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Surgeries

Suppose that Y = Y 3 is a closed, oriented three-manifold, K ⊂ Y

a framed knot and r ∈ Q ∪ {∞} a surgery coefficient

Dehn surgery associates to this data a new three-manifold
Yr (K )= (Y \ ν(K )) ∪ϕ S1 × D2. (The identification ϕ is
determined by r .)

The notion naturally extends to framed links.

Theorem (Lickorish, Wallace)

For any Y there is a link L ⊂ S3 (each knot equipped with the
Seifert framing) and R = (r1, . . . , rn) ∈ Qn so that S3

R(L) is
orientation preserving diffeomorphic to Y .
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Surgeries

The link is not unique — different choices can be connected
by Kirby moves. Not even if we assume the the link is a knot:
5-surgery along the RHT is the same as (−5)-surgery along
the unknot (giving the lens space L(5, 1))

Sometimes the knot and the coefficient is determined by the
three-manifold: the Poincaré homology sphere Σ(2, 3, 5) can
be only surgered along the (LH) trefoil with r = −1. Similarly,
S1 × S2 is surgery only along the unknot with framing 0.

the projective space RP3 can be given by surgery only along
the unknot (framing: ±2),
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The (purely) cosmetic surgery conjecture, PCSC

“For a fixed knot the result determines the surgery coefficient.”

Conjecture (Gordon, 1990)

Suppose that K ⊂ S3 is a non-trivial knot. Suppose that for
r , s ∈ Q we have that S3

r (K ) and S3
s (K ) are orientation preserving

diffeomorphic three-manifolds. Then r = s.

If we drop ’orientation preserving’, the situation is very different:
we always have that S3

r (K ) and S3
−r (m(K )) for the mirror m(K )

are (orientation-reversing) diffeomorphic. Hence if K is
amphichiral, r and −r give the same three-manifold; and there are
further examples.
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Results

Theorem (Wang)

If g(K ) = 1, then K satisfies the purely cosmetic surgery
conjecture.

Theorem (Ni-Wu)

Suppose that for a nontrivial knot K we have that S3
r (K ) ∼= S3

s (K )
with r 6= s. Then r = −s.

So we need to compare S3
r (K ) and S3

−r (K ).
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Results

The PCS Conjecture holds for:

torus knots

nontrivial connected sums, and cable knots (R. Tao)

3-braid knots (Varvarezos)

two-bridge knots and alternating fibered knots
(Ichihara-Jong-Mattman-Saito)

Conway and Kinoshita-Terasaka knot families
(Bohnke-Gillis-Liu-Xue)

knots up to 16 crossings (Hanselman)

Today: Pretzel knots (S-Szabó)
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Knot Floer homology

Knot Floer homology: it associates a finite dimensional bigraded
vector space (over F = {0, 1})

ĤFK(K ) =
∑

M,A

ĤFKM(K ,A)

to a knot. It determines: Seifert genus and fiberedness.

There is a surgery formula, providing relation between ĤFK(K )

and ĤF(S3
r (K )).
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Thickness of knots

Suppose that V =
⊕

a∈R Va is a finite dimensional graded vector
space, Va is the subspace of homogeneous elements of grading a.

Definition

The thickness th(V ) of the vector space V is the largest possible
difference of degrees, i.e.

th(V ) = max{a | Va 6= 0} − min{a | Va 6= 0}.

(For example, the thickness of H∗(M
n;Z/2Z) for an n-dimensional

closed manifold is n.)

Collapse the two gradings of ĤFK(K ) to δ = A−M; the thickness

of the resulting graded vector space ĤFK
δ
(K ) is, by definition, the

thickness th(K ) of K .
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Main technical result

Theorem (Hanselman)

Suppose that the nontrivial knot K admits r 6= s with
S3
r (K ) ∼= S3

s (K ). Then, {r , s} is either {±2}, or {± 1
q
} with q ∈ N

determined by ĤFK(K ), and

if {r , s} = {±2} then g(K ) = 2;

{r , s} = {± 1
q
} for some q ∈ N then

q ≤
th(K ) + 2g(K )

2g(K )(g(K )− 1)
,

where th(K ) is the thickness of K .

In particular, if g(K ) > 2 and th(K ) ≤ 5, then K satisfies the
purely cosmetic surgery conjecture (PCSC).
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Thickness

Definition

Suppose that D is a diagram of a knot K ⊂ S3. A domain d is
good if every edge on its boundary connects an over- and an
under-crossing; otherwise d is bad. Let B(D) denote the number of
bad domains.

The knot invariant

β(K ) = min{B(D) | D is a diagram of K}

measures how far K is from being alternating.
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A bound on β

Suppose that K is non-alternating (that is, β(K ) > 0). Then

Theorem

th(K ) ≤ 1
2
β(K )− 1.

