Ribbon cobordisms between lens spaces

Marius Huber
Boston College

December 5th, 2020
Georgia Tech Topology Conference

Rational homology cobordisms

We work in the smooth category throughout.

Rational homology cobordisms

We work in the smooth category throughout.

Definition

Let Y_{1}, Y_{2} be oriented rational homology 3-spheres. A rational homology cobordism from Y_{1} to Y_{2} is a 4-manifold W such that

- $\partial W=-Y_{1} \amalg Y_{2}$, and
- the inclusion maps $\iota_{i}: Y_{i} \rightarrow W$ induce isomorphisms

$$
\left(\iota_{i}\right)_{*}: H_{*}\left(Y_{i} ; \mathbb{Q}\right) \rightarrow H_{*}(W ; \mathbb{Q}), i=1,2
$$

The case of lens spaces

The case of lens spaces

- Recall that the lens space $L(p, q)$ can be obtained by performing $(-p / q)$-framed Dehn surgery along the unknot $U \subset S^{3}$.

The case of lens spaces

- Recall that the lens space $L(p, q)$ can be obtained by performing $(-p / q)$-framed Dehn surgery along the unknot $U \subset S^{3}$.
- Q. When does there exist a rational homology cobordism from one lens space to another lens space?

The case of lens spaces

- Recall that the lens space $L(p, q)$ can be obtained by performing $(-p / q)$-framed Dehn surgery along the unknot $U \subset S^{3}$.
- Q. When does there exist a rational homology cobordism from one lens space to another lens space?
- Lisca (2007) completely answered this question.

Obstructing rational homology cobordisms

Obstructing rational homology cobordisms

- Let L_{1} and L_{2} be lens spaces, and suppose W is a rational homology cobordism from L_{1} to L_{2}.

Obstructing rational homology cobordisms

- Let L_{1} and L_{2} be lens spaces, and suppose W is a rational homology cobordism from L_{1} to L_{2}.
- The lens spaces L_{i} bound canonical 4-manifolds $X_{i}, i=1,2$.

Obstructing rational homology cobordisms

- Let L_{1} and L_{2} be lens spaces, and suppose W is a rational homology cobordism from L_{1} to L_{2}.
- The lens spaces L_{i} bound canonical 4-manifolds $X_{i}, i=1,2$.
- The intersection form Q endows $H_{2}\left(X_{i} ; \mathbb{Z}\right), i=1,2$, with a symmetric bilinear pairing.

Obstructing rational homology cobordisms

- Let L_{1} and L_{2} be lens spaces, and suppose W is a rational homology cobordism from L_{1} to L_{2}.
- The lens spaces L_{i} bound canonical 4-manifolds $X_{i}, i=1,2$.
- The intersection form Q endows $H_{2}\left(X_{i} ; \mathbb{Z}\right), i=1,2$, with a symmetric bilinear pairing.
- By a standard argument involving Donaldson's Diagonalization Theorem, we obtain an embedding

$$
\varphi: H_{2}\left(X_{1} ; \mathbb{Z}\right) \oplus H_{2}\left(X_{2} ; \mathbb{Z}\right) \hookrightarrow \mathbb{Z}^{N}
$$

which preserves the bilinear pairings.

Obstructing rational homology cobordisms

- Let L_{1} and L_{2} be lens spaces, and suppose W is a rational homology cobordism from L_{1} to L_{2}.
- The lens spaces L_{i} bound canonical 4-manifolds $X_{i}, i=1,2$.
- The intersection form Q endows $H_{2}\left(X_{i} ; \mathbb{Z}\right), i=1,2$, with a symmetric bilinear pairing.
- By a standard argument involving Donaldson's Diagonalization Theorem, we obtain an embedding

$$
\varphi: H_{2}\left(X_{1} ; \mathbb{Z}\right) \oplus H_{2}\left(X_{2} ; \mathbb{Z}\right) \hookrightarrow \mathbb{Z}^{N}
$$

which preserves the bilinear pairings.

- Proof follows from a combinatorial analysis of such embeddings.

Ribbon rational homology cobordisms

Ribbon rational homology cobordisms

The following refinement of rational homology cobordism was introduced by Daemi, Lidman, Vela-Vick and Wong:

Ribbon rational homology cobordisms

The following refinement of rational homology cobordism was introduced by Daemi, Lidman, Vela-Vick and Wong:
Definition
A rational homology cobordism W from Y_{1} to Y_{2} is ribbon, if W admits a handle decomposition relative to $Y_{1} \times[0,1]$ that uses 1and 2-handles only. If such a cobordism exists, we write $Y_{1} \leq Y_{2}$.

Ribbon rational homology cobordisms

The following refinement of rational homology cobordism was introduced by Daemi, Lidman, Vela-Vick and Wong:
Definition
A rational homology cobordism W from Y_{1} to Y_{2} is ribbon, if W admits a handle decomposition relative to $Y_{1} \times[0,1]$ that uses 1and 2-handles only. If such a cobordism exists, we write $Y_{1} \leq Y_{2}$.

- This notion is not symmetric.

