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Main Question

Question
What is the smallest finite quotient of the braid group?
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Main Question

Question
What is the smallest finite quotient of the braid group?

Example 1. Bn → Sn

Example 2. Bn
ab.→ Z→ Z/mZ.

Conjecture (Margalit)

For n ≥ 5, Sn is the smallest non-cyclic quotient of Bn.



Main Theorem

Theorem
For n = 5, 6, Sn is the smallest non-cyclic quotient of Bn.



Totally Symmetric Sets

Definition (Kordek, Margalit)

Let G be a group. A subset S = {g1, . . . , gk} ⊂ G is said to be a
totally symmetric set if

1 The elements of S pairwise commute.
2 Every permutation of S can be realized by conjugation in G .



Two Facts about Totally Symmetric Sets

Fact
If f : G → H is a homomorphism, and S ⊂ G is totally symmetric,
then f (S) is totally symmetric of cardinality |S | or 1.

Totally symmetric sets can "collapse" under homomorphisms.



Two Facts about Totally Symmetric Sets

Fact
If f : G → H is a homomorphism, and S ⊂ G is totally symmetric,
then f (S) is totally symmetric of cardinality |S | or 1.

Totally symmetric sets can "collapse" under homomorphisms.

Fact
A well-chosen totally symmetric set Xn ⊂ Bn collapses under a
quotient of Bn if and only if the quotient is cyclic.



Proof Strategy

If H has no totally symmetric sets of cardinality |Xn|, it cannot be a
non-cyclic quotient of Bn.
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Proof Strategy

If H has no totally symmetric sets of cardinality |Xn|, it cannot be a
non-cyclic quotient of Bn.

Bad idea: get a computer to check for totally symmetric sets in
every group or order up to n!.

Better idea: Check for totally symmetric sets in simple groups of
small order, then leverage this information to say something about
braid groups.



Saying Something about Braid Groups

Theorem
For n = 5, 6, 7, 8, the alternating group An is the smallest
non-trivial quotient of the commutator subgroup B ′

n.



Saying Something about Braid Groups

Theorem
For n = 5, 6, 7, 8, the alternating group An is the smallest
non-trivial quotient of the commutator subgroup B ′

n.

Theorem
For n = 5, 6, Sn is the smallest non-cyclic quotient of Bn.



Link Detection Results for Knot Floer Homology
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Can we distinguish links?

Question

If I meet two links in the wild, can I distinguish them?

2



What is knot Floer homology?

Knot Floer Homology is an invariant of links which takes takes values in the category

of bi-graded Z/2-vector spaces.

Theorem (Ni, Ozsváth-Szabó)

ĤFK(L) determines the genus of L.

Theorem (Ghiggini, Ni)

ĤFK(L) determines whether or not L is fibered.

3



What is knot Floer homology?

Knot Floer Homology is an invariant of links which takes takes values in the category

of bi-graded Z/2-vector spaces.

Theorem (Ni, Ozsváth-Szabó)
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What is link Detection?

Definition

We say ĤFK detects L if whenever ĤFK(L′) ∼= ĤFK(L), L′ is isotopic to L.

Theorem (B-Martin)

Knot Floer homology detects T (2, 4).
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What is link Detection?

Definition

We say ĤFK detects L if whenever ĤFK(L′) ∼= ĤFK(L), L′ is isotopic to L.

Theorem (B-Martin)

Knot Floer homology detects T (2, 4).
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Detection Results for knot Floer homology

Knot Floer homology detects:

The unknot (Ozsváth-Szabó ’04) The Hopf link (Ozsváth-Szabó ’04, Ni ’07)

The trefoil, figure eight (Ghiggini ’08) Unlinks (Ni ’14, Hedden-Watson ’18)

Knot Floer homology cannot distinguish:

Infinitely many knots in each concordance class (Hedden-Watson ’18)

Non-trivial band sums of split links, where the bands differ by a twist (Wang ’20)
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Which links are good candidates for detection results?

Definition

A 2-cable link is one which bounds an embedded annulus.

Remark

The torus links T (2, 2n) are the 2-cables such that both components are unknotted.
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Which links are good candidates for detection results?

Definition

A 2-cable link is one which bounds an embedded annulus.