If K is a pretzel knot or a Montesinos knot, then th(K ) ≤ 1.

Same result can be shown using the ’Turaev genus’, another
measure of how non-alternating K is.

Combining with Zibrowius’ theorem – implying that th(K ) is
mutation invariant – one can get bounds in other cases.
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Further tools for PCSC

Theorem (Boyer-Lines)

Suppose that the knot K ⊂ S3 has Alexander-Conway polynomial
∇K (z) =

∑d
i=0 a2i (K )z2i with a2(K ) 6= 0. Then K satisfies the

PCSC.

Recall that ∇K is defined by the skein relation

∇K+
(z)−∇K

−

(z) = z∇K0
(z), ∇U = 1

It satisfies the identity ∇K (t
1

2 − t−
1

2 ) = ∆K (t) (∆K : symmetrized
Alexander polynomial).

Idea: connect the Casson-Walker invariant of the surgery with
a2(K )(= 1

2
∆′′

K (1)).
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Further tools for PCSC

A further invariant: λ2(Y ) of a rational homology sphere Y is a
generalization of the Casson-Walker invariant λ = λ1. Admits a
surgery formula, involving the knot invariants a2(K ) and

w3(K ) =
1

72
V ′′′

K (1) +
1

24
V ′′

K (1),

where VK is the (normalized) Jones polynomial of K :

Theorem (Lescop)

λ2(S
3
p

q
(K )) = λ′′

2(K ) · (
q

p
)2 +w3(K )

q

p
+ a2(K )c(p, q) + λ2(L(p, q))
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Pretzel knots

...a a a
1 2 n

Figure: The pretzel knot P(a1, . . . , an).
The box with ai in it means |ai | half twists
(to the right if ai > 0 and to the left if
ai < 0). We have a knot if a1 is even and all
others are odd, or all are odd and n is odd.
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Pretzel knots

Theorem (S-Szabó)

Pretzel knots satisfy the PCSC.

Suppose P = P(b1, . . . , bn) is a pretzel knot. If g(P) 6= 2, then
Hanselman’s corollary (“g > 2, th ≤ 5 implies PCSC”) shows that
PCSC holds.

If b1 is even, then there are a few families of knots with g(K ) = 2,
and they can be easily handled by a2(P) 6= 0. If all bi are odd, then
g(P) = n−1

2
, so we need to focus on five-strand pretzels.
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Five-strand pretzel knots

For a five-strand pretzel knot P = P(b1, . . . , b5) with bi = 2ki + 1
odd, and with sk the k th symmetric polynomial in {ki}

5
i=1, we have

a2(P) = s2 + 2s1 + 3,

w3(P) =
1

2
(5 + 3s1 + s2

1 + s2 +
1

2
(s3 + s1s2)).

Simple argument shows that

Proposition

The quantities a2(P) and w3(P) cannot be zero at the same time.

Idea: If both are zero, then s2 = −2s1 − 3 and s3 = s1 + 2, the first
is a degree-2, the second is a degree-3 equation, so we do not
expect them to be satisfied at the same time.
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The proof of the inequality about thickness

Suppose that D is a non-alternating diagram; we want to show that

th(K ) ≤
1

2
B(D)− 1.

Recall that th(K ) = th(ĤFK
δ
(K )), and ĤFK

δ
(K ) is the homology

of a chain complex (CD,p, ∂) (associated to a diagram D with a
marked point p), generated by Kauffman states.

(Recall: a Kauffman state of (D, p) is a bijection between crossings
and domains not touching p, such that the domain associated to a
crossing has the crossing in its closure.)

As th(H(V , ∂)) ≤ th(V ) for any chain complex (V , ∂), if CD,p is
the δ-graded vector space spanned by the Kauffman states, then it
is sufficient to show that th(CD,p) ≤

1
2
B(D)− 1.
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The proof of the inequality about thickness

Equip each Kauffman state by the gradings A,M (and δ = A−M)
as instructed by
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Figure: The local contributions to
M(κ),A(κ) and δ(κ).
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The proof of the inequality

The δ-grading at a positive crossing is either 0 or −1
2
, at a negative

one either 0 or 1
2
. So we can express the δ-grading of a Kauffman

state κ as the sum

−
1

4
wr(D) +

∑

c∈Cr

f (κ(c)),

where wr is the writhe of the diagram, and f is a function on the
Kauffman corners, which is either 1

4
or −1

4
(depending on the

chosen quadrant at the crossing c).
Main observation: For a good domain each corner in the domain
gives the same f -value, hence for different Kauffman states the
contributions from this particular domain are the same. For a bad
domain the maximal difference for two Kauffman states on a bad
domain is 1

2
. We gain the −1 from putting p to the boundary of

bad domains.
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Thank you!
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