The cosmetic surgery conjecture for pretzel knots

Stipsicz András

Rényi Institute of Mathematics, Budapest

Tech Topology Conference, December 6, 2020

Surgeries

Suppose that $Y=Y^{3}$ is a closed, oriented three-manifold, $K \subset Y$ a framed knot and $r \in \mathbb{Q} \cup\{\infty\}$ a surgery coefficient

- Dehn surgery associates to this data a new three-manifold $Y_{r}(K)=(Y \backslash \nu(K)) \cup_{\varphi} S^{1} \times D^{2}$. (The identification φ is determined by r.)
- The notion naturally extends to framed links.

Surgeries

Suppose that $Y=Y^{3}$ is a closed, oriented three-manifold, $K \subset Y$ a framed knot and $r \in \mathbb{Q} \cup\{\infty\}$ a surgery coefficient

- Dehn surgery associates to this data a new three-manifold $Y_{r}(K)=(Y \backslash \nu(K)) \cup_{\varphi} S^{1} \times D^{2}$. (The identification φ is determined by r.)
- The notion naturally extends to framed links.

Theorem (Lickorish, Wallace)

For any Y there is a link $L \subset S^{3}$ (each knot equipped with the Seifert framing) and $R=\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{Q}^{n}$ so that $S_{R}^{3}(L)$ is orientation preserving diffeomorphic to Y.

Surgeries

- The link is not unique - different choices can be connected by Kirby moves. Not even if we assume the the link is a knot: 5 -surgery along the RHT is the same as (-5)-surgery along the unknot (giving the lens space $L(5,1)$)
- Sometimes the knot and the coefficient is determined by the three-manifold: the Poincare homology sphere $\Sigma(2,3,5)$ can be only surgered along the (LH) trefoil with $r=-1$. Similarly, $S^{1} \times S^{2}$ is surgery only along the unknot with framing 0 .
- the projective space $\mathbb{R} \mathbb{P}^{3}$ can be given by surgery only along the unknot (framing: ± 2),

The (purely) cosmetic surgery conjecture, PCSC

"For a fixed knot the result determines the surgery coefficient."

Conjecture (Gordon, 1990)

Suppose that $K \subset S^{3}$ is a non-trivial knot. Suppose that for $r, s \in \mathbb{Q}$ we have that $S_{r}^{3}(K)$ and $S_{s}^{3}(K)$ are orientation preserving diffeomorphic three-manifolds. Then $r=s$.

If we drop 'orientation preserving', the situation is very different: we always have that $S_{r}^{3}(K)$ and $S_{-r}^{3}(m(K))$ for the mirror $m(K)$ are (orientation-reversing) diffeomorphic. Hence if K is amphichiral, r and $-r$ give the same three-manifold; and there are further examples.

The (purely) cosmetic surgery conjecture, PCSC

"For a fixed knot the result determines the surgery coefficient."

Conjecture (Gordon, 1990)

Suppose that $K \subset S^{3}$ is a non-trivial knot. Suppose that for $r, s \in \mathbb{Q}$ we have that $S_{r}^{3}(K)$ and $S_{s}^{3}(K)$ are orientation preserving diffeomorphic three-manifolds. Then $r=s$.

If we drop 'orientation preserving', the situation is very different: we always have that $S_{r}^{3}(K)$ and $S_{-r}^{3}(m(K))$ for the mirror $m(K)$ are (orientation-reversing) diffeomorphic. Hence if K is amphichiral, r and $-r$ give the same three-manifold; and there are further examples.

Results

Theorem (Wang)

If $g(K)=1$, then K satisfies the purely cosmetic surgery conjecture.

Theorem (Ni-Wu)

Suppose that for a nontrivial knot K we have that $S_{r}^{3}(K) \cong S_{s}^{3}(K)$ with $r \neq s$. Then $r=-s$.

So we need to compare $S_{r}^{3}(K)$ and $S_{-r}^{3}(K)$.