Remark

The torus links T (2, 2n) are the 2-cables such that both components are unknotted.
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Detection results

Theorem (B-Martin)

Knot Floer Homology detects:

T (2, 2n) T (2, 4), T (2, 6)

T (3, 3) L7n1
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Detection results

Theorem (B-Martin)

Knot Floer Homology detects:

T (2, 2n) T (2, 4), T (2, 6)

T (3, 3) L7n1
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Mapping class groups vs. 
handlebody groups

Marissa Miller
University of Illinois at Urbana-Champaign



Mapping class group
𝘚𝘨 closed, orientable, genus 𝘨 surface:

𝘔𝘊𝘎(𝘚𝘨) = Homeo+(𝘚𝘨)/isotopy



Curve graph 𝘊(𝘚𝘨)
Vertices: Isotopy classes of essential simple closed curves

Edge: If two isotopy classes can be made disjoint
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Handlebody group
Handlebody, 𝘝𝘨 : 3-ball with 𝘨 1-handles attached (a 3-manifold)

𝘏𝘨 = 𝘔𝘊𝘎(𝘝𝘨) = Homeo+(𝘝𝘨)/isotopy



Disk graph 𝘋(𝘝𝘨)
Vertices: Isotopy classes of essential simple closed curves on 𝜕𝘝𝘨 bounding disks in 𝘝𝘨

Edge: If two isotopy classes can be made disjoint
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Disk graph 𝘋(𝘝𝘨)
Vertices: Isotopy classes of essential simple closed curves on 𝜕𝘝𝘨 bounding disks in 𝘝𝘨 

Edge: If two isotopy classes can be made disjoint

𝘋(𝘝𝘨) ⊂ 𝘊(𝜕𝘝𝘨)



A closer look...
1. 𝘏𝘨 < 𝘔𝘊𝘎(𝜕𝘝𝘨), but is badly distorted

2. 𝘋(𝘝𝘨) ⊂ 𝘊(𝜕𝘝𝘨), but is badly distorted

The geometries of 𝘏𝘨 and 𝘋(𝘝𝘨) do not reflect the ambient 
geometries of 𝘔𝘊𝘎(𝜕𝘝𝘨) and 𝘊(𝜕𝘝𝘨)



Hierarchically hyperbolic spaces?
HHS ≈ Almost hyperbolic; obstructed by product regions
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Hierarchically hyperbolic spaces?
HHS ≈ Almost hyperbolic; obstructed by product regions

Mapping class groups: inspiration for HHSs (Behrstock-Hagen-Sisto) 

Handlebody groups:

● Yes for genus two! (Miller)
● No for higher genus (Hamenstädt-Hensel, Behrstock-Hagen-Sisto)



Characterization of stable subgroups
Stable subgroup ≈ subgroups of finitely generated groups that exhibit 
hyperbolic-like behavior
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Mapping class groups: stable ⟺ quasi-isometrically embed in curve graph 
(Durham-Taylor, Hamenstädt, Kent-Leininger)



Characterization of stable subgroups
Stable subgroup ≈ subgroups of finitely generated groups that exhibit 
hyperbolic-like behavior

Mapping class groups: stable ⟺ quasi-isometrically embed in curve graph 
(Durham-Taylor, Hamenstädt, Kent-Leininger)

Handlebody groups:

● Genus two: stable ⟺ quasi-isometrically embed in disk graph (Miller)
● Higher genus: exist quasi-isometrically embedded subgroups that aren’t 

stable (Miller)



Thank you!



Symmetric unions and reducible fillings
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Symmetric unions

Definition

A symmetric union (D ∪ −D)(n1, . . . , nk) (ni ∈ Z) is a knot
diagram defined as follows:

Feride Ceren Kose UT Austin

Symmetric unions and reducible fillings



Examples

Figure: 11n139 Figure: 11n132

Feride Ceren Kose UT Austin
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Symmetric unions

Theorem (Kinoshita-Terasaka ’57, Lamm ’00)

Symmetric unions are ribbon.

Question

Is every ribbon knot a symmetric union?

Yes for

all prime ribbon knots with up to 10 crossings (Lamm ’00)

122 of 137 prime ribbon knots with 11 and 12 crossings
(Seeliger ’14)

all 2-bridge ribbon knots (Lamm ’05)
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Some classical results

Theorem (Fox-Milnor ’58)

K is slice ⇒ ∆K (t) = f (t)f (t−1)

Corollary

K is slice ⇒ det(K ) is a perfect square

Theorem (KT ’57, Lamm ’00)

K = (D ∪ −D)(n1, . . . , nk) with ni ∈ 2Z ⇒ ∆K (t) = (∆D(t))2

Theorem (KT ’57, Lamm ’00)

K = (D ∪ −D)(n1, . . . , nk)⇒ det(K ) = (det(D))2
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Minimal twisting number tw(K )

Definition

The minimal twisting number of a symmetric union K , denoted by
tw(K ), is the smallest number of twisting regions in all symmetric
union presentations of K .

