

2-kNOT GROUP TRISECTIONS
savah blackwell university of georgia j.w. Kirby, Klug, Longo, RuppiK
(g, k) - trisection
of (closed) 4 -mfld $X=$ decomposition $X=X_{1} \cup X_{2} \cup X_{3}$ st [Gay+kirby]

1) $X_{i} \cong q^{k}\left(S^{\prime} \times B^{3}\right)$

2) $X_{i} \cap X_{j} \cong H_{g}$
3) $X_{1} \cap X_{2} \cap X_{3} \cong \Sigma_{9}$

2-KNOT GROUP TRISECTIONS

2-KNOT GROUP TRISECTION

bridge trisection for a sinface in S^{4}
[meier + Zupan]

Van Kampen diagram for the complement of a surface S in S^{4}

2-KNOT GROUP TRISECTIONS

bridge trisection for a senface in S^{4}

$$
\text { [meier + Zupan }]
$$

Van Kampen diagnam for the complement of a surface S in S^{4}

2-KNOT GROUP TRISECTIONS

Small Quotients of Braid Groups

Noah Caplinger
Joint with Kevin Kordek
Georgia Institue of Technology

December 2020

Main Question

Question
What is the smallest finite quotient of the braid group?

Main Question

Question

What is the smallest finite quotient of the braid group?

Example 1. $B_{n} \rightarrow S_{n}$

Main Question

Question

What is the smallest finite quotient of the braid group?

Example 1. $B_{n} \rightarrow S_{n}$
Example 2. $B_{n} \xrightarrow{\text { ab. }} \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$.

Main Question

Question

What is the smallest finite quotient of the braid group?

Example 1. $B_{n} \rightarrow S_{n}$
Example 2. $B_{n} \xrightarrow{\text { ab. }} \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$.

Conjecture (Margalit)
For $n \geq 5, S_{n}$ is the smallest non-cyclic quotient of B_{n}.

Main Theorem

Theorem

For $n=5,6, S_{n}$ is the smallest non-cyclic quotient of B_{n}.

Totally Symmetric Sets

Definition (Kordek, Margalit)

Let G be a group. A subset $S=\left\{g_{1}, \ldots, g_{k}\right\} \subset G$ is said to be a totally symmetric set if
(1) The elements of S pairwise commute.
(2) Every permutation of S can be realized by conjugation in G.

Two Facts about Totally Symmetric Sets

Fact

If $f: G \rightarrow H$ is a homomorphism, and $S \subset G$ is totally symmetric, then $f(S)$ is totally symmetric of cardinality $|S|$ or 1 .

Totally symmetric sets can "collapse" under homomorphisms.

Two Facts about Totally Symmetric Sets

Fact

If $f: G \rightarrow H$ is a homomorphism, and $S \subset G$ is totally symmetric, then $f(S)$ is totally symmetric of cardinality $|S|$ or 1 .

Totally symmetric sets can "collapse" under homomorphisms.

Fact

A well-chosen totally symmetric set $X_{n} \subset B_{n}$ collapses under a quotient of B_{n} if and only if the quotient is cyclic.

Proof Strategy

If H has no totally symmetric sets of cardinality $\left|X_{n}\right|$, it cannot be a non-cyclic quotient of B_{n}.

Proof Strategy

If H has no totally symmetric sets of cardinality $\left|X_{n}\right|$, it cannot be a non-cyclic quotient of B_{n}.

Bad idea: get a computer to check for totally symmetric sets in every group or order up to $n!$.

Proof Strategy

If H has no totally symmetric sets of cardinality $\left|X_{n}\right|$, it cannot be a non-cyclic quotient of B_{n}.

Bad idea: get a computer to check for totally symmetric sets in every group or order up to $n!$.

Better idea: Check for totally symmetric sets in simple groups of small order, then leverage this information to say something about braid groups.

Saying Something about Braid Groups

Theorem

For $n=5,6,7,8$, the alternating group A_{n} is the smallest non-trivial quotient of the commutator subgroup B_{n}^{\prime}.

