{array}{c}
\begin{array}{c}
\bigotimes
\end{array}
\end{array} \\
-2: & \quad \begin{array}{c}
\begin{array}{c}
\bigotimes
\end{array}
\end{array}
\end{align*}
\]
Examples

Figure: 11n139

Figure: 11n132
Symmetric unions

Theorem (Kinoshita-Terasaka ’57, Lamm ’00)

Symmetric unions are ribbon.
Symmetric unions

Theorem (Kinoshita-Terasaka ’57, Lamm ’00)

Symmetric unions are ribbon.

Question

Is every ribbon knot a symmetric union?
Symmetric unions

Theorem (Kinoshita-Terasaka ’57, Lamm ’00)

Symmetric unions are ribbon.

Question

Is every ribbon knot a symmetric union?

Yes for

- all prime ribbon knots with up to 10 crossings (Lamm ’00)
Symmetric unions

Theorem (Kinoshita-Terasaka ’57, Lamm ’00)

Symmetric unions are ribbon.

Question

Is every ribbon knot a symmetric union?

Yes for

- all prime ribbon knots with up to 10 crossings (Lamm ’00)
- 122 of 137 prime ribbon knots with 11 and 12 crossings (Seeliger ’14)
Theorem (Kinoshita-Terasaka ’57, Lamm ’00)

Symmetric unions are ribbon.

Question

Is every ribbon knot a symmetric union?

Yes for

- all prime ribbon knots with up to 10 crossings (Lamm ’00)
- 122 of 137 prime ribbon knots with 11 and 12 crossings (Seeliger ’14)
- all 2-bridge ribbon knots (Lamm ’05)
Some classical results

Theorem (Fox-Milnor ’58)

\[K \text{ is slice } \Rightarrow \Delta_K(t) = f(t)f(t^{-1}) \]
Some classical results

Theorem (Fox-Milnor ’58)

\[K \text{ is slice } \Rightarrow \Delta_K(t) = f(t)f(t^{-1}) \]

Corollary

\[K \text{ is slice } \Rightarrow \det(K) \text{ is a perfect square} \]
Some classical results

Theorem (Fox-Milnor '58)

\[K \text{ is slice} \Rightarrow \Delta_K(t) = f(t)f(t^{-1}) \]

Corollary

\[K \text{ is slice} \Rightarrow \det(K) \text{ is a perfect square} \]

Theorem (KT '57, Lamm '00)

\[K = (D \cup -D)(n_1, \ldots, n_k) \text{ with } n_i \in 2\mathbb{Z} \Rightarrow \Delta_K(t) = (\Delta_D(t))^2 \]
Some classical results

Theorem (Fox-Milnor ’58)

\[K \text{ is slice } \Rightarrow \Delta_K(t) = f(t)f(t^{-1}) \]

Corollary

\[K \text{ is slice } \Rightarrow \text{det}(K) \text{ is a perfect square} \]

Theorem (KT ’57, Lamm ’00)

\[K = (D \cup -D)(n_1, \ldots, n_k) \text{ with } n_i \in 2\mathbb{Z} \Rightarrow \Delta_K(t) = (\Delta_D(t))^2 \]

Theorem (KT ’57, Lamm ’00)

\[K = (D \cup -D)(n_1, \ldots, n_k) \Rightarrow \text{det}(K) = (\text{det}(D))^2 \]
Minimal twisting number $tw(K)$

Definition

The *minimal twisting number* of a symmetric union K, denoted by $tw(K)$, is the smallest number of twisting regions in all symmetric union presentations of K.

Remarks:

- $tw(K \# - K) = 0$
- K is prime $\Rightarrow tw(K) > 0$
- $tw(11_{n139}) = 1$ and $1 \leq tw(11_{n132}) \leq 2$

Theorem (Tanaka '15)

$tw(11_{n132}) = 2$
Minimal twisting number $tw(K)$

Definition

The *minimal twisting number* of a symmetric union K, denoted by $tw(K)$, is the smallest number of twisting regions in all symmetric union presentations of K.

Remarks:

- $tw(K# - K) = 0$
Minimal twisting number $tw(K)$

Definition

The *minimal twisting number* of a symmetric union K, denoted by $tw(K)$, is the smallest number of twisting regions in all symmetric union presentations of K.

Remarks:

- $tw(K \# - K) = 0$
- K is prime $\Rightarrow tw(K) > 0$
Minimal twisting number $tw(K)$

Definition

The *minimal twisting number* of a symmetric union K, denoted by $tw(K)$, is the smallest number of twisting regions in all symmetric union presentations of K.

