# The cosmetic surgery conjecture for pretzel knots

### Stipsicz András

#### Rényi Institute of Mathematics, Budapest

### Tech Topology Conference, December 6, 2020

# Surgeries

Suppose that  $Y = Y^3$  is a closed, oriented three-manifold,  $K \subset Y$  a framed knot and  $r \in \mathbb{Q} \cup \{\infty\}$  a surgery coefficient

- The notion naturally extends to framed links.

#### Theorem (Lickorish, Wallace)

For any Y there is a link  $L \subset S^3$  (each knot equipped with the Seifert framing) and  $R = (r_1, \ldots, r_n) \in \mathbb{Q}^n$  so that  $S^3_R(L)$  is orientation preserving diffeomorphic to Y.

# Surgeries

Suppose that  $Y = Y^3$  is a closed, oriented three-manifold,  $K \subset Y$  a framed knot and  $r \in \mathbb{Q} \cup \{\infty\}$  a surgery coefficient

- The notion naturally extends to framed links.

#### Theorem (Lickorish, Wallace)

For any Y there is a link  $L \subset S^3$  (each knot equipped with the Seifert framing) and  $R = (r_1, ..., r_n) \in \mathbb{Q}^n$  so that  $S^3_R(L)$  is orientation preserving diffeomorphic to Y.

- The link is not unique different choices can be connected by Kirby moves. Not even if we assume the the link is a knot: 5-surgery along the RHT is the same as (-5)-surgery along the unknot (giving the lens space L(5, 1))
- Sometimes the knot and the coefficient is determined by the three-manifold: the Poincaré homology sphere Σ(2,3,5) can be only surgered along the (LH) trefoil with r = -1. Similarly, S<sup>1</sup> × S<sup>2</sup> is surgery only along the unknot with framing 0.
- the projective space  $\mathbb{RP}^3$  can be given by surgery only along the unknot (framing:  $\pm 2$ ),

# The (purely) cosmetic surgery conjecture, PCSC

"For a fixed knot the result determines the surgery coefficient."

Conjecture (Gordon, 1990)

Suppose that  $K \subset S^3$  is a non-trivial knot. Suppose that for  $r, s \in \mathbb{Q}$  we have that  $S^3_r(K)$  and  $S^3_s(K)$  are orientation preserving diffeomorphic three-manifolds. Then r = s.

If we drop 'orientation preserving', the situation is very different: we always have that  $S_r^3(K)$  and  $S_{-r}^3(m(K))$  for the mirror m(K)are (orientation-reversing) diffeomorphic. Hence if K is amphichiral, r and -r give the same three-manifold; and there are further examples.

# The (purely) cosmetic surgery conjecture, PCSC

"For a fixed knot the result determines the surgery coefficient."

Conjecture (Gordon, 1990)

Suppose that  $K \subset S^3$  is a non-trivial knot. Suppose that for  $r, s \in \mathbb{Q}$  we have that  $S^3_r(K)$  and  $S^3_s(K)$  are orientation preserving diffeomorphic three-manifolds. Then r = s.

If we drop 'orientation preserving', the situation is very different: we always have that  $S_r^3(K)$  and  $S_{-r}^3(m(K))$  for the mirror m(K)are (orientation-reversing) diffeomorphic. Hence if K is amphichiral, r and -r give the same three-manifold; and there are further examples.

(4月) (1日) (日)

### Theorem (Wang)

If g(K) = 1, then K satisfies the purely cosmetic surgery conjecture.

### Theorem (Ni-Wu)

Suppose that for a nontrivial knot K we have that  $S_r^3(K) \cong S_s^3(K)$  with  $r \neq s$ . Then r = -s.

So we need to compare  $S_r^3(K)$  and  $S_{-r}^3(K)$ .

э

The PCS Conjecture holds for:

- torus knots
- nontrivial connected sums, and cable knots (R. Tao)
- 3-braid knots (Varvarezos)
- two-bridge knots and alternating fibered knots (Ichihara-Jong-Mattman-Saito)
- Conway and Kinoshita-Terasaka knot families (Bohnke-Gillis-Liu-Xue)
- knots up to 16 crossings (Hanselman)
- Today: Pretzel knots (S-Szabó)

イボト イラト イラト

э

The PCS Conjecture holds for:

- torus knots
- nontrivial connected sums, and cable knots (R. Tao)
- 3-braid knots (Varvarezos)
- two-bridge knots and alternating fibered knots (Ichihara-Jong-Mattman-Saito)
- Conway and Kinoshita-Terasaka knot families (Bohnke-Gillis-Liu-Xue)
- knots up to 16 crossings (Hanselman)
- Today: Pretzel knots (S-Szabó)

A (2) > (2) > (2) >

э

Knot Floer homology: it associates a finite dimensional bigraded vector space (over  $\mathbb{F}=\{0,1\})$ 

$$\widehat{\mathrm{HFK}}(K) = \sum_{M,A} \widehat{\mathrm{HFK}}_M(K,A)$$

to a knot. It determines: Seifert genus and fiberedness.

There is a surgery formula, providing relation between  $\widehat{HFK}(K)$  and  $\widehat{HF}(S_r^3(K))$ .