Saying Something about Braid Groups

Theorem

For $n=5,6,7,8$, the alternating group A_{n} is the smallest non-trivial quotient of the commutator subgroup B_{n}^{\prime}.

Theorem

For $n=5,6, S_{n}$ is the smallest non-cyclic quotient of B_{n}.

Link Detection Results for Knot Floer Homology

Fraser Binns,
joint work with Gage Martin
Boston College
Tech Topology Conference 2020

Can we distinguish links?

Question

If I meet two links in the wild, can I distinguish them?

What is knot Floer homology?

Knot Floer Homology is an invariant of links which takes takes values in the category of bi-graded $\mathbb{Z} / 2$-vector spaces.

What is knot Floer homology?

Knot Floer Homology is an invariant of links which takes takes values in the category of bi-graded $\mathbb{Z} / 2$-vector spaces.

Theorem (Ni, Ozsváth-Szabó)

$\widehat{\text { HFK }}(L)$ determines the genus of L.

What is knot Floer homology?

Knot Floer Homology is an invariant of links which takes takes values in the category of bi-graded $\mathbb{Z} / 2$-vector spaces.

Theorem (Ni, Ozsváth-Szabó)

$\widehat{\mathrm{HFK}}(L)$ determines the genus of L.

Theorem (Ghiggini, Ni)

$\widehat{\mathrm{HFK}}(L)$ determines whether or not L is fibered.

What is link Detection?

Definition

We say $\widehat{\mathrm{HFK}}$ detects L if whenever $\widehat{\mathrm{HFK}}\left(L^{\prime}\right) \cong \widehat{\mathrm{HFK}}(L), L^{\prime}$ is isotopic to L.

What is link Detection?

Definition

We say $\widehat{\mathrm{HFK}}$ detects L if whenever $\widehat{\operatorname{HFK}}\left(L^{\prime}\right) \cong \widehat{\mathrm{HFK}}(L), L^{\prime}$ is isotopic to L.

Theorem (B-Martin)

Knot Floer homology detects $T(2,4)$.

Detection Results for knot Floer homology

Knot Floer homology detects:

Detection Results for knot Floer homology

Knot Floer homology detects:

The unknot (Ozsváth-Szabó '04) The Hopf link (Ozsváth-Szabó '04, Ni '07)

Detection Results for knot Floer homology

Knot Floer homology detects:

The unknot (Ozsváth-Szabó '04)

The trefoil, figure eight (Ghiggini '08)

The Hopf link (Ozsváth-Szabó '04, Ni '07)

Unlinks (Ni '14, Hedden-Watson '18)

Detection Results for knot Floer homology

Knot Floer homology detects:

The unknot (Ozsváth-Szabó '04)
The Hopf link (Ozsváth-Szabó '04, Ni '07)

The trefoil, figure eight (Ghiggini '08)
Unlinks (Ni '14, Hedden-Watson '18)

Knot Floer homology cannot distinguish:

- Infinitely many knots in each concordance class (Hedden-Watson '18)
- Non-trivial band sums of split links, where the bands differ by a twist (Wang '20) 11

Which links are good candidates for detection results?

Which links are good candidates for detection results?

Definition

A 2-cable link is one which bounds an embedded annulus.

Which links are good candidates for detection results?

Definition

A 2-cable link is one which bounds an embedded annulus.

Remark

The torus links $T(2,2 n)$ are the 2 -cables such that both components are unknotted.