Remarks:

- $tw(K \# - K) = 0$
- K is prime $\Rightarrow tw(K) > 0$
- $tw(11n139) = 1$ and $1 \leq tw(11n132) \leq 2$
Definition

The *minimal twisting number* of a symmetric union K, denoted by $tw(K)$, is the smallest number of twisting regions in all symmetric union presentations of K.

Remarks:

- $tw(K\# - K) = 0$
- K is prime $\Rightarrow tw(K) > 0$
- $tw(11n139) = 1$ and $1 \leq tw(11n132) \leq 2$

Theorem (Tanaka '15)

$tw(11n132) = 2$
Main result

Theorem (Tanaka ’19, K.’20)

Let K be a composite ribbon knot that admits a symmetric union diagram. If $tw(K) = 1$, then $K = K_1 \# K_2 \# - K_2$ where K_1 is a symmetric union with $tw(K_1) = 1$ and K_2 is a nontrivial knot.
Main result

Theorem (Tanaka '19, K.'20)

Let K be a composite ribbon knot that admits a symmetric union diagram. If $\text{tw}(K) = 1$, then $K = K_1 \# K_2 \# - K_2$ where K_1 is a symmetric union with $\text{tw}(K_1) = 1$ and K_2 is a nontrivial knot.

Corollary

$\text{tw}(3_1 \# 8_{10}) > 1$.
3-manifold topology

Definition

An oriented compact 3-manifold M is said to be *irreducible* if any embedded 2-sphere bounds a 3-ball. Otherwise, it is *reducible.*
3-manifold topology

Definition

An oriented compact 3-manifold M is said to be *irreducible* if any embedded 2-sphere bounds a 3-ball. Otherwise, it is *reducible*.

Theorem ((\Rightarrow) Waldhausen '69, (\Leftarrow) Kim-Tollefson '80)

$\Sigma_2(K)$ is irreducible $\iff K$ is prime
3-manifold topology

Definition

An oriented compact 3-manifold M is said to be *irreducible* if any embedded 2-sphere bounds a 3-ball. Otherwise, it is *reducible*.

Theorem ((⇒) Waldhausen ’69, (⇐) Kim-Tollefson ’80)

$\Sigma_2(K)$ is irreducible $\iff K$ is prime

Theorem (Gordon-Luecke ’96)

Let M be an orientable and irreducible 3-manifold with a torus boundary. If $M(\pi)$ and $M(\gamma)$ are reducible for distinct slopes π and γ, then $\Delta(\pi, \gamma) = 1$.
Sketch of the proof

Let \(K = (D \cup -D)(n) \)
Sketch of the proof

Let $K = (D \cup -D)(n)$

- $tw(K) = 1 \implies \Sigma_2(K) = M(\frac{1}{n})$
Sketch of the proof

Let $K = (D \cup -D)(n)$

- $tw(K) = 1 \Rightarrow \Sigma_2(K) = M(\frac{1}{n})$
- K is composite $\Rightarrow M(\frac{1}{n})$ is reducible
Sketch of the proof

Let $K = (D \cup -D)(n)$

- $tw(K) = 1 \Rightarrow \Sigma_2(K) = M(\frac{1}{n})$
- K is composite \Rightarrow $M(\frac{1}{n})$ is reducible
- $K \neq K_1\#K_2\# - K_2 \Rightarrow M$ is irreducible
Sketch of the proof

Let $K = (D \cup -D)(n)$

- $tw(K) = 1 \Rightarrow \Sigma_2(K) = M\left(\frac{1}{n}\right)$
- K is composite $\Rightarrow M\left(\frac{1}{n}\right)$ is reducible
- $K \neq K_1 \# K_2 \# -K_2 \Rightarrow M$ is irreducible
- By the symmetry:
 $-K = (D \cup -D)(-n) \Rightarrow \Sigma_2(-K) = M\left(-\frac{1}{n}\right)$
Sketch of the proof

Let $K = (D \cup -D)(n)$

- $tw(K) = 1 \Rightarrow \Sigma_2(K) = M\left(\frac{1}{n}\right)$
- K is composite $\Rightarrow M\left(\frac{1}{n}\right)$ is reducible
- $K \neq K_1\#K_2\# - K_2 \Rightarrow M$ is irreducible
- By the symmetry:
 $-K = (D \cup -D)(-n) \Rightarrow \Sigma_2(-K) = M\left(-\frac{1}{n}\right)$
- Two distinct reducible slopes $\frac{1}{n}$ and $-\frac{1}{n}$, but
 $\Delta\left(\frac{1}{n}, -\frac{1}{n}\right) = 2|n| \neq 1$
The end.
On embeddings of 3 manifolds in symplectic 4 manifolds

Anubhav Mukherjee

Georgia Institute of Technology

Dec. 2020
Outline

1. Conjecture

2. Why is such a Conjecture interesting?

3. Main Results

4. Main Results
Conjecture (Etnyre, Min, M.)

Every closed, oriented smooth 3-manifold smoothly embeds in a symplectic 4-manifold.
The embedding of 3-manifolds in higher dimensional space has always been a fascinating problem.
Whitney’s embedding theorem says that every closed oriented 3-manifold smoothly embeds in \mathbb{R}^6.
Why is such a Conjecture interesting?