Remarks:

tw(K#− K ) = 0

K is prime ⇒ tw(K ) > 0

tw(11n139) = 1 and 1 ≤ tw(11n132) ≤ 2

Theorem (Tanaka ’15)

tw(11n132) = 2
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Main result

Theorem (Tanaka ’19, K.’20)

Let K be a composite ribbon knot that admits a symmetric union
diagram. If tw(K ) = 1, then K = K1#K2#− K2 where K1 is a
symmetric union with tw(K1) = 1 and K2 is a nontrivial knot.

Corollary

tw(31#810) > 1.
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3-manifold topology

Definition

An oriented compact 3-manifold M is said to be irreducible if any
embedded 2-sphere bounds a 3-ball. Otherwise, it is reducible.

Theorem ((⇒) Waldhausen ’69, (⇐) Kim-Tollefson ’80)

Σ2(K ) is irreducible ⇔ K is prime

Theorem (Gordon-Luecke ’96)

Let M be an orientable and irreducible 3-manifold with a torus
boundary. If M(π) and M(γ) are reducible for distinct slopes π
and γ, then ∆(π, γ) = 1.
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Sketch of the proof

Let K = (D ∪ −D)(n)

tw(K ) = 1 ⇒ Σ2(K ) = M( 1
n )

K is composite ⇒ M( 1
n ) is reducible

K 6= K1#K2#− K2 ⇒ M is irreducible

By the symmetry:
−K = (D ∪ −D)(−n) ⇒ Σ2(−K ) = M(− 1

n )

Two distinct reducible slopes 1
n and − 1

n , but
∆( 1

n ,−
1
n ) = 2|n| 6= 1
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Let K = (D ∪ −D)(n)
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n ) is reducible
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The end.
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Conjecture

Conjecture (Etnyre,Min,M.)
Every closed, oriented smooth 3-manifold smoothly embeds in
a symplectic 4-manifold.
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Why is such a Conjecture interesting?

The embedding of 3-manifolds in higher dimensional space has
always been a fascinating problem.
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Why is such a Conjecture interesting?

Whitney’s embedding theorem says that every closed
oriented 3-manifold smoothly embeds in R6.
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Why is such a Conjecture interesting?

Whitney’s embedding theorem says that every closed
oriented 3-manifold smoothly embeds in R6.
Hirsch improved this result by proving that every 3-manifold
can be smoothly embedded in S5.
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Why is such a Conjecture interesting?

Whitney’s embedding theorem says that every closed
oriented 3-manifold smoothly embeds in R6.
Hirsch improved this result by proving that every 3-manifold
can be smoothly embedded in S5.
Meanwhile, Lickorish and Wallace proved that every
3-manifold can be smoothly embedded in some 4-manifold,
and in fact, a generalization of their arguments shows that
every 3-manifold can be smoothly embedded in the
connected sum of copies of S2 × S2.
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Why is such a Conjecture interesting?

Freedman proved that all integer homology 3-spheres can be
embedded topologically, locally flatly in S4.
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Why is such a Conjecture interesting?

Freedman proved that all integer homology 3-spheres can be
embedded topologically, locally flatly in S4.
On the other hand, the Rokhlin invariant µ and Donaldson’s
diagonalization theorem show that some integer homology
spheres cannot smoothly embed in S4.
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Why is such a Conjecture interesting?

Question
Does there exsist a compact 4-manifold in which all
3-manifolds embed?
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Why is such a Conjecture interesting?

Question
Does there exsist a compact 4-manifold in which all
3-manifolds embed?

Shiomi gave a negative answer to this question.
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Why is such a Conjecture interesting?

Question
Does there exsist a compact 4-manifold in which all
3-manifolds embed?