- 4 聞 と 4 ほ と 4 ほ と

# Thickness of knots

Suppose that  $V = \bigoplus_{a \in \mathbb{R}} V_a$  is a finite dimensional graded vector space,  $V_a$  is the subspace of homogeneous elements of grading a.

#### Definition

The thickness th(V) of the vector space V is the largest possible difference of degrees, i.e.

$$th(V) = \max\{a \mid V_a \neq 0\} - \min\{a \mid V_a \neq 0\}.$$

(For example, the thickness of  $H_*(M^n; \mathbb{Z}/2\mathbb{Z})$  for an *n*-dimensional closed manifold is *n*.)

Collapse the two gradings of  $\widehat{\mathrm{HFK}}(K)$  to  $\delta = A - M$ ; the thickness of the resulting graded vector space  $\widehat{\mathrm{HFK}}^{\delta}(K)$  is, by definition, the thickness th(K) of K.

# Thickness of knots

Suppose that  $V = \bigoplus_{a \in \mathbb{R}} V_a$  is a finite dimensional graded vector space,  $V_a$  is the subspace of homogeneous elements of grading a.

#### Definition

The thickness th(V) of the vector space V is the largest possible difference of degrees, i.e.

$$th(V) = \max\{a \mid V_a \neq 0\} - \min\{a \mid V_a \neq 0\}.$$

(For example, the thickness of  $H_*(M^n; \mathbb{Z}/2\mathbb{Z})$  for an *n*-dimensional closed manifold is *n*.) Collapse the two gradings of  $\widehat{\mathrm{HFK}}(K)$  to  $\delta = A - M$ ; the thickness of the resulting graded vector space  $\widehat{\mathrm{HFK}}^{\delta}(K)$  is, by definition, the thickness th(K) of K.

#### Theorem (Hanselman)

Suppose that the nontrivial knot K admits  $r \neq s$  with  $S_r^3(K) \cong S_s^3(K)$ . Then,  $\{r, s\}$  is either  $\{\pm 2\}$ , or  $\{\pm \frac{1}{q}\}$  with  $q \in \mathbb{N}$  determined by  $\widehat{\mathrm{HFK}}(K)$ , and

• if 
$$\{r, s\} = \{\pm 2\}$$
 then  $g(K) = 2$ ;

• 
$$\{r,s\} = \{\pm \frac{1}{q}\}$$
 for some  $q \in \mathbb{N}$  then

$$q \leq rac{th(K)+2g(K)}{2g(K)(g(K)-1)},$$

where th(K) is the thickness of K.

In particular, if g(K) > 2 and  $th(K) \le 5$ , then K satisfies the purely cosmetic surgery conjecture (PCSC).

▲ □ ► ▲ □ ► ▲

### Definition

Suppose that D is a diagram of a knot  $K \subset S^3$ . A domain d is good if every edge on its boundary connects an over- and an under-crossing; otherwise d is bad. Let B(D) denote the number of bad domains.

The knot invariant

```
\beta(K) = \min\{B(D) \mid D \text{ is a diagram of } K\}
```

measures how far K is from being alternating.

・ 同 ト ・ ヨ ト ・ ヨ ト

### Suppose that K is non-alternating (that is, $\beta(K) > 0$ ). Then

# Theorem • $th(K) \le \frac{1}{2}\beta(K) - 1.$ • If K is a pretzel knot or a Montesinos knot, then $th(K) \le 1.$

- Same result can be shown using the 'Turaev genus', another measure of how non-alternating K is.
- Combining with Zibrowius' theorem implying that th(K) is mutation invariant – one can get bounds in other cases.

イロト イポト イヨト イヨト

### Theorem (Boyer-Lines)

Suppose that the knot  $K \subset S^3$  has Alexander-Conway polynomial  $\nabla_K(z) = \sum_{i=0}^d a_{2i}(K)z^{2i}$  with  $a_2(K) \neq 0$ . Then K satisfies the PCSC.

Recall that  $\nabla_{\mathcal{K}}$  is defined by the skein relation

$$abla_{\mathcal{K}_+}(z) - 
abla_{\mathcal{K}_-}(z) = z 
abla_{\mathcal{K}_0}(z), \qquad 
abla_U = 1$$

It satisfies the identity  $\nabla_{\mathcal{K}}(t^{\frac{1}{2}} - t^{-\frac{1}{2}}) = \Delta_{\mathcal{K}}(t)$  ( $\Delta_{\mathcal{K}}$ : symmetrized Alexander polynomial).