Detection results

Theorem (B-Martin)

Knot Floer Homology detects:

$T(2,2 n)$

$T(2,4), T(2,6)$

Detection results

Theorem (B-Martin)

Knot Floer Homology detects:

$T(2,2 n)$

$T(3,3)$
$T(2,4), T(2,6)$

L7n1

Mapping class groups vs. handlebody groups

Marissa Miller
University of Illinois at Urbana-Champaign

Mapping class group

S_{g} closed, orientable, genus g surface:

$$
\operatorname{MCG}\left(S_{g}\right)=\operatorname{Homeo}^{+}\left(S_{g}\right) / \text { isotopy }
$$

Curve graph C(Sg)

Vertices: Isotopy classes of essential simple closed curves
Edge: If two isotopy classes can be made disjoint

Curve graph C(S)

Vertices: Isotopy classes of essential simple closed curves

Edge: If two isotopy classes can be made disjoint

Handlebody group

Handlebody, V_{g} : 3-ball with g 1-handles attached (a 3-manifold)

$$
H_{g}=\operatorname{MCG}\left(V_{g}\right)=\operatorname{Homeo}^{+}\left(V_{g}\right) / \text { isotopy }
$$

Disk graph $D\left(V_{g}\right)$

Vertices: Isotopy classes of essential simple closed curves on ∂V_{g} bounding disks in V_{g}
Edge: If two isotopy classes can be made disjoint

Disk graph $D\left(V_{g}\right)$

Vertices: Isotopy classes of essential simple closed curves on ∂V_{g} bounding disks in V_{g}
Edge: If two isotopy classes can be made disjoint

Disk graph $D\left(V_{g}\right)$

Vertices: Isotopy classes of essential simple closed curves on ∂V_{g} bounding disks in V_{g}
Edge: If two isotopy classes can be made disjoint

A closer look...

1. $H_{g}<\operatorname{MCG}\left(\partial V_{g}\right)$, but is badly distorted
2. $D\left(V_{g}\right) \subset C\left(\partial V_{g}\right)$, but is badly distorted

The geometries of H_{g} and $D\left(V_{g}\right)$ do not reflect the ambient geometries of $M C G\left(\partial V_{g}\right)$ and $C\left(\partial V_{g}\right)$

Hierarchically hyperbolic spaces?

HHS \approx Almost hyperbolic; obstructed by product regions

Hierarchically hyperbolic spaces?

HHS \approx Almost hyperbolic; obstructed by product regions
Mapping class groups: inspiration for HHSs (Behrstock-Hagen-Sisto)

Hierarchically hyperbolic spaces?

HHS \approx Almost hyperbolic; obstructed by product regions
Mapping class groups: inspiration for HHSs (Behrstock-Hagen-Sisto)
Handlebody groups:

- Yes for genus two! (Miller)
- No for higher genus (Hamenstädt-Hensel, Behrstock-Hagen-Sisto)

Characterization of stable subgroups

Stable subgroup \approx subgroups of finitely generated groups that exhibit hyperbolic-like behavior

Characterization of stable subgroups

Stable subgroup \approx subgroups of finitely generated groups that exhibit hyperbolic-like behavior

Mapping class groups: stable \Leftrightarrow quasi-isometrically embed in curve graph (Durham-Taylor, Hamenstädt, Kent-Leininger)

Characterization of stable subgroups

Stable subgroup \approx subgroups of finitely generated groups that exhibit hyperbolic-like behavior

Mapping class groups: stable \Leftrightarrow quasi-isometrically embed in curve graph (Durham-Taylor, Hamenstädt, Kent-Leininger)

Handlebody groups:

- Genus two: stable \Leftrightarrow quasi-isometrically embed in disk graph (Miller)
- Higher genus: exist quasi-isometrically embedded subgroups that aren't stable (Miller)

Thank you!

Symmetric unions and reducible fillings

Feride Ceren Kose
Tech Topology Conference 2020

Symmetric unions

Definition

A symmetric union $(D \cup-D)\left(n_{1}, \ldots, n_{k}\right)\left(n_{i} \in \mathbb{Z}\right)$ is a knot diagram defined as follows:

$$
0:)(
$$

$$
1: \backslash-1: \backslash
$$

2 :

$-2:>$

Examples

Figure: 11n139

Figure: 11n132

Symmetric unions

Theorem (Kinoshita-Terasaka '57, Lamm '00)

Symmetric unions are ribbon.

Symmetric unions

Theorem (Kinoshita-Terasaka '57, Lamm '00)

Symmetric unions are ribbon.