Ribbon rational homology cobordisms

The following refinement of rational homology cobordism was introduced by Daemi, Lidman, Vela-Vick and Wong:
Definition
A rational homology cobordism W from Y_{1} to Y_{2} is ribbon, if W admits a handle decomposition relative to $Y_{1} \times[0,1]$ that uses 1and 2-handles only. If such a cobordism exists, we write $Y_{1} \leq Y_{2}$.

- This notion is not symmetric.
- Q. When does there exist a ribbon rational homology cobordism from a lens space to another lens space?

Obstructing ribbon rational homology cobordisms

Obstructing ribbon rational homology cobordisms

Lemma (H. 2020)

Let L_{1}, L_{2} be lens spaces such that $L_{1} \leq L_{2}$, and let X_{i} be the canonical negative definite plumbing bounded by $L_{i}, i=1,2$. Then there exists an isometric embedding

$$
\varphi: H_{2}\left(X_{1} ; \mathbb{Z}\right) \oplus H_{2}\left(X_{2} ; \mathbb{Z}\right) \hookrightarrow \mathbb{Z}^{N}
$$

such that

$$
\varphi\left(H_{2}\left(X_{1} ; \mathbb{Z}\right)\right)=\varphi\left(H_{2}\left(X_{2} ; \mathbb{Z}\right)\right)^{\perp}
$$

Obstructing ribbon rational homology cobordisms

Lemma (H. 2020)

Let L_{1}, L_{2} be lens spaces such that $L_{1} \leq L_{2}$, and let X_{i} be the canonical negative definite plumbing bounded by $L_{i}, i=1,2$. Then there exists an isometric embedding

$$
\varphi: H_{2}\left(X_{1} ; \mathbb{Z}\right) \oplus H_{2}\left(X_{2} ; \mathbb{Z}\right) \hookrightarrow \mathbb{Z}^{N}
$$

such that

$$
\varphi\left(H_{2}\left(X_{1} ; \mathbb{Z}\right)\right)=\varphi\left(H_{2}\left(X_{2} ; \mathbb{Z}\right)\right)^{\perp}
$$

The proof relies on the argument from before, together with some elementary algebraic topology.

The case of lens spaces

The case of lens spaces

Theorem (H. 2020)

Suppose that $L\left(p_{1}, q_{1}\right) \leq L\left(p_{2}, q_{2}\right)$, where $p_{1} \neq p_{2}$. Then, up to orientation reversal, we must have that

$$
L\left(p_{1}, q_{1}\right) \cong L(n, 1), \text { for some } n \geq 1
$$

The case of lens spaces

Theorem (H. 2020)

Suppose that $L\left(p_{1}, q_{1}\right) \leq L\left(p_{2}, q_{2}\right)$, where $p_{1} \neq p_{2}$. Then, up to orientation reversal, we must have that

$$
L\left(p_{1}, q_{1}\right) \cong L(n, 1), \text { for some } n \geq 1
$$

Conversely, if $L\left(p_{2}, q_{2}\right) \sim L(n, 1)$, for some $n \geq 1$, then

$$
L(n, 1) \leq L\left(p_{2}, q_{2}\right)
$$

Bridge surfaces with non-contractible disk complexes

Puttipong Pongtanapaisan (University of Iowa) Joint with Daniel Rodman

A knot can be put in bridge position so that maxima lie above minima.

A loop on the bridge surface may bound a disk on either side.

Disk complex

A loop on the bridge surface may bound a disk on either side.

Disk complex

A loop on the bridge surface may bound a disk on either side.

Disk complex

A loop on the bridge surface may bound a disk on either side.

Disk complex

Useful Fact:

An incompressible surface and another incompressible surface can be isotoped to intersect only in curves that are essential in both surfaces.

Incompressible surface

Even More Useful Fact (Bachman):

A surface whose disk complex is not contractible
Anincompressiblesurface and another incompressible surface can be isotoped to intersect only in curves that are essential in both surfaces.

J. Johnson and Y. Moriah, ' Bridge distance and plat projections', Algebr. Geom. Topol. 16 (2016) 3361-3384. MR3584261.

(Johnson-Moriah) disconnected disk complex

Pongtanapaisan, P., Rodman, D. Critical bridge spheres for links with arbitrarily many bridges. Rev Mat Complut (2020)

(P. Rodman) connected, but not simply connected disk complex

(P. Rodman) simply connected, but not 2-connected disk complex

Theorem (P., Rodman): There is an infinite family of bridge surfaces with simply connected, but not 2-connected disk complex.

Connected \&
Can color each disk not 1-connected \longrightarrow red or blue so that disk complex

- if 2 disks on opposite sides are disjoint, they receive the same color, and
- both colors are used.

Connected \&
Can color each disk not 1-connected \longrightarrow red or blue so that disk complex

- if 2 disks on opposite sides are disjoint, they receive the same color, and
- both colors are used.

Thank you!

Surfaces with non-contractible disk complexes behave like minimal surfaces.

Bachman, David \& Derby-Talbot, Ryan \& Sedgwick, Eric. (2015). Locally Helical Surfaces have bounded twisting. Pacific Journal of Mathematics. 292. 10.2140/pjm.2018.292.257.

