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Rational homology cobordisms

We work in the smooth category throughout.

Definition

Let Y1, Y2 be oriented rational homology 3-spheres. A rational
homology cobordism from Y1 to Y2 is a 4-manifold W such that

I ∂W = −Y1 q Y2, and

I the inclusion maps ιi : Yi →W induce isomorphisms
(ιi )∗ : H∗(Yi ;Q)→ H∗(W ;Q), i = 1, 2.
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The case of lens spaces

I Recall that the lens space L(p, q) can be obtained by
performing (−p/q)-framed Dehn surgery along the unknot
U ⊂ S3.

I Q. When does there exist a rational homology cobordism from
one lens space to another lens space?

I Lisca (2007) completely answered this question.
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Obstructing rational homology cobordisms

I Let L1 and L2 be lens spaces, and suppose W is a rational
homology cobordism from L1 to L2.

I The lens spaces Li bound canonical 4-manifolds Xi , i = 1, 2.

I The intersection form Q endows H2(Xi ;Z), i = 1, 2, with a
symmetric bilinear pairing.

I By a standard argument involving Donaldson’s
Diagonalization Theorem, we obtain an embedding

ϕ : H2(X1;Z)⊕ H2(X2;Z) ↪→ ZN ,

which preserves the bilinear pairings.

I Proof follows from a combinatorial analysis of such
embeddings.
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Ribbon rational homology cobordisms

The following refinement of rational homology cobordism was
introduced by Daemi, Lidman, Vela-Vick and Wong:

Definition

A rational homology cobordism W from Y1 to Y2 is ribbon, if W
admits a handle decomposition relative to Y1 × [0, 1] that uses 1-
and 2-handles only. If such a cobordism exists, we write Y1 ≤ Y2.

I This notion is not symmetric.

I Q. When does there exist a ribbon rational homology
cobordism from a lens space to another lens space?
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Obstructing ribbon rational homology cobordisms

Lemma (H. 2020)

Let L1, L2 be lens spaces such that L1 ≤ L2, and let Xi be the
canonical negative definite plumbing bounded by Li , i = 1, 2. Then
there exists an isometric embedding

ϕ : H2(X1;Z)⊕ H2(X2;Z) ↪→ ZN ,

such that
ϕ(H2(X1;Z)) = ϕ(H2(X2;Z))⊥.

The proof relies on the argument from before, together with some
elementary algebraic topology.
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The case of lens spaces

Theorem (H. 2020)

Suppose that L(p1, q1) ≤ L(p2, q2), where p1 6= p2. Then, up to
orientation reversal, we must have that

L(p1, q1) ∼= L(n, 1), for some n ≥ 1.

Conversely, if L(p2, q2) ∼ L(n, 1), for some n ≥ 1, then

L(n, 1) ≤ L(p2, q2).
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non-contractible disk 
complexes
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A knot can be put in bridge position so that 
maxima lie above minima.

Bridge 
surface



A loop on the bridge surface may bound a disk 
on either side.

Disk complex
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Useful Fact:

An incompressible surface and another incompressible 
surface can be isotoped to intersect only in curves that 
are essential in both surfaces.

Incompressible surface



Even More Useful Fact (Bachman):

An incompressible surface and another incompressible 
surface can be isotoped to intersect only in curves that 
are essential in both surfaces.

A surface whose disk complex is not contractible

Very compressible



(Johnson-Moriah) disconnected disk 

complex
 

(P. Rodman) connected, but 
not simply connected disk 
complex

(P. Rodman) simply connected, 
but not 2-connected  disk 
complex

J. Johnson and Y. Moriah, ‘ Bridge distance and 
plat projections’, Algebr. Geom. Topol.  16 
(2016) 3361– 3384. MR3584261.

Pongtanapaisan, P., Rodman, D. Critical 
bridge spheres for links with arbitrarily 
many bridges. Rev Mat Complut (2020)



Theorem (P., Rodman): There is an infinite 
family of bridge surfaces with simply 
connected, but not 2-connected disk complex.