Question

Is every ribbon knot a symmetric union?

Symmetric unions

Theorem (Kinoshita-Terasaka '57, Lamm '00)

Symmetric unions are ribbon.

Question

Is every ribbon knot a symmetric union?
Yes for

- all prime ribbon knots with up to 10 crossings (Lamm '00)

Symmetric unions

Theorem (Kinoshita-Terasaka '57, Lamm '00)

Symmetric unions are ribbon.

Question

Is every ribbon knot a symmetric union?
Yes for

- all prime ribbon knots with up to 10 crossings (Lamm '00)
- 122 of 137 prime ribbon knots with 11 and 12 crossings (Seeliger '14)

Symmetric unions

Theorem (Kinoshita-Terasaka '57, Lamm '00)

Symmetric unions are ribbon.

Question

Is every ribbon knot a symmetric union?
Yes for

- all prime ribbon knots with up to 10 crossings (Lamm '00)
- 122 of 137 prime ribbon knots with 11 and 12 crossings (Seeliger '14)
- all 2-bridge ribbon knots (Lamm '05)

Some classical results

Theorem (Fox-Milnor '58)
K is slice $\Rightarrow \Delta_{K}(t)=f(t) f\left(t^{-1}\right)$

Some classical results

> Theorem (Fox-Milnor '58)
> K is slice $\Rightarrow \Delta_{K}(t)=f(t) f\left(t^{-1}\right)$

Corollary
K is slice $\Rightarrow \operatorname{det}(K)$ is a perfect square

Some classical results

> Theorem (Fox-Milnor '58)
> K is slice $\Rightarrow \Delta_{K}(t)=f(t) f\left(t^{-1}\right)$

Corollary
K is slice $\Rightarrow \operatorname{det}(K)$ is a perfect square
Theorem (KT '57, Lamm '00)

$$
K=(D \cup-D)\left(n_{1}, \ldots, n_{k}\right) \text { with } n_{i} \in 2 \mathbb{Z} \Rightarrow \Delta_{K}(t)=\left(\Delta_{D}(t)\right)^{2}
$$

Some classical results

Theorem (Fox-Milnor '58)

K is slice $\Rightarrow \Delta_{K}(t)=f(t) f\left(t^{-1}\right)$
Corollary
K is slice $\Rightarrow \operatorname{det}(K)$ is a perfect square

Theorem (KT '57, Lamm '00)

$$
K=(D \cup-D)\left(n_{1}, \ldots, n_{k}\right) \text { with } n_{i} \in 2 \mathbb{Z} \Rightarrow \Delta_{K}(t)=\left(\Delta_{D}(t)\right)^{2}
$$

Theorem (KT '57, Lamm '00)

$$
K=(D \cup-D)\left(n_{1}, \ldots, n_{k}\right) \Rightarrow \operatorname{det}(K)=(\operatorname{det}(D))^{2}
$$

Minimal twisting number $\operatorname{tw}(K)$

Definition

The minimal twisting number of a symmetric union K, denoted by $t w(K)$, is the smallest number of twisting regions in all symmetric union presentations of K.

Minimal twisting number $\operatorname{tw}(K)$

Definition

The minimal twisting number of a symmetric union K, denoted by $t w(K)$, is the smallest number of twisting regions in all symmetric union presentations of K.

Remarks:

- $t w(K \#-K)=0$

Minimal twisting number $\operatorname{tw}(K)$

Definition

The minimal twisting number of a symmetric union K, denoted by $t w(K)$, is the smallest number of twisting regions in all symmetric union presentations of K.

Remarks:

- $t w(K \#-K)=0$
- K is prime $\Rightarrow t w(K)>0$

Minimal twisting number $\operatorname{tw}(K)$

Definition

The minimal twisting number of a symmetric union K, denoted by $t w(K)$, is the smallest number of twisting regions in all symmetric union presentations of K.

