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Rational homology cobordisms

We work in the smooth category throughout.

Definition

Let Y1, Y2 be oriented rational homology 3-spheres. A rational
homology cobordism from Y; to Y5 is a 4-manifold W such that
> oW = —Yl IT Y2, and

» the inclusion maps ¢;: Y; — W induce isomorphisms
(ti)s: He(Yi: Q) = Ho(W;Q), i = 1,2.
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The case of lens spaces

» Recall that the lens space L(p, q) can be obtained by
performing (—p/q)-framed Dehn surgery along the unknot
Ucs.

» Q. When does there exist a rational homology cobordism from
one lens space to another lens space?

» Lisca (2007) completely answered this question.
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Obstructing rational homology cobordisms

» Let L; and L, be lens spaces, and suppose W is a rational
homology cobordism from L; to L.

» The lens spaces L; bound canonical 4-manifolds X;, i =1, 2.

» The intersection form Q endows Hy(X;;Z), i = 1,2, with a
symmetric bilinear pairing.

» By a standard argument involving Donaldson's
Diagonalization Theorem, we obtain an embedding

©: Hao(X1;Z) ® Ha(X2; Z) — ZN,

which preserves the bilinear pairings.

» Proof follows from a combinatorial analysis of such
embeddings.
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Ribbon rational homology cobordisms

The following refinement of rational homology cobordism was
introduced by Daemi, Lidman, Vela-Vick and Wong:

Definition
A rational homology cobordism W from Y;j to Y5 is ribbon, if W

admits a handle decomposition relative to Y; x [0, 1] that uses 1-
and 2-handles only. If such a cobordism exists, we write Y; < Ya.

» This notion is not symmetric.

» Q. When does there exist a ribbon rational homology
cobordism from a lens space to another lens space?
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Lemma (H. 2020)

Let L1, Ly be lens spaces such that L; < L, and let X; be the
canonical negative definite plumbing bounded by L;, i = 1,2. Then
there exists an isometric embedding

©: Ha(X1;Z) ® Hy(X2; Z) — ZV,

such that
p(Ha(X1: Z)) = p(Ha(Xa; Z)) -



Obstructing ribbon rational homology cobordisms

Lemma (H. 2020)

Let L1, Ly be lens spaces such that L; < L, and let X; be the
canonical negative definite plumbing bounded by L;, i = 1,2. Then
there exists an isometric embedding

©: Ha(X1;Z) ® Hy(X2; Z) — ZV,

such that
p(Ha(X1: Z)) = p(Ha(Xa; Z)) -

The proof relies on the argument from before, together with some
elementary algebraic topology.
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Theorem (H. 2020)

Suppose that L(p1,q1) < L(p2,q2), where p1 # pa. Then, up to
orientation reversal, we must have that

L(p1,q1) = L(n,1), for some n > 1.



The case of lens spaces

Theorem (H. 2020)

Suppose that L(p1,q1) < L(p2,q2), where p1 # pa. Then, up to
orientation reversal, we must have that

L(p1,q1) = L(n,1), for some n > 1.
Conversely, if L(p2,q2) ~ L(n, 1), for some n > 1, then

L(n,1) < L(p2, g2)-
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A knot can be put in bridge position so that
maxima lie above minima.
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A loop on the bridge surface may bound a disk
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Useful Fact:

An incompressible surface and another incompressible
surface can be isotoped to intersect only in curves that
are essential in both surfaces.

e




Even More Useful Fact (Bachman):

A surface whose disk complex is not contractible

and another incompressible
surface can be isotoped to intersect only in curves that
are essential in both surfaces.
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J. Johnson and Y. Moriah, ‘ Bridge distance and

plat projections’, Algebr. Geom. Topol. 16
(2016) 3361— 3384. MR3584261.
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(Johnson-Moriah) disconnected disk

complex

Pongtanapaisan, P., Rodman, D. Critical
bridge spheres for links with arbitrarily
many bridges. Rev Mat Complut (2020)

(P. Rodman) connected, but
not simply connected disk
complex

(P. Rodman) simply connected,
but not 2-connected disk
complex



Theorem (P., Rodman): There is an infinite
family of bridge surfaces with simply
connected, but not 2-connected disk complex.
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Connected & Can color each disk
hot 1-connected — red or blue so that

disk complex - if 2 disks on opposite
sides are disjoint,
£ @\ ﬂ\/ﬂ\ 4 / they receive
28 th |
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VAVEVERY, - both colors are used.