Obstructions to the Existence of Lagrangians in \mathbb{R}^{4}

Ipsita Datta

Stanford University
ipsi@stanford.edu

Set up

\mathbb{R}^{4} with standard symplectic form $\omega=x_{1} \wedge y_{1}+x_{2} \wedge y_{2}$,

Set up

\mathbb{R}^{4} with standard symplectic form $\omega=x_{1} \wedge y_{1}+x_{2} \wedge y_{2}$, and standard complex structure: $\mathbb{R}^{4}=\mathbb{C} \times \mathbb{C}, i\left(\partial_{x_{j}}\right)=\partial_{y_{j}}$.

Lagrangian cobordism between links

Consider an exact Lagrangian surface $L \subset\left\{a \leq y_{2} \leq b\right\} \subset \mathbb{R}^{4}$ which is

Lagrangian cobordism between links

Consider an exact Lagrangian surface $L \subset\left\{a \leq y_{2} \leq b\right\} \subset \mathbb{R}^{4}$ which is

- embedded

Lagrangian cobordism between links

Consider an exact Lagrangian surface $L \subset\left\{a \leq y_{2} \leq b\right\} \subset \mathbb{R}^{4}$ which is

- embedded
- L intersects the hypersurfaces $\mathbb{R}_{a}^{3}=\left\{y_{2}=a\right\}$ and $\mathbb{R}_{b}^{3}=\left\{y_{2}=b\right\}$ transversely in its boundaries.

Lagrangian cobordism between links

Consider an exact Lagrangian surface $L \subset\left\{a \leq y_{2} \leq b\right\} \subset \mathbb{R}^{4}$ which is

- embedded
- L intersects the hypersurfaces $\mathbb{R}_{a}^{3}=\left\{y_{2}=a\right\}$ and $\mathbb{R}_{b}^{3}=\left\{y_{2}=b\right\}$ transversely in its boundaries.

So, its boundaries
 are links $\partial_{-} L$ and $\partial_{+} L$ in copies of \mathbb{R}^{3}.

Lagrangian cobordism between links

Consider an exact Lagrangian surface $L \subset\left\{a \leq y_{2} \leq b\right\} \subset \mathbb{R}^{4}$ which is

- embedded
- L intersects the hypersurfaces $\mathbb{R}_{a}^{3}=\left\{y_{2}=a\right\}$ and $\mathbb{R}_{b}^{3}=\left\{y_{2}=b\right\}$ transversely in its boundaries.

So, its boundaries
 are links $\partial_{-} L$ and $\partial_{+} L$ in copies of \mathbb{R}^{3}.
L is an exact Lagrangian cobordism between embedded links. We write

$$
\partial_{-} L \prec \partial_{+} L .
$$

We can add small collars at the ends of L to "close up" the gaps

We can add small collars at the ends of L to "close up" the gaps
and get an exact Lagrangian cobordism between immersed links.

We can add small collars at the ends of L to "close up" the gaps
and get an exact Lagrangian cobordism between immersed links.

The immersed links lie in copies of $\mathbb{R}^{2}=\mathbb{C}$.

We can add small collars at the ends of L to "close up" the gaps
and get an exact Lagrangian cobordism between immersed links.

The immersed links lie in copies of $\mathbb{R}^{2}=\mathbb{C}$.
So, the links cut out holomorphic disks with corners.

We can add small collars at the ends of L to "close up" the gaps
and get an exact Lagrangian cobordism between immersed links.

The immersed links lie in copies of $\mathbb{R}^{2}=\mathbb{C}$.
So, the links
cut out holomorphic disks with corners.

We consider moduli spaces of these holomorphic disks to get obstructions to existence of Lagrangians of the above type.

We can add small collars at the ends of L to "close up" the gaps
and get an exact Lagrangian cobordism between immersed links.

The immersed links lie in copies of $\mathbb{R}^{2}=\mathbb{C}$.
So, the links
cut out holomorphic disks with corners.

We consider moduli spaces of these holomorphic disks to get obstructions to existence of Lagrangians of the above type.

Caterpillar C^{+++}

Theorem (D.)

The caterpillar knot C^{+++}cannot be the boundary of an exact Lagrangian surface $L \subset\left\{y_{2} \leq a\right\}$ with $C^{+++} \subset\left\{y_{2}=a\right\}$.

Figure: C^{+++}

This answers a question from A Partial Ordering on Slices of Planar Lagrangians by P. Eiseman, J. Lima, J. Sabloff, and L. Traynor.

Caterpillar C^{+++}

Theorem (D.)

The caterpillar knot C^{+++}cannot be the boundary of an exact Lagrangian surface $L \subset\left\{y_{2} \leq a\right\}$ with $C^{+++} \subset\left\{y_{2}=a\right\}$.

Shaded disk is a boundary point of a 1-dimensional moduli space, which is a manifold-with-boundary ("automatic tranversality").

Caterpillar C^{+++}

Theorem (D.)