Shiomi gave a negative answer to this question.
Thus one can ask, what is an interesting class of 4-manifolds
in which all 3-manifolds embed?
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Theorem (M.)
Given a closed, connected, oriented 3-manifold Y there exists
a simply-connected symplectic closed 4-manifold X such that
Y can be embedded topologically, locally flatly (i.e. it has
collar neighbourhood) in X.
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Theorem (M.)
Given a closed, connected, oriented 3-manifold Y there exists
a simply-connected symplectic closed 4-manifold X such that
Y can be embedded topologically, locally flatly (i.e. it has
collar neighbourhood) in X. This embedding can be made a
smooth embedding after one stabilization, that is Y can
smoothly embed in X #(S2 × S2).
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As an application of the proof of the last Theorem, we get
followings...
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Let Y0 and Y1 be smooth, oriented, closed 3-manifolds. A
cobordism from Y0 to Y1 is a compact 4-dimensional smooth,
oriented, compact manifold W with ∂W = −Y0 t Y1.
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We say Y0 and Y1 are R-homology cobordant, if
H∗(W ,Yi ; R) = 0 for i = 0, 1.
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We say Y0 and Y1 are R-homology cobordant, if
H∗(W ,Yi ; R) = 0 for i = 0, 1.
We call this integral homology cobordism when R = Z and
rational homology cobordism when R = Q. This is an
equivalence relation.
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We say Y0 and Y1 are R-homology cobordant, if
H∗(W ,Yi ; R) = 0 for i = 0, 1.
We call this integral homology cobordism when R = Z and
rational homology cobordism when R = Q. This is an
equivalence relation.
So one can define

Θ3
R = {Y closed 3-manifold with H∗(Y ; R) = 0} / ∼

where R is a fixed commutative ring.
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We say Y0 and Y1 are R-homology cobordant, if
H∗(W ,Yi ; R) = 0 for i = 0, 1.
We call this integral homology cobordism when R = Z and
rational homology cobordism when R = Q. This is an
equivalence relation.
So one can define

Θ3
R = {Y closed 3-manifold with H∗(Y ; R) = 0} / ∼

where R is a fixed commutative ring.
We give Θn

R the structure of a group where summation is
given by the connected sum operation. The zero element of
this group is given by the class of Sn, and the inverse of the
class of [Y ] is given by the class of Y with reversed
orientation.
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In low-dimensional topology the study of Θ3
Z and Θ3

Q are of
special interest.
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In low-dimensional topology the study of Θ3
Z and Θ3

Q are of
special interest.

Livingston showed that these groups are generated by
irreducible 3-manifolds.
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Main Results

In low-dimensional topology the study of Θ3
Z and Θ3

Q are of
special interest.

Livingston showed that these groups are generated by
irreducible 3-manifolds.
Myers showed that these groups are geneated by hyperbolic
3-manifolds.
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Theorem (M.)
The homology cobordism groups Θ3

Z and Θ3
Q are generated by

Stein fillable 3-manifolds.
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Theorem (M.)
If an L-space Y smoothly embeds in a closed symplectic
4-manifold X then it has to be separating. Moreover, if
X = X1 ∪Y X2 then one of the Xi has to be a
negative-definite 4-manifold.

Anubhav Mukherjee On embeddings of 3 manifolds in symplectic 4 manifolds Dec.2020 23/29



Conjecture

Why is such a
Conjecture
interesting?

Main Results

Main Results

Main Results

Theorem (M.)
There exists a 3-manifold Y which cannot be embedded(*) in
any compact symplecteic 4-manifold with (weakly) convex
boundary.
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Theorem (M.)
There exists a 3-manifold Y which cannot be embedded(*) in
any compact symplecteic 4-manifold with (weakly) convex
boundary.

Example of 3-manifolds withouth symplectic fillings were
known before by the work of Lisca–Matic, Etnyre–Honda.
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Theorem (M.)
There exists a 3-manifold Y which cannot be embedded(*) in
any compact symplecteic 4-manifold with (weakly) convex
boundary.

Example of 3-manifolds withouth symplectic fillings were
known before by the work of Lisca–Matic, Etnyre–Honda.
This above result is stronger in the sense that there exists
3-manifolds which cannot even embed(*) in (weak) filling of
any 3-manifolds.
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The smooth v/s topoloical embeddings of 3-manifolds can be
used to study exotic structure on 4-manifolds.
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Theorem (M.)
There exists compact 4-manifolds with boundary X and X ′
such that b2(X ) = b2(X ′) = 1 that are homeomorphic but not
diffeomorphic.
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Theorem (M.)
There exists compact 4-manifolds with boundary X and X ′
such that b2(X ) = b2(X ′) = 1 that are homeomorphic but not
diffeomorphic.

Akbulut proved existence of such 4-manifolds first.
The above is an alternative proof of that result.
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