Connected & Can color each disk
hot 1-connected — red or blue so that

disk complex - if 2 disks on opposite
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W U - - both colors are used.




Thank you!

Surfaces with non-contractible
disk complexes behave like
minimal surfaces.

Bachman, David & Derby-Talbot, Ryan & Sedgwick, Eric. (2015). Locally Helical Surfaces have bounded twisting.
Pacific Journal of Mathematics. 292. 10.2140/pjm.2018.292.257.
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R* with standard symplectic form w = x; A y1 + xo A yo,

and standard complex structure: R* = C x C, i(dy;) = 9.

Ipsita Datta (Stanford) Obstructions to Lagrangians in R* 2/8



Lagrangian cobordism between links

Consider an exact Lagrangian
surface L C {a < y» < b} C R* which is

Ipsita Datta (Stanford) Obstructions to Lagrangians in R* 3/8



Lagrangian cobordism between links

Consider an exact Lagrangian
surface L C {a < y» < b} C R* which is

@ embedded

Ipsita Datta (Stanford) Obstructions to Lagrangians in R* 3/8



Lagrangian cobordism between links

Consider an exact Lagrangian
surface L C {a < y» < b} C R* which is

@ embedded

@ L intersects the hypersurfaces
R} = {y2 = a} and R} = {y> = b}
transversely in its boundaries.

Ipsita Datta (Stanford) Obstructions to Lagrangians in R* 3/8



Lagrangian cobordism between links

Consider an exact Lagrangian
surface L C {a < y» < b} C R* which is
@ embedded
@ L intersects the hypersurfaces
R3 = {y; = a} and R} = {y» = b}
transversely in its boundaries.

So, its boundaries
are links O_L and O, L in copies of R3.

Ipsita Datta (Stanford) Obstructions to Lagrangians in R* 3/8



Lagrangian cobordism between links

Consider an exact Lagrangian
surface L C {a < y» < b} C R* which is
@ embedded
@ L intersects the hypersurfaces
R3 = {y; = a} and R} = {y» = b}
transversely in its boundaries.

So, its boundaries
are links O_L and O, L in copies of R3.

L is an exact Lagrangian cobordism
between embedded links. We write

0_L<04L

Ipsita Datta (Stanford) Obstructions to Lagrangians in R* 3/8



We can add small collars
at the ends of L to “close up” the gaps
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The immersed links lie in copies of R? = C.
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We can add small collars
at the ends of L to “close up” the gaps

and get an exact Lagrangian
cobordism between immersed links.

The immersed links lie in copies of R? = C.

So, the links
cut out holomorphic disks with corners.

N
. 3
% diLER
; A LeR:
L + J.LERE
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We can add small collars

at the ends of L to “close up” the gaps

and get an exact Lagrangian
cobordism between immersed links.

The immersed links lie in copies of R? = C.

So, the links

cut out holomorphic disks with corners.

N
R 3
: ILER,
; A LeR:
L + J.LERE

We consider moduli spaces of these
holomorphic disks to get obstructions to
existence of Lagrangians of the above type.
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Caterpillar Ct++

Theorem (D.)

The caterpillar knot C™"1 cannot be the boundary of an exact Lagrangian
surface L C {y» < a} with C**T C {y» = a}.

+

Figure: CT1+

This answers a question from A Partial Ordering on Slices of Planar
Lagrangians by P. Eiseman, J. Lima, J. Sabloff, and L. Traynor.

Ipsita Datta (Stanford) Obstructions to Lagrangians in R* 5/8



Caterpillar Ct++

Theorem (D.)

The caterpillar knot CT"T cannot be the boundary of an exact Lagrangian
surface L C {y» < a} with CTT+ C {y, = a}.

Shaded disk is a boundary point
of a 1-dimensional moduli space,

which is a manifold-with-boundary
(“automatic tranversality"). ‘ a
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Caterpillar Ct++

Theorem (D.)

The caterpillar knot CT"T cannot be the boundary of an exact Lagrangian
surface L C {y» < a} with CTT+ C {y, = a}.