Connected & 
not 1-connected 
disk complex 

Can color each disk
red or blue so that 
- if 2 disks on opposite 

sides are disjoint, 
they receive 
the same color, and

- both colors are used.
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Thank you!

Surfaces with non-contractible 
disk complexes behave like 
minimal surfaces.

Bachman, David & Derby-Talbot, Ryan & Sedgwick, Eric. (2015). Locally Helical Surfaces have bounded twisting. 
Pacific Journal of Mathematics. 292. 10.2140/pjm.2018.292.257. 
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Set up

R4 with standard symplectic form ω = x1 ∧ y1 + x2 ∧ y2,

and standard complex structure: R4 = C× C, i(∂xj ) = ∂yj .

Ipsita Datta (Stanford) Obstructions to Lagrangians in R4 2 / 8



Set up

R4 with standard symplectic form ω = x1 ∧ y1 + x2 ∧ y2,

and standard complex structure: R4 = C× C, i(∂xj ) = ∂yj .

Ipsita Datta (Stanford) Obstructions to Lagrangians in R4 2 / 8



Lagrangian cobordism between links

Consider an exact Lagrangian
surface L ⊂ {a ≤ y2 ≤ b} ⊂ R4 which is

embedded

L intersects the hypersurfaces
R3
a = {y2 = a} and R3

b = {y2 = b}
transversely in its boundaries.

So, its boundaries
are links ∂−L and ∂+L in copies of R3.

L is an exact Lagrangian cobordism
between embedded links. We write

∂−L ≺ ∂+L.
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We can add small collars
at the ends of L to “close up” the gaps

and get an exact Lagrangian
cobordism between immersed links.

The immersed links lie in copies of R2 = C.

So, the links
cut out holomorphic disks with corners.

We consider moduli spaces of these
holomorphic disks to get obstructions to
existence of Lagrangians of the above type.
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Caterpillar C+++

Theorem (D.)

The caterpillar knot C+++ cannot be the boundary of an exact Lagrangian
surface L ⊂ {y2 ≤ a} with C+++ ⊂ {y2 = a}.

Figure: C+++

This answers a question from A Partial Ordering on Slices of Planar
Lagrangians by P. Eiseman, J. Lima, J. Sabloff, and L. Traynor.

Ipsita Datta (Stanford) Obstructions to Lagrangians in R4 5 / 8



Caterpillar C+++

Theorem (D.)

The caterpillar knot C+++ cannot be the boundary of an exact Lagrangian
surface L ⊂ {y2 ≤ a} with C+++ ⊂ {y2 = a}.

Shaded disk is a boundary point
of a 1-dimensional moduli space,
which is a manifold-with-boundary
(“automatic tranversality”).

There are no possible other boundary
points from “sign conditions”.
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Figure 8-knots

Theorem (Sabloff, Traynor)

If 8+(r) ≺ 8+(R), then R > r .

If 8−(R) ≺ 8−(r), then R > r .

Originally shown in Obstructions to the Existence and Squeezing of
Lagrangian Cobordisms by J. Sabloff, and L. Traynor using generating
functions. We reprove this using holomorphic curves.

Ipsita Datta (Stanford) Obstructions to Lagrangians in R4 7 / 8



Figure 8-knots

Theorem (Sabloff, Traynor)

If 8+(r) ≺ 8+(R), then R > r .

If 8−(R) ≺ 8−(r), then R > r .

Disk A is a boundary
point of a 1-dimensional moduli space.

Possible other boundaries
look like the degenerate disk (C ,B).

area C > 0 (as C holomorphic.)

area A = area C + area B.

So, area B < area A.
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Homology Concordance and an Infinite Rank
Subgroup

Hugo Zhou

Georgia Tech
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Backgrounds

Two knots in S3 are smoothly concordant if they cobound a
smooth annulus in S3 × I.

Definition

Knot concordance group C := (K,#)/ smooth concordance.