The caterpillar knot C^{+++}cannot be the boundary of an exact Lagrangian surface $L \subset\left\{y_{2} \leq a\right\}$ with $C^{+++} \subset\left\{y_{2}=a\right\}$.

Shaded disk is a boundary point of a 1-dimensional moduli space, which is a manifold-with-boundary ("automatic tranversality").

There are no possible other boundary points from "sign conditions".

Figure 8-knots
Theorem (Sabloff, Traynor)

- If $8_{+}(r) \prec 8_{+}(R)$, then $R>r$.
- If $8_{-}(R) \prec 8_{-}(r)$, then $R>r$.

Originally shown in Obstructions to the Existence and Squeezing of Lagrangian Cobordisms by J. Sabloff, and L. Traynor using generating functions. We reprove this using holomorphic curves.

Figure 8-knots

Theorem (Sabloff, Traynor)

- If $8_{+}(r) \prec 8_{+}(R)$, then $R>r$.
- If $8_{-}(R) \prec 8_{-}(r)$, then $R>r$.

Disk A is a boundary point of a 1-dimensional moduli space.

Figure 8-knots

Theorem (Sabloff, Traynor)

- If $8_{+}(r) \prec 8_{+}(R)$, then $R>r$.
- If $8_{-}(R) \prec 8_{-}(r)$, then $R>r$.

Disk A is a boundary point of a 1-dimensional moduli space.

Possible other boundaries look like the degenerate disk (C, B).

Figure 8-knots

Theorem (Sabloff, Traynor)

- If $8_{+}(r) \prec 8_{+}(R)$, then $R>r$.
- If $8_{-}(R) \prec 8_{-}(r)$, then $R>r$.

Disk A is a boundary point of a 1-dimensional moduli space.

Possible other boundaries look like the degenerate disk (C, B). area $C>0$ (as C holomorphic.)

Figure 8-knots

Theorem (Sabloff, Traynor)

- If $8_{+}(r) \prec 8_{+}(R)$, then $R>r$.
- If $8_{-}(R) \prec 8_{-}(r)$, then $R>r$.

Disk A is a boundary point of a 1-dimensional moduli space.

Possible other boundaries look like the degenerate disk (C, B).
area $C>0$ (as C holomorphic.)
area $A=$ area $C+\operatorname{area} B$.

Figure 8-knots

Theorem (Sabloff, Traynor)

- If $8_{+}(r) \prec 8_{+}(R)$, then $R>r$.
- If $8_{-}(R) \prec 8_{-}(r)$, then $R>r$.

Disk A is a boundary point of a 1-dimensional moduli space.

Possible other boundaries look like the degenerate disk (C, B).
area $C>0$ (as C holomorphic.)
area $A=$ area $C+$ area B.

So, area $B<$ area A.

Homology Concordance and an Infinite Rank Subgroup

Hugo Zhou

Georgia Tech

Backgrounds

Two knots in S^{3} are smoothly concordant if they cobound a smooth annulus in $S^{3} \times I$.

Definition

Knot concordance group $\mathcal{C}:=(K, \#) /$ smooth concordance.
J. Levine (69.) proved that there is a surjective homomorphism from knot concordance group \mathcal{C} to $\mathbb{Z}^{\infty} \oplus \mathbb{Z}_{2}^{\infty} \oplus \mathbb{Z}_{4}^{\infty}$. In particular, \mathcal{C} contains a \mathbb{Z}^{∞} summand.

Backgrounds

Definition

Suppose knots $K_{0} \subset Y_{0}, K_{1} \subset Y_{1}, Y_{0}$ and Y_{1} are homology cobordant.
K_{0} and K_{1} are homology concordant if they cobound a smooth annulus in some homology cobordism between Y_{0} and Y_{1}.

Backgrounds

Definition

Let $\widehat{\mathcal{C}}_{\mathbb{Z}}:=((Y, K), \#) /$ homology concordance, where Y is a homology 3 -sphere that is homology cobordant to S^{3}.

Definition

Let $\mathcal{C}_{\mathbb{Z}}:=\left(\left(S^{3}, K\right), \#\right) /$ homology concordance.

The quotient group $\widehat{\mathcal{C}}_{\mathbb{Z}} / \mathcal{C}_{\mathbb{Z}}$ measures the "difference" between knots in S^{3} and knots in homology spheres.

Question:
Does $\widehat{\mathcal{C}}_{\mathbb{Z}} / \mathcal{C}_{\mathbb{Z}}$ contain a \mathbb{Z}^{∞} summand?

- Adam Simon Levine (14.) showed that $\widehat{\mathcal{C}}_{\mathbb{Z}} / \mathcal{C}_{\mathbb{Z}}$ is not trivial;
- Hom, Levine, Lidman (18.) proved that $\widehat{\mathcal{C}}_{\mathbb{Z}} / \mathcal{C}_{\mathbb{Z}}$ is infinitely generated and contains a \mathbb{Z} subgroup.

Main Result

Main Theorem (Z.)
 $\widehat{\mathcal{C}}_{\mathbb{Z}} / \mathcal{C}_{\mathbb{Z}}$ contains a \mathbb{Z}^{∞} subgroup.