Shaded disk is a boundary point
of a 1-dimensional moduli space,

which is a manifold-with-boundary
(“automatic tranversality"). ‘ ’
There are no possible other boundary

points from “sign conditions”.

Ipsita Datta (Stanford) Obstructions to Lagrangians in R* 6/8



Figure 8-knots

Theorem (Sabloff, Traynor)
e If 84(r) <84(R), then R > r.
e If 8_(R) <8_(r), then R > r.

+ 8% (R) N 8

A 80 = 87(R)

Originally shown in Obstructions to the Existence and Squeezing of
Lagrangian Cobordisms by J. Sabloff, and L. Traynor using generating
functions. We reprove this using holomorphic curves.

Ipsita Datta (Stanford) Obstructions to Lagrangians in R* 7/8



Figure 8-knots

Theorem (Sabloff, Traynor)

o If 84(r) <84(R), then R > r.
o If 8_(R) <8_(r), then R > r.

Disk A is a boundary
point of a 1-dimensional moduli space.

e
Wl
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Figure 8-knots

Theorem (Sabloff, Traynor)

o If 84(r) <84(R), then R > r.
o If 8_(R) <8_(r), then R > r.

Disk A is a boundary
point of a 1-dimensional moduli space.

+ 8*(R)
Possible other boundaries
look like the degenerate disk (C, B).
DEND)
‘l ‘QQO B
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Figure 8-knots

Theorem (Sabloff, Traynor)

o If 84(r) <84(R), then R > r.
o If 8_(R) <8_(r), then R > r.

Disk A is a boundary
point of a 1-dimensional moduli space.

b 8" (R)
Possible other boundaries
look like the degenerate disk (C, B).
<) &'
area C > 0 (as C holomorphic.) ’0 00
o W
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Figure 8-knots

Theorem (Sabloff, Traynor)

o If 84(r) <84(R), then R > r.
o If 8_(R) <8_(r), then R > r.

Disk A is a boundary
point of a 1-dimensional moduli space.

. . + 8" (R
Possible other boundaries

look like the degenerate disk (C, B).

area C > 0 (as C holomorphic.)

) )
area A = area C + area B. .,', ‘oe!

Ipsita Datta (Stanford) Obstructions to Lagrangians in R* 8/8



Figure 8-knots

Theorem (Sabloff, Traynor)
o If 84(r) <84(R), then R > r.
o If 8_(R) <8_(r), then R > r.

Disk A is a boundary
point of a 1-dimensional moduli space.

+ 8" (R
Possible other boundaries
look like the degenerate disk (C, B).

area C > 0 (as C holomorphic.)

) O

So, area B < area A.

Ipsita Datta (Stanford) Obstructions to Lagrangians in R* 8/8
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Backgrounds

Two knots in S3 are smoothly concordant if they cobound a
smooth annulus in S3 x I.

Definition

Knot concordance group C := (K, #)/ smooth concordance.

J. Levine (69.) proved that there is a surjective homomorphism
from knot concordance group C to Z*° @ Z3° & Z3°. In particular,
C contains a Z* summand.

Hugo Zhou Homology Concordance and an Infinite Rank Subgroup



Backgrounds

Definition

Suppose knots Kg C Yy, Kq C Y3, Yy and Y7 are homology
cobordant.

Ky and K; are homology concordant if they cobound a smooth
annulus in some homology cobordism between Y and Y;.

Hugo Zhou Homology Concordance and an Infinite Rank Subgroup



Backgrounds

Definition

Let Cz == ((Y, K), #)/ homology concordance, where Y is a
homology 3-sphere that is homology cobordant to S2.

Definition
Let Cz := ((S3,K), #)/ homology concordance.

Hugo Zhou Homology Concordance and an Infinite Rank Subgroup



The quotient group 5Z/CZ measures the “difference” between
knots in S3 and knots in homology spheres.

Question:

Does Cz/Cz contain a Z*° summand?

@ Adam Simon Levine (14.) showed that Cz/Cy is not trivial;

@ Hom, Levine, Lidman (18.) proved that CAZ/CZ is infinitely
generated and contains a Z subgroup.

Hugo Zhou Homology Concordance and an Infinite Rank Subgroup



Main Result

Main Theorem (Z.)