Remarks:

- $t w(K \#-K)=0$
- K is prime $\Rightarrow t w(K)>0$
- $t w(11 n 139)=1$ and $1 \leq t w(11 n 132) \leq 2$

Minimal twisting number $\operatorname{tw}(K)$

Definition

The minimal twisting number of a symmetric union K, denoted by $t w(K)$, is the smallest number of twisting regions in all symmetric union presentations of K.

Remarks:

- $t w(K \#-K)=0$
- K is prime $\Rightarrow t w(K)>0$
- $t w(11 n 139)=1$ and $1 \leq t w(11 n 132) \leq 2$

Theorem (Tanaka '15)

$$
t w(11 n 132)=2
$$

Main result

Theorem (Tanaka '19, K.' 20)

Let K be a composite ribbon knot that admits a symmetric union diagram. If $\operatorname{tw}(K)=1$, then $K=K_{1} \# K_{2} \#-K_{2}$ where K_{1} is a symmetric union with $\operatorname{tw}\left(K_{1}\right)=1$ and K_{2} is a nontrivial knot.

Main result

Theorem (Tanaka '19, K.' 20)

Let K be a composite ribbon knot that admits a symmetric union diagram. If $\operatorname{tw}(K)=1$, then $K=K_{1} \# K_{2} \#-K_{2}$ where K_{1} is a symmetric union with $\operatorname{tw}\left(K_{1}\right)=1$ and K_{2} is a nontrivial knot.

Corollary

$$
t w\left(3_{1} \# 8_{10}\right)>1
$$

3-manifold topology

Definition

An oriented compact 3-manifold M is said to be irreducible if any embedded 2-sphere bounds a 3-ball. Otherwise, it is reducible.

3-manifold topology

Definition

An oriented compact 3-manifold M is said to be irreducible if any embedded 2 -sphere bounds a 3-ball. Otherwise, it is reducible.

Theorem $((\Rightarrow)$ Waldhausen '69, (\Leftarrow) Kim-Tollefson '80)
$\Sigma_{2}(K)$ is irreducible $\Leftrightarrow K$ is prime

3-manifold topology

Definition

An oriented compact 3-manifold M is said to be irreducible if any embedded 2-sphere bounds a 3-ball. Otherwise, it is reducible.

Theorem ((\Rightarrow) Waldhausen '69, (\Leftarrow) Kim-Tollefson '80)
$\Sigma_{2}(K)$ is irreducible $\Leftrightarrow K$ is prime

Theorem (Gordon-Luecke '96)

Let M be an orientable and irreducible 3-manifold with a torus boundary. If $M(\pi)$ and $M(\gamma)$ are reducible for distinct slopes π and γ, then $\Delta(\pi, \gamma)=1$.

Sketch of the proof

$$
\text { Let } K=(D \cup-D)(n)
$$

Sketch of the proof

$$
\begin{aligned}
& \text { Let } K=(D \cup-D)(n) \\
& \quad ■ \operatorname{tw}(K)=1 \Rightarrow \Sigma_{2}(K)=M\left(\frac{1}{n}\right)
\end{aligned}
$$

Sketch of the proof

$$
\begin{aligned}
& \text { Let } K=(D \cup-D)(n) \\
& \quad \operatorname{tw}(K)=1 \Rightarrow \Sigma_{2}(K)=M\left(\frac{1}{n}\right) \\
& \square K \text { is composite } \Rightarrow M\left(\frac{1}{n}\right) \text { is reducible }
\end{aligned}
$$

Sketch of the proof

$$
\begin{aligned}
\text { Let } & K=(D \cup-D)(n) \\
& \operatorname{tw}(K)=1 \Rightarrow \Sigma_{2}(K)=M\left(\frac{1}{n}\right) \\
& K \text { is composite } \Rightarrow M\left(\frac{1}{n}\right) \text { is reducible } \\
& K \neq K_{1} \# K_{2} \#-K_{2} \Rightarrow M \text { is irreducible }
\end{aligned}
$$