Idea: connect the Casson-Walker invariant of the surgery with  $a_2(K)(=\frac{1}{2}\Delta_K''(1)).$ 

イロト イポト イヨト イヨト

A further invariant:  $\lambda_2(Y)$  of a rational homology sphere Y is a generalization of the Casson-Walker invariant  $\lambda = \lambda_1$ . Admits a surgery formula, involving the knot invariants  $a_2(K)$  and

$$w_3(K) = rac{1}{72} V_K'''(1) + rac{1}{24} V_K''(1),$$

where  $V_{\mathcal{K}}$  is the (normalized) Jones polynomial of  $\mathcal{K}$ :

### Theorem (Lescop)

$$\lambda_2(S^3_{\frac{p}{q}}(K)) = \lambda_2''(K) \cdot (\frac{q}{p})^2 + w_3(K)\frac{q}{p} + a_2(K)c(p,q) + \lambda_2(L(p,q))$$

ヘロト 人間ト イヨト イヨト



Figure: The pretzel knot  $P(a_1, ..., a_n)$ . The box with  $a_i$  in it means  $|a_i|$  half twists (to the right if  $a_i > 0$  and to the left if  $a_i < 0$ ). We have a knot if  $a_1$  is even and all others are odd, or all are odd and n is odd.

### Theorem (S-Szabó)

Pretzel knots satisfy the PCSC.

Suppose  $P = P(b_1, ..., b_n)$  is a pretzel knot. If  $g(P) \neq 2$ , then Hanselman's corollary ("g > 2,  $th \leq 5$  implies PCSC") shows that PCSC holds.

If  $b_1$  is even, then there are a few families of knots with g(K) = 2, and they can be easily handled by  $a_2(P) \neq 0$ . If all  $b_i$  are odd, then  $g(P) = \frac{n-1}{2}$ , so we need to focus on five-strand pretzels.

For a five-strand pretzel knot  $P = P(b_1, ..., b_5)$  with  $b_i = 2k_i + 1$  odd, and with  $s_k$  the  $k^{th}$  symmetric polynomial in  $\{k_i\}_{i=1}^5$ , we have

 $a_2(P) = s_2 + 2s_1 + 3,$ 

$$w_3(P) = \frac{1}{2}(5 + 3s_1 + s_1^2 + s_2 + \frac{1}{2}(s_3 + s_1s_2)).$$

Simple argument shows that

#### Proposition

The quantities  $a_2(P)$  and  $w_3(P)$  cannot be zero at the same time.

Idea: If both are zero, then  $s_2 = -2s_1 - 3$  and  $s_3 = s_1 + 2$ , the first is a degree-2, the second is a degree-3 equation, so we do not expect them to be satisfied at the same time.

(日本) (日本) (日本)

# The proof of the inequality about thickness

Suppose that D is a non-alternating diagram; we want to show that

 $th(K) \leq \frac{1}{2}B(D) - 1.$ 

Recall that  $th(K) = th(\widehat{HFK}^{\delta}(K))$ , and  $\widehat{HFK}^{\delta}(K)$  is the homology of a chain complex  $(C_{D,p}, \partial)$  (associated to a diagram D with a marked point p), generated by Kauffman states.

(Recall: a Kauffman state of (D, p) is a bijection between crossings and domains not touching p, such that the domain associated to a crossing has the crossing in its closure.)

As  $th(H(V, \partial)) \leq th(V)$  for any chain complex  $(V, \partial)$ , if  $C_{D,p}$  is the  $\delta$ -graded vector space spanned by the Kauffman states, then it is sufficient to show that  $th(C_{D,p}) \leq \frac{1}{2}B(D) - 1$ .

Equip each Kauffman state by the gradings A, M (and  $\delta = A - M$ ) as instructed by



Figure: The local contributions to  $M(\kappa), A(\kappa)$  and  $\delta(\kappa)$ .

・ 戸 ト ・ ヨ ト ・ ヨ ト

The  $\delta$ -grading at a positive crossing is either 0 or  $-\frac{1}{2}$ , at a negative one either 0 or  $\frac{1}{2}$ . So we can express the  $\delta$ -grading of a Kauffman state  $\kappa$  as the sum

$$-\frac{1}{4}\mathrm{wr}(D)+\sum_{c\in Cr}f(\kappa(c)),$$

where wr is the writhe of the diagram, and f is a function on the Kauffman corners, which is either  $\frac{1}{4}$  or  $-\frac{1}{4}$  (depending on the chosen quadrant at the crossing c).

Main observation: For a good domain each corner in the domain gives the same f-value, hence for different Kauffman states the contributions from this particular domain are the same. For a bad domain the maximal difference for two Kauffman states on a bad domain is  $\frac{1}{2}$ . We gain the -1 from putting p to the boundary of bad domains.

The  $\delta$ -grading at a positive crossing is either 0 or  $-\frac{1}{2}$ , at a negative one either 0 or  $\frac{1}{2}$ . So we can express the  $\delta$ -grading of a Kauffman state  $\kappa$  as the sum

$$-\frac{1}{4}\mathrm{wr}(D)+\sum_{c\in Cr}f(\kappa(c)),$$

where wr is the writhe of the diagram, and f is a function on the Kauffman corners, which is either  $\frac{1}{4}$  or  $-\frac{1}{4}$  (depending on the chosen quadrant at the crossing c).

Main observation: For a good domain each corner in the domain gives the same *f*-value, hence for different Kauffman states the contributions from this particular domain are the same. For a bad domain the maximal difference for two Kauffman states on a bad domain is  $\frac{1}{2}$ . We gain the -1 from putting *p* to the boundary of bad domains.

(周) (日) (日)

### Thank you!

<ロ> (四) (四) (日) (日) (日)

æ