€Z/CZ contains a Z subgroup.

@ Infinitely many generating pairs constructed by applying the
filtered mapping cone formula (Hedden, Levine) on the
L-space knots.

@ Linearly independence proved using connected knot
complex.

Hugo Zhou Homology Concordance and an Infinite Rank Subgroup



The filtered mapping cone formula computes CF K> (S3(K), K).

The knot K in this figure is the right handed trefoil .

Hugo Zhou Homology Concordance and an Infinite Rank Subgroup



Computational result

Figure: Connected knot complex of CFKOO(S%(T2747L_1), TQ7471_1)

Technical point: Connected sum with the unknot in —S3(T% 4,—1)
to complete the construction.

Hugo Zhou Homology Concordance and an Infinite Rank Subgroup
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Visibility of
symmetries,
L-spaces, and
branched
cyclic covers

Hannah Turner




Branched cyclic covers

index n (cyclic) cover of the
complement

| |
)
&

branched (cyclic) cover of
index n




L-spaces

Heegaard Floer
homology

[ topological info from 3-manifold } [ vector space }

An L-space is a 3-manifold with “simple” Heegaard Floer homology



For which knots is every cyclic branched cover an L-space?

S ()
O P2 (RS

e

[ Peters, Teragaito }




Visibility of symmetries




Alternating knots and visibility

[ Theorem (Costa - Van Quach Hongler)}

Let K be a prime alternating which has an order n symmetry. If n is at least 3, this symmetry is visible in
some alternating diagram of K.

l

[ Theorem (Paoluzzi) J

Let K be alternating. Then cyclic branched covers of K, of index n at least 3, each
determine K.



What about index 2?

Let K be a prime alternating knot with an order 2 symmetry to the unknot.
Theorem (T.) Then the symmetry is visible in an alternating diagram only if all of the
cyclic branched covers of K are L-spaces.

alternating |/

order 2
symmetry to |~
the unknot

:
=

visible in an

alternating
diagram
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LINK CONCORDANCE AND HOMOLOGY - TYPE |NVARIANTS

Knot K < > 3-manifold Y°
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LINK CONCORDANCE AND HOMOLOGY - TYPE |NVARIANTS

Knot K < > 3-manifold Y°

e 3D POU\*' >F view Very excn‘ﬁmg./

. ‘ Structure |
o Glut{'e, awme}nnc. Much cTure

Knot K — < - \(3 = 9\/\)4

= L"D PDH\,* 0'@ Vi ew l/erg excn‘ﬁmg./
(aeb Much Shucture |
= 6]Lu'f'€ . alge aic
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(4D equivnlence relation)
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LINK CONCORDANCE AND HOMOLOGY - TYPE |NVARIANTS
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homotopy 0t ambient
41”& Space
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K > S°> = 28"
’BH’CV‘LA ‘f’o‘l'o.l Wombl,og«j
chaun A s nvariant
homotopy 0t ambient
'hdfe' Space

extract aumerid wnwrdane (avarionts
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LINK CONCORDANCE AND HOMOLOGY - TYPE |NVARIANTS

K < > S° < 28"
‘BH’CV‘LP( “otol 'NOMDl,o.j«j
chaun A s nvariant
homotopy 0t ambient
type SpacL

extract aumerid wnwrdane (avarionts

- bounds m 3-ball genus, 4-lau genuc
— understand Ha conwrdaa o group
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EXISTING INVARIANTS

- filtatin 9md2nﬂ ot ou:—h'nguuhui homology clous
[0 e -§ 5 ] = gmwv\_ﬂ ot U\M‘lvfrlm’fowff
T 2svath -S2abé , Rasmussen = e ] bere tnduced ma p i nonzevo
h; [Ka.rmuuen]

CPK” [ 02svath - Stipsicz -S2abs PO (52, -
X sva psicz -Sza o] S [Kasmussu\] } Lee [ Boa -Nodan L’\.Dvwologj

I1 [KiM'Livings’m\]