Results

The PCS Conjecture holds for:

- torus knots
- nontrivial connected sums, and cable knots (R. Tao)
- 3-braid knots (Varvarezos)
- two-bridge knots and alternating fibered knots (Ichihara-Jong-Mattman-Saito)
- Conway and Kinoshita-Terasaka knot families (Bohnke-Gillis-Liu-Xue)
- knots up to 16 crossings (Hanselman)
- Today: Pretzel knots (S-Szabó)

Results

The PCS Conjecture holds for:

- torus knots
- nontrivial connected sums, and cable knots (R. Tao)
- 3-braid knots (Varvarezos)
- two-bridge knots and alternating fibered knots (Ichihara-Jong-Mattman-Saito)
- Conway and Kinoshita-Terasaka knot families (Bohnke-Gillis-Liu-Xue)
- knots up to 16 crossings (Hanselman)
- Today: Pretzel knots (S-Szabó)

Knot Floer homology

Knot Floer homology: it associates a finite dimensional bigraded vector space (over $\mathbb{F}=\{0,1\}$)

$$
\widehat{\operatorname{HFK}}(K)=\sum_{M, A} \widehat{\mathrm{HFK}}_{M}(K, A)
$$

to a knot. It determines: Seifert genus and fiberedness.
There is a surgery formula, providing relation between $\widehat{\mathrm{HFK}}(K)$ and $\widehat{\mathrm{HF}}\left(S_{r}^{3}(K)\right)$.

Suppose that $V=\bigoplus_{a \in \mathbb{R}} V_{a}$ is a finite dimensional graded vector space, V_{a} is the subspace of homogeneous elements of grading a.

Definition

The thickness $\operatorname{th}(V)$ of the vector space V is the largest possible difference of degrees, i.e.

$$
\operatorname{th}(V)=\max \left\{a \mid V_{a} \neq 0\right\}-\min \left\{a \mid V_{a} \neq 0\right\}
$$

(For example, the thickness of $H_{*}\left(M^{n} ; \mathbb{Z} / 2 \mathbb{Z}\right)$ for an n-dimensional closed manifold is n.)
Collapse the two gradings of $\widehat{\operatorname{HFK}}(K)$ to $\delta=A-M$; the thickness of the resulting graded vector space $\widehat{\mathrm{HFK}}^{\delta}(K)$ is, by definition, the thickness $t h(K)$ of K

Suppose that $V=\bigoplus_{a \in \mathbb{R}} V_{a}$ is a finite dimensional graded vector space, V_{a} is the subspace of homogeneous elements of grading a.

Definition

The thickness $\operatorname{th}(V)$ of the vector space V is the largest possible difference of degrees, i.e.

$$
\operatorname{th}(V)=\max \left\{a \mid V_{a} \neq 0\right\}-\min \left\{a \mid V_{a} \neq 0\right\} .
$$

(For example, the thickness of $H_{*}\left(M^{n} ; \mathbb{Z} / 2 \mathbb{Z}\right)$ for an n-dimensional closed manifold is n.)
Collapse the two gradings of $\widehat{\operatorname{HFK}}(K)$ to $\delta=A-M$; the thickness of the resulting graded vector space $\widehat{\mathrm{HFK}}^{\delta}(K)$ is, by definition, the thickness $t h(K)$ of K.

Main technical result

Theorem (Hanselman)

Suppose that the nontrivial knot K admits $r \neq s$ with $S_{r}^{3}(K) \cong S_{s}^{3}(K)$. Then, $\{r, s\}$ is either $\{ \pm 2\}$, or $\left\{ \pm \frac{1}{q}\right\}$ with $q \in \mathbb{N}$ determined by $\widehat{\mathrm{HFK}}(K)$, and

- if $\{r, s\}=\{ \pm 2\}$ then $g(K)=2$;
- $\{r, s\}=\left\{ \pm \frac{1}{q}\right\}$ for some $q \in \mathbb{N}$ then

$$
q \leq \frac{\operatorname{th}(K)+2 g(K)}{2 g(K)(g(K)-1)}
$$

where $\operatorname{th}(K)$ is the thickness of K.
In particular, if $g(K)>2$ and $t h(K) \leq 5$, then K satisfies the purely cosmetic surgery conjecture (PCSC).