Whitney’s embedding theorem says that every closed oriented 3-manifold smoothly embeds in \mathbb{R}^6.

Hirsch improved this result by proving that every 3-manifold can be smoothly embedded in S^5.
Why is such a Conjecture interesting?

- Whitney’s embedding theorem says that every closed oriented 3-manifold smoothly embeds in \mathbb{R}^6.
- Hirsch improved this result by proving that every 3-manifold can be smoothly embedded in S^5.
- Meanwhile, Lickorish and Wallace proved that every 3-manifold can be smoothly embedded in some 4-manifold, and in fact, a generalization of their arguments shows that every 3-manifold can be smoothly embedded in the connected sum of copies of $S^2 \times S^2$.
Conjecture

Why is such a Conjecture interesting?

Main Results

Freedman proved that all integer homology 3-spheres can be embedded topologically, locally flatly in S^4.
Why is such a Conjecture interesting?

- Freedman proved that all integer homology 3-spheres can be embedded topologically, locally flatly in S^4.

- On the other hand, the Rokhlin invariant μ and Donaldson’s diagonalization theorem show that some integer homology spheres cannot smoothly embed in S^4.
Why is such a Conjecture interesting?

Question

Does there exist a compact 4-manifold in which all 3-manifolds embed?
Why is such a Conjecture interesting?

Question

Does there exist a compact 4-manifold in which all 3-manifolds embed?

Shiomi gave a negative answer to this question.
Why is such a Conjecture interesting?

Question

Does there exist a compact 4-manifold in which all 3-manifolds embed?

Shiomi gave a negative answer to this question. Thus one can ask, what is an interesting class of 4-manifolds in which all 3-manifolds embed?
Theorem (M.)

Given a closed, connected, oriented 3-manifold Y there exists a simply-connected symplectic closed 4-manifold X such that Y can be embedded topologically, locally flatly (i.e. it has collar neighbourhood) in X.
Main Results

Conjecture
Why is such a Conjecture interesting?
Main Results

Theorem (M.)

Given a closed, connected, oriented 3-manifold Y there exists a simply-connected symplectic closed 4-manifold X such that Y can be embedded topologically, locally flatly (i.e. it has collar neighbourhood) in X. This embedding can be made a smooth embedding after one stabilization, that is Y can smoothly embed in $X \# (S^2 \times S^2)$.

Anubhav Mukherjee On embeddings of 3 manifolds in symplectic 4 manifolds Dec.2020 12/29
Main Results

As an application of the proof of the last Theorem, we get followings...
Let Y_0 and Y_1 be smooth, oriented, closed 3-manifolds. A **cobordism** from Y_0 to Y_1 is a compact 4-dimensional smooth, oriented, compact manifold W with $\partial W = -Y_0 \sqcup Y_1$.
Main Results

We say Y_0 and Y_1 are R-homology cobordant, if $H_*(W, Y_i; R) = 0$ for $i = 0, 1$.
Main Results

- We say Y_0 and Y_1 are R-homology cobordant, if $H_\ast(W, Y_i; R) = 0$ for $i = 0, 1$.

- We call this integral homology cobordism when $R = \mathbb{Z}$ and rational homology cobordism when $R = \mathbb{Q}$. This is an equivalence relation.
Main Results

We say Y_0 and Y_1 are R-homology cobordant, if $H_*(W, Y_i; R) = 0$ for $i = 0, 1$.

We call this integral homology cobordism when $R = \mathbb{Z}$ and rational homology cobordism when $R = \mathbb{Q}$. This is an equivalence relation.

So one can define

$$\Theta^3_R = \{ Y \text{ closed 3-manifold with } H_*(Y; R) = 0 \} / \sim$$

where R is a fixed commutative ring.
Main Results

- We say Y_0 and Y_1 are R-homology cobordant, if $H_*(W, Y_i; R) = 0$ for $i = 0, 1$.

- We call this *integral homology cobordism* when $R = \mathbb{Z}$ and *rational homology cobordism* when $R = \mathbb{Q}$. This is an equivalence relation.

- So one can define

$$\Theta^3_R = \{ Y \text{ closed 3-manifold with } H_*(Y; R) = 0 \} / \sim$$

where R is a fixed commutative ring.