A [Lcwark—l,o\a\o] } % n how»ota@«g

¢ [Alfieri)
Fluv] Surkar-Seed- s10bss | §° [Sarkar-Seed- S2abi]
(M'\” { ‘PJ [ Dai- Hom - S*bffregm—‘l’mona] gorfurbokon of Simho’s{ - 21
guomebic Spechanl onnn\or
V [Oasvdﬂ« 'S'L‘“L’é] g ol.‘, [ Grigsby - Licata- Wehrli ] Concorthante
V+) VT L i § [owens-Manolescu, Jabuka ]
Sumeny Va [Trueng] branthed { § § [Adieri- Kang- Stipsice]

e - . involut vt
74 [G\olla = Marengm] Y_o_ Vo [Hendricks -Manolescu |
Xfr nononieatable slice Genus bouad

not tobe wnfused
it g ourel Rem €. [Hom'12)

Sources © Hom’s survey “psurvey on Heegoard Floer Homology aad Concordance ” A\ This is cectainly incomplerc. If you have
Celovias slids “Some Conwwrdaace invariaaty fom Knot Floer I/wm,s;Lo‘j.1 ] any addihions or coveections , lef me know !
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EXISTING INVARIANTS

x

See Livingetons “Notes on the knot Conwranwe invariant Upsibn"
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See Livingetons “Notes on the knot Conwrlanwe invariant Upsibn"
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Y -like  invaviants
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tilt the Lihation levels Two gmdings are "mixed” fogether,

Otcconiims 1o & parameter.

x

See Livingetons “Notes on the knot Conwrlanwe invariant Upsibn"
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EXISTING INVARIANTS

A\l

Y -like” invaviants
) gmadings are “mixed" together,

.

9x

Hlt the LHhahon levels

Otcconiims 1o & parameter.

A diﬁ\'/\,gou’{heal
Vwmotogtj elokls  or map

* &—m©@

picks out & gpecial fuvatfion

leve...

See Livingetons “Notes on the knot Conwrlanwe invariant Upsibn"
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EXISTING INVARIANTS

A\l

1 )} .
Y - like invaviants

Hlt the LHhahon levels

Otcconiims 1o & parameter.

9x

A diﬁ\'/\,gou’{heal
Vwmotogtj elokls  or map

* &—m©@

\J(eldinﬂ o
Pi(,ks out asp&ctai ‘Rl‘hrzd\w\ Pmme,hr'iud

level... link (avariant .

See Livingetons “Notes on the knot Conwrlanwe invariant Upsibn"
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V(1) x V(1) - EOVIVARIANT KHOVANOY HOMOLOGY

K/’L s Qa ﬁmu‘or Kh
(Links, Cobordié‘mS) —> Z@Z—gmdﬁd R -module

where R = coefficient ring [Khovanov ‘001
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V(1) x V(1) - EOVIVARIANT KHOVANOY HoMOLOGY

K/’L s a ﬁmu‘or Kh
(Links, Cobordisms) —  ZoZ-graded R-modul

where R = coefficient ring [Khovanov ‘001

l,((z)-eqw'van'anf‘ K/q, uses +he Fmbemu.( Q(ge/oru

a.k.a. “universol Khovanov homoloﬁﬂ A

_ RIx]
A i /( XZ - hX + t) [ Khovanov 04; stndied by many others)
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V(1) x V(1) - EOVIVARIANT KHOVANOY HoMOLOGY

K/’L s Qa ﬁmcfor K
(Links, Cobordisms) —  ZoZ-graded R-modul

where R = coefficient ring [Khovanov ‘001

l,((z)-eqw'van'anf‘ K/q, uses +he Fmbemu.( Q(ge/oru

a.k.a. “universol Khovanov homoloﬂﬂ A

_ RIx]
A i /( XZ - hX + t) [ Khovanov 04; stndied by many others)

eg. K= @,(]:) h=0,t=1 ~~ Lee Homology ~> s -jnvariant

[Lee ~‘02]) [ Rasmuisen ~0u ]
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V(1) x V(1) - EOVIVARIANT KHOVANOY HoMOLOGY