(1) Infinitely many generating pairs constructed by applying the filtered mapping cone formula (Hedden, Levine) on the L-space knots.
(2) Linearly independence proved using connected knot complex.

The filtered mapping cone formula computes $C F K^{\infty}\left(S_{1}^{3}(K), \tilde{K}\right)$.

The knot K in this figure is the right handed trefoil.

Computational result

Figure: Connected knot complex of $C F K^{\infty}\left(S_{1}^{3}\left(T_{2,4 n-1}\right), \widetilde{T}_{2,4 n-1}\right)$

Technical point: Connected sum with the unknot in $-S_{1}^{3}\left(T_{2,4 n-1}\right)$ to complete the construction.

Rigidity on the Morse boundary

Ring Lin

Brandeis University
Tech Topology Conference Dec.4-6. 2020

Motivation:

Q: When a group G determined by its boundary ∂G ?

In the case of hyperbolic groups, we know the answer.

Case I: G is a hyperbolic group.

- X is a hyperbolic space,
$\partial X=\{\alpha \mid \quad \alpha$ geodesic ray $\} / \sim$

Ring Lin.
Rigidity on the Moose boundary.

The (Gromov) X. Y are hyperbolic spaces. If $f: x \rightarrow Y$ is a quasi-isometry, then f indues a homeomorphism

$$
F: \quad \partial X \stackrel{\cong}{\rightrightarrows} \partial Y .
$$

\leadsto If G is a hyperbolic groups, then ∂G is well-defined.

Thm (Panlin'96).
$X . Y$ are proper. cocompent hyperbolic spaces.
Suppose $F: \partial x \rightarrow \partial Y$ is a homeomurphism.
Then TFAE:
(1) F is indued by a quas:-isomety $f: x \rightarrow Y$.
(2) F is quasi-mobius.
(3) F is quas:- conformal.

Qing Liu
Rigidity on the Morse boundary.

Thu (Bonk and Schramm):
X. Y are hyperbolic spaces.
If $f:\left(\partial x, d_{x_{0 . \varepsilon}}\right) \rightarrow\left(\partial Y, d_{y_{j, ~}}\right)$ is a power quasisymmetry, then F extends to a quasi-isomety $f: x \rightarrow Y$.

The Gromov boundang ∂X of a hyperbolic spare X is metrizable!!

Next: Can we do the same for a $f \cdot g$. group G ?

Case II: G is a fig. group.

- X is proper geodesic metric space, $\underset{\uparrow}{\partial_{\mu} X}=\{\alpha \mid \alpha$ is Morse geodesic ray $\} / \sim$ the Morse boundary.
- proper CAT (0) spare: Charney and Sultan.
- proper geodesic metric spare: Codes.
- $\partial_{\mu} G$ is nell-defined for any fig. group G. but it is not metrizable in general. Ding Lin Rigidity on the more boundary.

Thu (Charney, Cordes, Murray ip). X.Y. proper cocompact geodesic metric spaces. $\left|\partial_{\mu} x\right| \geqslant 3$.
Let $h: \partial_{m} x \rightarrow \partial_{m} Y$ be a homeomorphism. Then h is induced by a quasi-isometry $f: x \rightarrow Y$ if and only if h and h^{-1} are α-stable and quasi-mobins

Thm (Lik)
x. y. proper cocompart gerdesic metric spaces. $\left|\partial_{m} x\right| \geqslant 3$.
let $h: \partial_{m} x \rightarrow \partial_{m} Y$ be a homeomorphism Then TFAE:
(1) h is induced by a quasi-isometry

$$
f: x \rightarrow Y .
$$

(2) $h . h^{-1}$ are bihölder.
(3) $\mathrm{h} . \mathrm{h}^{-1}$ are quasisymmety.
(4) $h . h^{-1}$ are strongly quasi-conformal.

Qing Lin.
Rigidity on the mase boundary.

Gor: G.H. are f.g. groups. $\left|\partial_{M} G\right| \geqslant 3$. Let $h: \partial_{m} G \rightarrow \partial_{m} H$ be a homeomorphism.

Then TFAE:
(1) h is induced by a QI $f: x \rightarrow Y$.
(2) h, h^{-1} are 2-stable and quasi-mobius.
(3) $h \cdot h^{-1}$ are bihölder.
(4) $h \cdot h^{-1}$ are quasisymmetry.
(5) $h \cdot h^{-1}$ are strongly quasi-conformal.

Qing Lin.
Rigidity on the Mone boundary.

Thank you!!

Visibility of symmetries, L-spaces, and branched cyclic covers

Hannah Turner

Branched cyclic covers

index n (cyclic) cover of the complement
branched (cyclic) cover of index n

L-spaces

Heegaard Floer
topological info from 3-manifold
vector space

An L-space is a 3-manifold with "simple" Heegaard Floer homology

For which knots is every cyclic branched cover an L-space?

Visibility of symmetries

03

Alternating knots and visibility

Theorem (Costa - Van Quach Hongler)
Let K be a prime alternating which has an order n symmetry. If n is at least 3 , this symmetry is visible in some alternating diagram of K .