J. Levine (69.) proved that there is a surjective homomorphism
from knot concordance group C to Z∞ ⊕ Z∞2 ⊕ Z∞4 . In particular,
C contains a Z∞ summand.

Hugo Zhou Homology Concordance and an Infinite Rank Subgroup



Backgrounds

Definition

Suppose knots K0 ⊂ Y0, K1 ⊂ Y1, Y0 and Y1 are homology
cobordant.
K0 and K1 are homology concordant if they cobound a smooth
annulus in some homology cobordism between Y0 and Y1.

Hugo Zhou Homology Concordance and an Infinite Rank Subgroup



Backgrounds

Definition

Let ĈZ :=
(
(Y,K),#

)
/ homology concordance, where Y is a

homology 3-sphere that is homology cobordant to S3.

Definition

Let CZ :=
(
(S3,K),#

)
/ homology concordance.

Hugo Zhou Homology Concordance and an Infinite Rank Subgroup



The quotient group ĈZ/CZ measures the “difference” between
knots in S3 and knots in homology spheres.

Question:

Does ĈZ/CZ contain a Z∞ summand?

Adam Simon Levine (14.) showed that ĈZ/CZ is not trivial;

Hom, Levine, Lidman (18.) proved that ĈZ/CZ is infinitely
generated and contains a Z subgroup.

Hugo Zhou Homology Concordance and an Infinite Rank Subgroup



Main Result

Main Theorem (Z.)

ĈZ/CZ contains a Z∞ subgroup.

1 Infinitely many generating pairs constructed by applying the
filtered mapping cone formula (Hedden, Levine) on the
L-space knots.

2 Linearly independence proved using connected knot
complex.

Hugo Zhou Homology Concordance and an Infinite Rank Subgroup



The filtered mapping cone formula computes CFK∞(S3
1(K), K̃).

The knot K in this figure is the right handed trefoil .

Hugo Zhou Homology Concordance and an Infinite Rank Subgroup



Computational result

nn− 1

n− 1

n

Figure: Connected knot complex of CFK∞(S3
1(T2,4n−1), T̃2,4n−1)

Technical point: Connected sum with the unknot in −S3
1(T2,4n−1)

to complete the construction.

Hugo Zhou Homology Concordance and an Infinite Rank Subgroup
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Motivation