Sketch of the proof

$$
\begin{aligned}
& \text { Let } K=(D \cup-D)(n) \\
& \quad ■ t w(K)=1 \Rightarrow \Sigma_{2}(K)=M\left(\frac{1}{n}\right)
\end{aligned}
$$

- K is composite $\Rightarrow M\left(\frac{1}{n}\right)$ is reducible
- $K \neq K_{1} \# K_{2} \#-K_{2} \Rightarrow M$ is irreducible

■ By the symmetry:

$$
-K=(D \cup-D)(-n) \Rightarrow \Sigma_{2}(-K)=M\left(-\frac{1}{n}\right)
$$

Sketch of the proof

$$
\begin{aligned}
& \text { Let } K=(D \cup-D)(n) \\
& \quad ■ \operatorname{tw}(K)=1 \Rightarrow \Sigma_{2}(K)=M\left(\frac{1}{n}\right)
\end{aligned}
$$

- K is composite $\Rightarrow M\left(\frac{1}{n}\right)$ is reducible
- $K \neq K_{1} \# K_{2} \#-K_{2} \Rightarrow M$ is irreducible
- By the symmetry:

$$
-K=(D \cup-D)(-n) \Rightarrow \Sigma_{2}(-K)=M\left(-\frac{1}{n}\right)
$$

- Two distinct reducible slopes $\frac{1}{n}$ and $-\frac{1}{n}$, but

$$
\Delta\left(\frac{1}{n},-\frac{1}{n}\right)=2|n| \neq 1
$$

The end.

On embeddings of 3 manifolds in symplectic 4 manifolds

Anubhav Mukherjee
Georgia Institute of Technology

Dec. 2020

Outline

1 Conjecture

2 Why is such a Conjecture interesting?

3 Main Results

4 Main Results

Conjecture

Conjecture (Etnyre,Min,M.)

Every closed, oriented smooth 3-manifold smoothly embeds in a symplectic 4-manifold.

Why is such a Conjecture interesting?

The embedding of 3-manifolds in higher dimensional space has always been a fascinating problem.

Why is such a Conjecture interesting?

■ Whitney's embedding theorem says that every closed oriented 3-manifold smoothly embeds in \mathbb{R}^{6}.

Why is such a Conjecture interesting?

■ Whitney's embedding theorem says that every closed oriented 3 -manifold smoothly embeds in \mathbb{R}^{6}.
■ Hirsch improved this result by proving that every 3-manifold can be smoothly embedded in S^{5}.

Why is such a Conjecture interesting?

■ Whitney's embedding theorem says that every closed oriented 3-manifold smoothly embeds in \mathbb{R}^{6}.

- Hirsch improved this result by proving that every 3-manifold can be smoothly embedded in S^{5}.
- Meanwhile, Lickorish and Wallace proved that every 3 -manifold can be smoothly embedded in some 4-manifold, and in fact, a generalization of their arguments shows that every 3-manifold can be smoothly embedded in the connected sum of copies of $S^{2} \times S^{2}$.

Why is such a Conjecture interesting?

■ Freedman proved that all integer homology 3-spheres can be embedded topologically, locally flatly in S^{4}.

Why is such a Conjecture interesting?

Conjecture

Why is such a Conjecture interesting?

Main Results Main Results

- Freedman proved that all integer homology 3-spheres can be embedded topologically, locally flatly in S^{4}.
- On the other hand, the Rokhlin invariant μ and Donaldson's diagonalization theorem show that some integer homology spheres cannot smoothly embed in S^{4}.

Why is such a Conjecture interesting?

Question

Does there exsist a compact 4-manifold in which all 3-manifolds embed?

Why is such a Conjecture interesting?

Question

Does there exsist a compact 4-manifold in which all 3-manifolds embed?

Shiomi gave a negative answer to this question.

Why is such a Conjecture interesting?

Question

Does there exsist a compact 4-manifold in which all 3-manifolds embed?

Shiomi gave a negative answer to this question.
Thus one can ask, what is an interesting class of 4-manifolds in which all 3-manifolds embed?

Main Results

Theorem (M.)