Definition

Suppose that D is a diagram of a knot $K \subset S^{3}$. A domain d is good if every edge on its boundary connects an over- and an under-crossing; otherwise d is bad. Let $B(D)$ denote the number of bad domains.

The knot invariant

$$
\beta(K)=\min \{B(D) \mid D \text { is a diagram of } K\}
$$

measures how far K is from being alternating.

A bound on β

Suppose that K is non-alternating (that is, $\beta(K)>0$). Then

Theorem

- $\operatorname{th}(K) \leq \frac{1}{2} \beta(K)-1$.
- If K is a pretzel knot or a Montesinos knot, then $\operatorname{th}(K) \leq 1$.
- Same result can be shown using the 'Turaev genus', another measure of how non-alternating K is.
- Combining with Zibrowius' theorem - implying that $\operatorname{th}(K)$ is mutation invariant - one can get bounds in other cases.

Theorem (Boyer-Lines)

Suppose that the knot $K \subset S^{3}$ has Alexander-Conway polynomial $\nabla_{K}(z)=\sum_{i=0}^{d} a_{2 i}(K) z^{2 i}$ with $a_{2}(K) \neq 0$. Then K satisfies the PCSC.

Recall that ∇_{K} is defined by the skein relation

$$
\nabla_{K_{+}}(z)-\nabla_{K_{-}}(z)=z \nabla_{K_{0}}(z), \quad \nabla_{U}=1
$$

It satisfies the identity $\nabla_{K}\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right)=\Delta_{K}(t)\left(\Delta_{K}\right.$: symmetrized Alexander polynomial).

Idea: connect the Casson-Walker invariant of the surgery with $a_{2}(K)\left(=\frac{1}{2} \Delta_{K}^{\prime \prime}(1)\right)$.

A further invariant: $\lambda_{2}(Y)$ of a rational homology sphere Y is a generalization of the Casson-Walker invariant $\lambda=\lambda_{1}$. Admits a surgery formula, involving the knot invariants $a_{2}(K)$ and

$$
w_{3}(K)=\frac{1}{72} V_{K}^{\prime \prime \prime}(1)+\frac{1}{24} V_{K}^{\prime \prime}(1)
$$

where V_{K} is the (normalized) Jones polynomial of K :

Theorem (Lescop)

$\lambda_{2}\left(S_{\frac{p}{q}}^{3}(K)\right)=\lambda_{2}^{\prime \prime}(K) \cdot\left(\frac{q}{p}\right)^{2}+w_{3}(K) \frac{q}{p}+a_{2}(K) c(p, q)+\lambda_{2}(L(p, q))$

Figure: The pretzel knot $P\left(a_{1}, \ldots, a_{n}\right)$.
The box with a_{i} in it means $\left|a_{i}\right|$ half twists (to the right if $a_{i}>0$ and to the left if $\left.a_{i}<0\right)$. We have a knot if a_{1} is even and all others are odd, or all are odd and n is odd.

Pretzel knots

Theorem (S-Szabó)

Pretzel knots satisfy the PCSC.

Suppose $P=P\left(b_{1}, \ldots, b_{n}\right)$ is a pretzel knot. If $g(P) \neq 2$, then Hanselman's corollary (" $g>2$, th ≤ 5 implies PCSC") shows that PCSC holds.

If b_{1} is even, then there are a few families of knots with $g(K)=2$, and they can be easily handled by $a_{2}(P) \neq 0$. If all b_{i} are odd, then $g(P)=\frac{n-1}{2}$, so we need to focus on five-strand pretzels.