- We give Θ^n_R the structure of a group where summation is given by the connected sum operation. The zero element of this group is given by the class of S^n, and the inverse of the class of $[Y]$ is given by the class of Y with reversed orientation.
In low-dimensional topology the study of $\Theta^3_\mathbb{Z}$ and $\Theta^3_\mathbb{Q}$ are of special interest.
In low-dimensional topology the study of $\Theta_3^\mathbb{Z}$ and $\Theta_3^\mathbb{Q}$ are of special interest.

- Livingston showed that these groups are generated by irreducible 3-manifolds.
Main Results

In low-dimensional topology the study of Θ_3^Z and Θ_3^Q are of special interest.

- Livingston showed that these groups are generated by irreducible 3-manifolds.
- Myers showed that these groups are generated by hyperbolic 3-manifolds.
Main Results

Theorem (M.)

The homology cobordism groups $\Theta_3^\mathbb{Z}$ and $\Theta_3^\mathbb{Q}$ are generated by Stein fillable 3-manifolds.
Main Results

Theorem (M.)

If an L-space Y smoothly embeds in a closed symplectic 4-manifold X then it has to be separating. Moreover, if $X = X_1 \cup_Y X_2$ then one of the X_i has to be a negative-definite 4-manifold.
Main Results

Theorem (M.)

There exists a 3-manifold Y which cannot be embedded(*) in any compact symplecteic 4-manifold with (weakly) convex boundary.
Main Results

Conjecture
Why is such a conjecture interesting?

Main Results

Theorem (M.)

There exists a 3-manifold \(Y \) which cannot be embedded(*) in any compact symplectic 4-manifold with (weakly) convex boundary.

Example of 3-manifolds without symplectic fillings were known before by the work of Lisca–Matic, Etnyre–Honda.
Main Results

Theorem (M.)

There exists a 3-manifold Y which cannot be embedded () in any compact symplectic 4-manifold with (weakly) convex boundary.*

- Example of 3-manifolds without symplectic fillings were known before by the work of Lisca–Matic, Etnyre–Honda.
- This above result is stronger in the sense that there exists 3-manifolds which cannot even embed(*) in (weak) filling of any 3-manifolds.
The smooth v/s topological embeddings of 3-manifolds can be used to study exotic structure on 4-manifolds.
Theorem (M.)

There exists compact 4-manifolds with boundary X and X' such that $b_2(X) = b_2(X') = 1$ that are homeomorphic but not diffeomorphic.
Main Results

Conjecture

Why is such a Conjecture interesting?

Main Results

Theorem (M.)

There exists compact 4-manifolds with boundary X and X' such that $b_2(X) = b_2(X') = 1$ that are homeomorphic but not diffeomorphic.

- Akbulut proved existence of such 4-manifolds first.
- The above is an alternative proof of that result.
Thank you!
Deep and shallow slice knots in 4-manifolds

Joint work with Michael Klug

Benjamin Matthies Ruppik
PhD student @ Max-Planck-Institute for Mathematics, Bonn, Germany
Def.:

K is a knot in the boundary of a 4-manifold X^4.

Slice disk $\Delta^2: D^2 \to X$ with $\partial \Delta^2 = K \subset \partial X$.

K is **deep slice** in X if the disk "needs to use the extra topology of $X"$, i.e. there is no slice disk for K in a collar $\partial X \times [0,1] \subset X$ of the ∂X.

Collar
Non-example: There are no deep slice knots in $\#^k S^1 \times D^3$.

$\#^k S^1 \times D^3 = \text{thickening of} \quad \includegraphics[width=2cm]{knot}

\quad \xleftarrow{4\text{-dim. 1-handles}}

\includegraphics[width=4cm]{4d_with_handles}

Any slice disk generically avoids the spine $\includegraphics[width=2cm]{knot}$

$\quad \xrightarrow{\text{lives in a collar neighborhood of the boundary}}$
Example: \(X^4 = D^4 \cup (2\text{-handles}) \) has deep slice knots in boundary (which are nullhomotopic in \(\partial X \), but not contained in a 3-ball).

Two cases

\[\pi_1(\partial X) = \{1\} \text{ and thus } \partial X = S^3 \]

\[\pi_1(\partial X) \text{ non-trivial} \]

We use a theorem of Rohlin on the genus of embedded surfaces representing 2-dim. homology classes in \(\hat{X} = X \cup (4\text{-handle}) \).

Use Wall's self-intersection number with values in \(\mathbb{Z}[\pi_1(\partial X)] \)

\[\langle g = g^{-1}, 1 \rangle \]

of the track of a homotopy in \(\partial X \times [0,1] \)