When a group G determined

by its boundary 26

In the case of hyperbolic groups we

know the answer

Caset G is a hyperbolic group

X is a hyperbolic space

2x a a geodesic ray

Qing Liu Rigidity on the Morse boundary



g

1hm Gromov X Y are hyperbolic spaces

If fi X Y is a quasi isometry

then f indues a homeomorphism

Fi 2 5 24

If G is a hyperbolic groups

then JG is well defined

Qing Liu Rigidity on the Morse boundary



S T

Thin Paulin 96

X Y are proper cowmpent hyperbolic spaces

Suppose F ax 2T is a homeomorphism

Then TFAE

I F is indued by a quasi isometry f y

2 F is quasi mobius

14 F is quasi conformal

Qing Liu Rigidity on the Morse boundary



Thin Bonk and Schramm

X Y are hyperbolic spaces

If F 2X dxo.ae 24 dyo.ec is a

power quasisymmetry

then F extends to a quasi isometry fi y

The Gromov boundary 2X of a

hyperbolic space X is metrizable

Qing Liu Rigidity on the Morse boundary



Next Can we do the same for a

f g group G

Consett G is a f g group
r

X is proper geodesic
metric space

2mX 21 a is Morse geodesic ray
T

the Morse boundary

proper CAT
10 spae Charney and Sultan

v

proper geodesic metric spare Cordes

garb is well defined for any fg group or

but it is not metrizable in general
Qing Liu Rigidity on the Morse boundary



Thin Charney Cordes Murray ill

x Y proper coumpact geodesic metric

spaces 12mW 33

Let h 2mX 2mY be a homeomorphism

Then h is induced by a quasi isometry

f x Y if and only if
h and h are 2 stable and

quasimobins

Qing Liu Rigidity on the Morse boundary



Thin Liu

x y proper wcompart geodesic metric

spaces I2mW 73

let h dmx 7 don't be a homeomorphism

Then TFAE

lb h is induced by a quasi isometry

fi x Y

H h ti are bihilder

in h h are quality
141 h h are strong

Qing Liu Rigidity on the Morse boundary



g

Core G H are f g groups

12m61 23 let h 2mg 2m14 be

a homeomorphism

Then TFAE

Il h is induced by a QI fix sy

H h h are 2 stable and quasi mobius

137 h h are bihilder

14 h h are quasisymmetry

15 h h are strongly quasi conformal

Qing Liu Rigidity on the Mone boundary



Thank

you

Qing Liu Rigidity on the Morse boundary



Visibility of 
symmetries, 

L-spaces, and 
branched 

cyclic covers

Hannah Turner



Branched cyclic covers

index n (cyclic) cover of the 
complement

branched (cyclic) cover of 
index n



L-spaces

topological info from 3-manifold vector space

Heegaard Floer
homology

An L-space is a 3-manifold with “simple” Heegaard Floer homology



For which knots is every cyclic branched cover an L-space?

Peters, Teragaito

Issa-T.



Visibility of symmetries



Alternating knots and visibility

Theorem (Costa – Van Quach Hongler)

Let K be a prime alternating which has an order n symmetry. If n is at least 3, this symmetry is visible in 
some alternating diagram of K.

Theorem (Paoluzzi)

Let K be alternating. Then cyclic branched covers of K, of index n at least 3, each 
determine K.



What about index 2?

Theorem (T.)
Let K be a prime alternating knot with an order 2 symmetry to the unknot. 
Then the symmetry is visible in an alternating diagram only if all of the 
cyclic branched covers of K are L-spaces.

alternating

order 2 
symmetry to 
the unknot

visible in an 
alternating 
diagram
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Exotic 4-manifolds with boundary

• A 4-manifold X admits exotic smooth structures if X admits more than 
one smooth structures.

• A 3-manifold 𝑌 admits exotic fillings if 𝑌 bounds a compact 4-
manifold 𝑋 such that 𝑋 admits more than one smooth structures.
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Which 3-manifolds admit exotic fillings?

Previous results

• (Gompf) Σ 2,3,6𝑛 − 1

• (Akhmedov-Etnyre-Mark-Smith) SFS over Σ𝑔 (𝑔 > 4) with one 
singular fiber of multiplicity 2𝑚.

• (Etnyre-M-Mukherjee, Yasui) Weakly symplectically fillable contact 3-
manifolds.

• (Hayden-Mark-Piccirillo) Boundary of exotic Mazur manifolds



Main Theorem

A closed oriented 3-manifold 𝑌 admits infinitely many simply-
connected exotic fillings if

1) There is a non vanishing contact invariant in 𝐻𝐹+ 𝑌 or 𝐻𝐹+ −𝑌 .



Main Theorem

A closed oriented 3-manifold 𝑌 admits infinitely many simply-
connected exotic fillings if

1) There is a non vanishing contact invariant in 𝐻𝐹+ 𝑌 or 𝐻𝐹+ −𝑌 .

2) 𝑌 or −𝑌 is weakly symplectically fillable.
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Corollary

A closed oriented 3-manifold 𝑌 admits infinitely many simply-
connected exotic fillings if 𝑌 is 

1) a Seifert fibered space

2) a 3-manifold supporting a taut foliation

3) an irreducible 3-manifold with positive Betti number

4) a rational homology 3-sphere embedding into a closed definite 4-
manifold.
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Exotic fillings

• Build a simply connected 4-manifold with
boundary 𝑌.

• Embed a torus with non-vanishing homology
class and the 0 self intersection number.

• Perform knot surgery on the torus and produce 
homeomorphic, but not diffeomorphic manifolds.



Thank you!
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