Theorem (Paoluzzi)

Let K be alternating. Then cyclic branched covers of K, of index n at least 3, each determine K .

What about index 2 ?

Theorem (T.)

Let K be a prime alternating knot with an order 2 symmetry to the unknot. Then the symmetry is visible in an alternating diagram only if all of the cyclic branched covers of K are L-spaces.

alternating

order 2
symmetry to the unknot
visible in an alternating diagram

I-LIKE INVARIANTS

FROM KHOVANOV HOMOLOGY

Melissa Zhang (UGA)

Joint ongoing work with
Ross AKHMECHET (UVA) \uparrow

```
grad student
on the job manket
```


LINK CONCORDANCE AND HOMOLOGY - TYPE INVARIANTS

Knot $K \longrightarrow$ 3-manifold Y^{3}

- 3D point of view
- quite ... geometric

Very exciting!
Much structure!

LINK CONCORDANCE AND HOMOLOGY -TYPE INVARIANTS

Knot $K \longrightarrow$ 3-manifold Y^{3}

- 3D point of view

Very exciting!

- quite ... geometric Much structure!

Knot $K \longleftrightarrow Y^{3}=\partial W^{4}$

- 4D point of view

Very exciting!

- quite ... algebraic much structure!
- Knots/concordance is a group!

LINK CONCORDANCE AND HOMOLOGY - TYPE INVARIANTS

LINK CONCORDANCE AND HOMOLOGY - TYPE INVARIANTS

$$
K c S^{3}=284
$$

LINK CONCORDANCE AND HOMOLOGY -TYPE INVARIANTS

$$
K \longleftrightarrow S^{3}=2 B^{4}
$$

filtered total homology chain is invariant homotopy type of ambient space
extract numerical concordance invariants

LINK CONCORDANCE AND HOMOLOGY - TYPE INVARIANTS

$$
K c S^{3}=2 B^{4}
$$

filtered chain
homotopy type

4
total homology is invariant of ambient space
extract numerical concordance invariants
-bounds on 3-ball genus, 4-ball genus

- understand the concordance group
- ...

MELISSA ZHANG (VGA) L-LIKE INVARIANTS FROM KHOVANOV HOMOLOGY TC $202 O$

EXISTING INVARIANTS

$$
\begin{aligned}
& \text { CF } \quad\left\{\begin{array}{l}
\tau \text { [0zsváth-Szabó, Rasmussen }] \\
h_{i} \text { [Rasmussen] } \\
\Upsilon[\text { Ozsváth-Stipsicz-Szabó }] \\
\Upsilon^{2}[\text { Kim-Livingston] } \\
\left.\Upsilon^{c} \text { [Alfieri }\right]
\end{array}\right. \\
& \text { - grading of nontorsion tower } \\
& \text { - extrema level where induced map is nonzero } \\
& \frac{\mathbb{F}[u, v]}{(u v)}\left\{\varphi_{j}\right. \text { [Dai-Hom - Stoffregen - Truing] } \\
& \text { surgery } \begin{cases}v & {[\text { Ozsváth-Szabó }]} \\
v^{+}, & v^{-} \\
v_{n} & \text { [Hom-wu] } \\
v_{n} & \text { Truing] } \\
\gamma_{4} & \text { [Golla-marengon] }\end{cases} \\
& \text { * for nonorientable slice genus bound } \\
& \text { not to be confused } \\
& \text { with geruins bowed from E. [Homie] }
\end{aligned}
$$

- filtration grading of distinguished homology class

Sources: Homs's survey "A survey on Heegaard Floer Homology and Concordance" Celoria's slides "Some concordance invariants from knot Flor homology"
\triangle This is certainly incomplete. If you have any additions or corrections, let me know!

EXISTING INVARIANTS

See Livingston's "Notes on the knot concordance invariant Upsilon"

EXISTING INVARIANTS

" Υ-like" invariants tilt the filtration levels according to a parameter.

See Livingston's "Notes on the knot concordance invariant Upsilon"

EXISTING INVARIANTS

" Υ-like" invariants tilt the filtration levels according to a parameter.

Two gradings are "mixed" together.

See Livingston's "Notes on the knot concordance invariant Upsilon"

EXISTING INVARIANTS
" \simeq-like" invariants tilt the filtration levels according to a parameter.

A distinguish ed homology class or map picks out a special filtration level...

See Livingston's "Notes on the knot concordance invariant Upsilon"
Melissa Zhang (UGA)

EXISTING INVARIANTS
"£-like" invariants tilt the filtration levels according to a parameter.

A distinguish ed homology class or map picks out a special filtration level...

Two gradings are "mixed" together.
 parametrized link invariant.