K/’L s Qa ﬁmcfor K
(Links, Cobordisms) —  ZoZ-graded R-modul

where R = coefficient ring [Khovanov ‘001

l,((z)-eqw'van'anf‘ K/q, uses +he Fmbemu.( Q(ge/oru

a.k.a. “universol Khovanov homoloﬂﬂ A

R[xy

- 2

V4’ (X i hX + t) [ Khovanov 04 stwdied \oj many others )

eg. R=Q,L; h=0,t=1 ~» Lee Homology ~» s -jnvariant
[Lee ~‘02]) [ Rasmuisen ~0u ]

uln x u i) equic/an'amf K@ [ Khovanoy - Robert ' 187

RIX
7{&: Z[d. ,o(;] sz ]/( )('OL,\(X' 0(,,) Not an integal domain !
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A GENERALIZATION OF RASMUSSEN’S s- INVARIANT

Fix t &[O, L{-] t -modified U(1) x U(1)
Khovanov HamalOgy

(CKhZ (D), 9 (D))

[Akhm(,che,i' -Z , work in ngvu.r]
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A GENERALIZATION OF RASMUSSEN’S S - INVARJANT
Actwally the nr\ar?
Fix telo 4] (rees depemdens t modtified U() x u(1)
v A0 Khovanov HOMalogy

G: Ry — ZIv™]

4-t t t
o wmt wme os (CKRG (D), 9y (D))
S A= A ® 2N

[Akhmtchu' -Z , work in ngrer.r]
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A GENERALIZATION OF RASMUSSEN’S s- INVARIANT

A(,ma,lbj the n/\au—{
. (o n. power genes
Fix t ELOI 4’] (aezom dependence t -modified U(1) x U(1)
\ ol
Khovanov Homo log

G: Ry — ZIv™]

. P A N T A ~> ht D 3 D )
RV TS [ CRha (D), 3 ()

[Akhmechet - 2, work in progress’)
The differenfiad is filtered with respect o o grrding gry

+that “combmes" the «,- and o, — powerSs,

The total homology has L non- v-torsion fowers.
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A GENERALIZATION OF RASMUSSEN’S s- INVARIANT

Acma,lb-] the m\au{
. (o n. power genes
Fix t ELOI 4’] (aezom dependence t -modified U(1) x U(1)
v g Khovanov Hamalogy

G: Ry — ZIv™]

. P A N T A ~> ht D 3 D )
RV TS [ CRha (D), 3 ()

[Akhmechet - 2, work in progress’)
The differenfiad is filtered with respect o o grrding gry

+that “combmes" the «,- and o, — powerSs,
The total homology has L non- v-torsion fowers.

. comcordance invariant fr Lc S* 2 sT (K)

¢ Computations 1o determine effectiveness, obstuctions

. relah'ownsl'\ip with other invariants
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Exotic 4-manifolds with boundary

e A 4-manifold X admits exotic smooth structures if X admits more than
one smooth structures.



Exotic 4-manifolds with boundary

e A 4-manifold X admits exotic smooth structures if X admits more than
one smooth structures.

* A 3-manifold Y admits exotic fillings if Y bounds a compact 4-
manifold X such that X admits more than one smooth structures.
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Which 3-manifolds admit exotic fillings?

Previous results

* (Gompf) 2(2,3,6n — 1)

* (Akhmedov-Etnyre-Mark-Smith) SFS over Z, (g > 4) with one
singular fiber of multiplicity 2m.

* (Etnyre-M-Mukherjee, Yasui) Weakly symplectically fillable contact 3-
manifolds.

e (Hayden-Mark-Piccirillo) Boundary of exotic Mazur manifolds



Main Theorem

A closed oriented 3-manifold Y admits infinitely many simply-
connected exotic fillings if

1) There is a non vanishing contact invariant in HF*(Y) or HF*(=Y).



Main Theorem

A closed oriented 3-manifold Y admits infinitely many simply-
connected exotic fillings if

1) There is a non vanishing contact invariant in HF*(Y) or HF*(=Y).
2) Y or =Y is weakly symplectically fillable.
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Corollary

A closed oriented 3-manifold Y admits infinitely many simply-
connected exotic fillings if Y is

1) a Seifert fibered space
2) a 3-manifold supporting a taut foliation
3) anirreducible 3-manifold with positive Betti number

4) arational homology 3-sphere embedding into a closed definite 4-
manifold.
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Exotic fillings

* Build a simply connected 4-manifold with
boundary Y.

* Embed a torus with non-vanishing homology
class and the O self intersection number.

* Perform knot surgery on the torus and produce
homeomorphic, but not diffeomorphic manifolds.




Thank you!
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