Given a closed, connected, oriented 3 -manifold Y there exists a simply-connected symplectic closed 4-manifold X such that Y can be embedded topologically, locally flatly (i.e. it has collar neighbourhood) in X.

Main Results

Conjecture

Why is such a

Theorem (M.)

Given a closed, connected, oriented 3-manifold Y there exists a simply-connected symplectic closed 4-manifold X such that Y can be embedded topologically, locally flatly (i.e. it has collar neighbourhood) in X. This embedding can be made a smooth embedding after one stabilization, that is Y can smoothly embed in $X \#\left(S^{2} \times S^{2}\right)$.

Main Results

As an application of the proof of the last Theorem, we get followings...

Main Results

Conjecture

Why is such a Conjecture interesting?

Main Results Main Results

■ Let Y_{0} and Y_{1} be smooth, oriented, closed 3-manifolds. A cobordism from Y_{0} to Y_{1} is a compact 4-dimensional smooth, oriented, compact manifold W with $\partial W=-Y_{0} \sqcup Y_{1}$.

Main Results

■ We say Y_{0} and Y_{1} are R-homology cobordant, if $H_{*}\left(W, Y_{i} ; R\right)=0$ for $i=0,1$.

Main Results

Conjecture

Why is such a Conjecture interesting?

Main Results Main Results

- We say Y_{0} and Y_{1} are R-homology cobordant, if $H_{*}\left(W, Y_{i} ; R\right)=0$ for $i=0,1$.
■ We call this integral homology cobordism when $R=\mathbb{Z}$ and rational homology cobordism when $R=\mathbb{Q}$. This is an equivalence relation.

Main Results

Conjecture

Why is such a Conjecture interesting?

Main Results
Main Results

■ We say Y_{0} and Y_{1} are R-homology cobordant, if $H_{*}\left(W, Y_{i} ; R\right)=0$ for $i=0,1$.
■ We call this integral homology cobordism when $R=\mathbb{Z}$ and rational homology cobordism when $R=\mathbb{Q}$. This is an equivalence relation.

- So one can define

$$
\Theta_{R}^{3}=\left\{Y \text { closed 3-manifold with } H_{*}(Y ; R)=0\right\} / \sim
$$

where R is a fixed commutative ring.

Main Results

Conjecture
Why is such a
Conjecture interesting?

Main Results

■ We say Y_{0} and Y_{1} are R-homology cobordant, if $H_{*}\left(W, Y_{i} ; R\right)=0$ for $i=0,1$.

- We call this integral homology cobordism when $R=\mathbb{Z}$ and rational homology cobordism when $R=\mathbb{Q}$. This is an equivalence relation.
- So one can define

$$
\Theta_{R}^{3}=\left\{Y \text { closed 3-manifold with } H_{*}(Y ; R)=0\right\} / \sim
$$

where R is a fixed commutative ring.

- We give Θ_{R}^{n} the structure of a group where summation is given by the connected sum operation. The zero element of this group is given by the class of S^{n}, and the inverse of the class of $[Y$] is given by the class of Y with reversed orientation.

Main Results

In low-dimensional topology the study of $\Theta_{\mathbb{Z}}^{3}$ and $\Theta_{\mathbb{Q}}^{3}$ are of special interest.

Main Results

Conjecture

Why is such a Conjecture interesting?

In low-dimensional topology the study of $\Theta_{\mathbb{Z}}^{3}$ and $\Theta_{\mathbb{Q}}^{3}$ are of special interest.

■ Livingston showed that these groups are generated by irreducible 3-manifolds.

Main Results

Conjecture

Why is such a

In low-dimensional topology the study of $\Theta_{\mathbb{Z}}^{3}$ and $\Theta_{\mathbb{Q}}^{3}$ are of special interest.
■ Livingston showed that these groups are generated by irreducible 3-manifolds.

- Myers showed that these groups are geneated by hyperbolic 3-manifolds.

Main Results

Theorem (M.)