See Livingston's "Notes on the knot concordance invariant Upsilon"
Melissa chang (UGA)

$U(1) \times U(1)$ - EQUIVARIANT KHOVANOV HOMOLOGY

$K h$ is a functor
(Links, Cobordisms) $\xrightarrow{\mathrm{Kh}} \mathbb{Z} \oplus \mathbb{Z}$-graded R-module where $R=$ coefficient ring
[Khovanor 'OO]
$U(1) \times U(1)$ - EQUIVARIANT KHOVANOV HOMOLOGY
$K h$ is a functor
(Links, Cobordisms) $\xrightarrow{K h} \mathbb{Z} \oplus \mathbb{Z}$-graded R-module
where $R=$ coefficient ring [knovanov '00]
U(2)-equivariant KM uses the Frobenius algebra

$$
A=R[x] /\left(x^{2}-h x+t\right)
$$

a.k.a. "universal Khovanou homology"
[Khoranov '04; studied by many others]
$U(1) \times U(1)$ - EQUIVARIANT KHOVANOV HOMOLOGY
$K h$ is a functor
(Links, Cobordisms) $\xrightarrow{\mathrm{Kh}} \mathbb{Z} \oplus \mathbb{Z}$-graded R-module
where $R=$ coefficient ring
[Khovanov 'OO]

U(2)-equivariant Kh uses the Frobenius algebra

$$
\mathcal{A}=\operatorname{R}[x] /\left(x^{2}-h x+t\right) \quad \begin{aligned}
& \text { aka "universal khovanoo homology" } \\
& {[\text { Khomnoo 04; shaded by mary other }]}
\end{aligned}
$$

eg. $R=\mathbb{Q}, \mathbb{C} ; h=0, t=1 \leadsto$ Lee Homology $\leadsto s$-invariant [lee ~'O2] [Rasmussen $\sim 04]$
$U(1) \times U(1)$ - EQUIVARIANT KHOVANOV HOMOLOGY
$K h$ is a functor
(Links, Cobordisms) $\xrightarrow{\mathrm{Kh}} \mathbb{Z} \oplus \mathbb{Z}$-graded R-module where $R=$ coefficient ring [Khovanov 'OO]
$U(2)$-equivariant $K h$ uses the Frobenius algebra

$$
A=R[x] /\left(x^{2}-h x+t\right)
$$

aka "universal Khovanou homology" [Khovanov '04; studied by many others]
eg. $R=\mathbb{Q}, \mathbb{C} ; h=0, t=1 \leadsto$ Lee Homology $\leadsto s$-invariant [Le e~'02] [Rasmussen ~04]
$U(1) \times U(1)$ equivariant $K h$: [Khoranov-Robert $1 / 8$]

$$
\mathcal{R}_{\alpha}=\mathbb{Z}\left[\alpha_{1}, \alpha_{2}\right] \quad \mathcal{A}_{\alpha}=R[x] /\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)
$$

A GENERALIZATION OF RASMUSSEN'S S-INVARIANT

Fix $t \in[0,4]$.

$$
\begin{gathered}
\begin{array}{c}
t \text {-modified } u(1) \times u(1) \\
\text { Khovanov Homology } \\
\left(\operatorname{Ch}_{\alpha}^{t}(D)\right. \\
{[\text { Akhmechet }-z \text {, work in progress }]}
\end{array}
\end{gathered}
$$

A GGNERALIZATION OF RASMUSSEN'S S-INVARIANT

$$
\begin{aligned}
& \begin{array}{l}
\text { Actacky the nug of } \\
\text { long power senes }
\end{array} \\
& \text { Fix } t \in[0,4] \text {. } \\
& \begin{array}{l}
\text { long power neres } \\
\text { (Remouse } \text { cepandence } \\
\text { on w }
\end{array} \\
& \left.\begin{array}{c}
\varphi_{t}: R_{\alpha} \longrightarrow \mathbb{Z}^{[}\left[v^{1 / N}\right] \\
\operatorname{gr}_{9}(v)=-1 \\
\alpha_{1} \longmapsto v^{t}, \alpha_{2} \mapsto-v^{4-t} \\
\mathcal{A}=\mathcal{A}_{\alpha} \otimes \mathbb{Z}\left[v^{1 / N}\right]
\end{array}\right\} \sim\left(\operatorname{CKh}_{\alpha}^{t}(D), \partial_{\alpha}^{t}(D)\right)
\end{aligned}
$$

A GENERALIZATION OF RASMUSSEN'S S-INVARIANT

Actually the ring of
Fix $t \in[0,4]$.
long power series
long power senes
(Removes dependence
on N)
t-modified $u(1) \times u(1)$
Khovanov Homology

$$
\left.\begin{array}{rl}
\varphi_{t}: R_{\alpha} \longrightarrow \mathbb{Z}\left[v^{1 / N}\right] \\
\operatorname{gr}_{9}(v)=-1 \\
\alpha_{1} \longmapsto v^{t}, \alpha_{2} \mapsto-v^{4-t} \\
\mathcal{A}=\mathcal{A}_{\alpha} \otimes \mathbb{Z}\left[v^{1 / N}\right]
\end{array}\right\} \leadsto\left(\operatorname{Ch}_{\alpha}^{t}(D), \partial_{\alpha}^{t}(D)\right)
$$

The differential is filtered with respect to a grading $g r_{t}$ that "combines" the α_{1} - and α_{2}-powers.

The total homology has 2 non- v-torsion towers.