Five-strand pretzel knots

For a five-strand pretzel knot $P=P\left(b_{1}, \ldots, b_{5}\right)$ with $b_{i}=2 k_{i}+1$ odd, and with s_{k} the $k^{t h}$ symmetric polynomial in $\left\{k_{i}\right\}_{i=1}^{5}$, we have

$$
\begin{gathered}
a_{2}(P)=s_{2}+2 s_{1}+3 \\
w_{3}(P)=\frac{1}{2}\left(5+3 s_{1}+s_{1}^{2}+s_{2}+\frac{1}{2}\left(s_{3}+s_{1} s_{2}\right)\right)
\end{gathered}
$$

Simple argument shows that

Proposition

The quantities $a_{2}(P)$ and $w_{3}(P)$ cannot be zero at the same time.
Idea: If both are zero, then $s_{2}=-2 s_{1}-3$ and $s_{3}=s_{1}+2$, the first is a degree- 2 , the second is a degree- 3 equation, so we do not expect them to be satisfied at the same time.

Suppose that D is a non-alternating diagram; we want to show that

$$
\operatorname{th}(K) \leq \frac{1}{2} B(D)-1 .
$$

Recall that $\operatorname{th}(K)=\operatorname{th}\left(\widehat{\mathrm{HFK}}^{\delta}(K)\right)$, and $\widehat{\mathrm{HFK}}^{\delta}(K)$ is the homology of a chain complex $\left(C_{D, p}, \partial\right)$ (associated to a diagram D with a marked point p), generated by Kauffman states.
(Recall: a Kauffman state of (D, p) is a bijection between crossings and domains not touching p, such that the domain associated to a crossing has the crossing in its closure.)

As $\operatorname{th}(H(V, \partial)) \leq t h(V)$ for any chain complex (V, ∂), if $C_{D, p}$ is the δ-graded vector space spanned by the Kauffman states, then it is sufficient to show that $t h\left(C_{D, p}\right) \leq \frac{1}{2} B(D)-1$.

The proof of the inequality about thickness

Equip each Kauffman state by the gradings A, M (and $\delta=A-M$) as instructed by
A:

$\delta:$

Figure: The local contributions to $M(\kappa), A(\kappa)$ and $\delta(\kappa)$.

The proof of the inequality

The δ-grading at a positive crossing is either 0 or $-\frac{1}{2}$, at a negative one either 0 or $\frac{1}{2}$. So we can express the δ-grading of a Kauffman state κ as the sum

$$
-\frac{1}{4} \mathrm{wr}(D)+\sum_{c \in C_{r}} f(\kappa(c))
$$

where wr is the writhe of the diagram, and f is a function on the Kauffman corners, which is either $\frac{1}{4}$ or $-\frac{1}{4}$ (depending on the chosen quadrant at the crossing c).

> Main observation: For a good domain each corner in the domain gives the same f-value, hence for different Kauffman states the contributions from this particular domain are the same. For a bad domain the maximal difference for two Kauffman states on a bad domain is $\frac{1}{2}$. We gain the -1 from putting p to the boundary of bad domains.

The proof of the inequality

The δ-grading at a positive crossing is either 0 or $-\frac{1}{2}$, at a negative one either 0 or $\frac{1}{2}$. So we can express the δ-grading of a Kauffman state κ as the sum

$$
-\frac{1}{4} \mathrm{wr}(D)+\sum_{c \in C_{r}} f(\kappa(c))
$$

where wr is the writhe of the diagram, and f is a function on the Kauffman corners, which is either $\frac{1}{4}$ or $-\frac{1}{4}$ (depending on the chosen quadrant at the crossing c). Main observation: For a good domain each corner in the domain gives the same f-value, hence for different Kauffman states the contributions from this particular domain are the same. For a bad domain the maximal difference for two Kauffman states on a bad domain is $\frac{1}{2}$. We gain the -1 from putting p to the boundary of bad domains.

Thank you!