The homology cobordism groups $\Theta_{\mathbb{Z}}^{3}$ and $\Theta_{\mathbb{Q}}^{3}$ are generated by Stein fillable 3-manifolds.

Main Results

Conjecture

Why is such a

Theorem (M.)

If an L-space Y smoothly embeds in a closed symplectic 4-manifold X then it has to be separating. Moreover, if $X=X_{1} \cup_{Y} X_{2}$ then one of the X_{i} has to be a negative-definite 4-manifold.

Main Results

Conjecture

Why is such a Conjecture interesting?

Theorem (M.)

There exists a 3-manifold Y which cannot be embedded(*) in any compact symplecteic 4-manifold with (weakly) convex boundary.

Main Results

Conjecture

Why is such a Conjecture interesting?

Main Results
Main Results

Theorem (M.)

There exists a 3-manifold Y which cannot be embedded(*) in any compact symplecteic 4-manifold with (weakly) convex boundary.

- Example of 3-manifolds withouth symplectic fillings were known before by the work of Lisca-Matic, Etnyre-Honda.

Main Results

Conjecture

Why is such a Conjecture interesting?

Main Results
Main Results

Theorem (M.)

There exists a 3-manifold Y which cannot be embedded(*) in any compact symplecteic 4-manifold with (weakly) convex boundary.

■ Example of 3-manifolds withouth symplectic fillings were known before by the work of Lisca-Matic, Etnyre-Honda.
■ This above result is stronger in the sense that there exists 3 -manifolds which cannot even embed $\left(^{*}\right.$) in (weak) filling of any 3-manifolds.

Main Results

The smooth v / s topoloical embeddings of 3-manifolds can be used to study exotic structure on 4-manifolds.

Main Results

Theorem (M.)

There exists compact 4-manifolds with boundary X and X^{\prime} such that $b_{2}(X)=b_{2}\left(X^{\prime}\right)=1$ that are homeomorphic but not diffeomorphic.

Main Results

Conjecture

Why is such a Conjecture interesting?

Main Results
Main Results

Theorem (M.)

There exists compact 4-manifolds with boundary X and X^{\prime} such that $b_{2}(X)=b_{2}\left(X^{\prime}\right)=1$ that are homeomorphic but not diffeomorphic.

- Akbulut proved existence of such 4-manifolds first.

■ The above is an alternative proof of that result.

Thank you!

Deep and shallow slice knots in 4 -manifolds

Joint work with Michael Klug

Benjamin Matthias Ruppile
PhD student @ Max-Planck-Institute for Mathematics, Bonn, Germany

Def::

sLice disk $\Delta^{2}: \mathbb{D}^{2} \longrightarrow X$ with $\partial \Delta^{2}=k c \partial X$
K is deep slice in X if the disk "needs to use the extra topology of X ", ie. there is no slice disk for K in a collar $\partial X \times[0,1] \subset X$ of the ∂.

Non-example: There are no deep slice knots in $\mathscr{4}^{k} \$^{1} \times \mathbb{D}^{3}$. $4^{k} \mathbb{S}^{1} \times \mathbb{D}^{3}=$ thickening of

Any slice disk generically avoids the spine

\longrightarrow Lives in a collar neighborhood of the boundary

Example:

$$
X^{4}=\underset{\sigma \text {-handle }}{D^{4}} \cup(2 \text {-handles })
$$

has deep slice knots in boundary (which are nullhomotopic in ∂X, but not contained in a 3-ball)

Two cases
$\pi_{1}(\partial X)=\{1\}$ and thus $\partial X \cong \mathbb{S}^{3}$

We use a theorem of Rollin on the genus of embedded surfaces representing 2-dim. homology classes in $\hat{X}=X \cup(4$-handle $)$

$$
\pi_{1}(\partial X) \text { non-trivial }
$$

Use Wall's self-intersection number with values in $\frac{\mathbb{Z}\left[\pi_{1}(\partial X)\right]}{\left\langle g=g^{-1}, 1\right\rangle}$ of the track of a homotopy in $\partial X \times[0,1]$