A GENERALIZATION OF RASMUSSEN'S S-INVARIANT
Actually the ring of

$$
\text { Fix } t \in[0,4] \text {. }
$$ long power series

(Removes dependence
on N)

$$
\begin{aligned}
& \left.\begin{array}{c}
\varphi_{t}: R_{\alpha} \longrightarrow \mathbb{Z}\left[v^{1 / N}\right] \\
\operatorname{gr}_{9}(v)=-1 \\
\alpha_{1} \mapsto v^{t}, \alpha_{2} \mapsto-v^{4-t} \\
\mathcal{A}=\mathcal{A}_{\alpha} \otimes \mathbb{Z}\left[v^{1 / \alpha}\right]
\end{array}\right\} \leadsto\left(\operatorname{CKh}_{\alpha}^{t}(D), \partial_{\alpha}^{t}(D)\right) \\
& \text { Khovanov Homology }
\end{aligned}
$$

The differential is filtered with respect to a grading $g r_{t}$ that "combines" the α_{1} - and α_{2} - powers.

The total homology has 2 non- v-torsion towers.

- concordance invariant for $L \subset S^{3}$: $S_{\alpha}^{t}(K)$
- Computations to determine effectiveness, obstructions
- relationship with other invariants

Melissa zhang (vga) エ-like invariants from Khovanov homology tiC 2020

Thank You!

Exotic 4-manifolds with boundary

Hyunki Min
with John Etnyre and Anubhav Mukherjee

Tech topology conference
December 2020

Exotic 4-manifolds with boundary

- A 4-manifold X admits exotic smooth structures if X admits more than one smooth structures.

Exotic 4-manifolds with boundary

- A 4-manifold X admits exotic smooth structures if X admits more than one smooth structures.
- A 3-manifold Y admits exotic fillings if Y bounds a compact 4manifold X such that X admits more than one smooth structures.

Which 3-manifolds admit exotic fillings?

Previous results

- (Gompf) $\Sigma(2,3,6 n-1)$

Which 3-manifolds admit exotic fillings?

Previous results

- (Gompf) $\Sigma(2,3,6 n-1)$
- (Akhmedov-Etnyre-Mark-Smith) SFS over $\Sigma_{g}(g>4)$ with one singular fiber of multiplicity $2 m$.

Which 3-manifolds admit exotic fillings?

Previous results

- (Gompf) $\sum(2,3,6 n-1)$
- (Akhmedov-Etnyre-Mark-Smith) SFS over $\Sigma_{g}(g>4)$ with one singular fiber of multiplicity 2 m .
- (Etnyre-M-Mukherjee, Yasui) Weakly symplectically fillable contact 3manifolds.

Which 3-manifolds admit exotic fillings?

Previous results

- (Gompf) $\Sigma(2,3,6 n-1)$
- (Akhmedov-Etnyre-Mark-Smith) SFS over $\Sigma_{g}(g>4)$ with one singular fiber of multiplicity 2 m .
- (Etnyre-M-Mukherjee, Yasui) Weakly symplectically fillable contact 3manifolds.
- (Hayden-Mark-Piccirillo) Boundary of exotic Mazur manifolds

Main Theorem

A closed oriented 3-manifold Y admits infinitely many simplyconnected exotic fillings if

1) There is a non vanishing contact invariant in $\mathrm{HF}^{+}(Y)$ or $\mathrm{HF}^{+}(-Y)$.

Main Theorem

A closed oriented 3-manifold Y admits infinitely many simplyconnected exotic fillings if

1) There is a non vanishing contact invariant in $\mathrm{HF}^{+}(Y)$ or $\mathrm{HF}^{+}(-Y)$.
2) Y or $-Y$ is weakly symplectically fillable.

Corollary

A closed oriented 3-manifold Y admits infinitely many simplyconnected exotic fillings if Y is

1) a Seifert fibered space

Corollary

A closed oriented 3-manifold Y admits infinitely many simplyconnected exotic fillings if Y is

1) a Seifert fibered space
2) a 3-manifold supporting a taut foliation

Corollary

A closed oriented 3-manifold Y admits infinitely many simplyconnected exotic fillings if Y is

1) a Seifert fibered space
2) a 3-manifold supporting a taut foliation
3) an irreducible 3-manifold with positive Betti number

Corollary

A closed oriented 3-manifold Y admits infinitely many simplyconnected exotic fillings if Y is

1) a Seifert fibered space
2) a 3-manifold supporting a taut foliation
3) an irreducible 3-manifold with positive Betti number
4) a rational homology 3 -sphere embedding into a closed definite 4manifold.

Exotic fillings

- Build a simply connected 4-manifold with boundary Y.

Exotic fillings

- Build a simply connected 4-manifold with boundary Y.
- Embed a torus with non-vanishing homology class and the 0 self intersection number.

Exotic fillings

- Build a simply connected 4-manifold with boundary Y.
- Embed a torus with non-vanishing homology class and the 0 self intersection number.

- Perform knot surgery on the torus and produce homeomorphic, but not diffeomorphic manifolds.

Thank you!

