Nielsen realization problems

Bena Tshishiku Tech Topology Conference 12/4/2020

Mapping class groups

Definition of Mod(M)

M smooth manifold

<u>Definition</u> (mapping class group):

 $Mod(M) = \{ f : M \to M \text{ diffeomorphism} \} / isotopy$

$$= \operatorname{Diff}(M) / \operatorname{Diff}_0(M)$$

$$= \pi_0(\operatorname{Diff}(M))$$

$$= \pi_0(\operatorname{Diff}(M))$$

Quick Examples

 $Mod(M) := \pi_0(Diff(M))$

- $\operatorname{Mod}(T^2) \cong \operatorname{GL}_2(\mathbb{Z})$ \swarrow {Smooth structures on S^{n+1} }/~
- $Mod(S^n) \cong \mathbb{Z}/2\mathbb{Z} \times \Theta_{n+1}$
- Diff $\partial(D^2, n)$ diffeos preserving $\{\frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n+1}\}$

 $Mod(D^2,n) := \pi_0(Diff_{\partial}(D^2,n)) \cong Br_n$ braid group

Motivations for studying $Mod(S_g)$

 S_g closed oriented surface, genus g

- 1. Gluing data for 3- and 4-manifolds.
 - Mapping torus, Heegaard splitting, trisection
- 2. Moduli spaces/Teichmuller theory

- $\varphi \in \operatorname{Diff}(S_g)$
- $Mod(S_g) \approx \pi_1(\mathcal{M}_g)$ moduli space of Riemann surfaces of genus g
- 3. Surface bundles

$$\left\{\begin{array}{cc}\text{fiber bundles}\\S_g \to E \to B\end{array}\right\}_{\text{/iso}} \stackrel{\text{1-1}}{\longleftrightarrow} \left\{\begin{array}{c}\text{homomorphisms}\\\pi_1(B) \to \operatorname{Mod}(S_g)\end{array}\right\}_{\text{/conj}}$$

 $(E \rightarrow B) \longrightarrow$ monodromy representation

 $??? \quad \longleftarrow \quad \pi_1(B) \to \operatorname{Mod}(S_g)$

Nielsen realization

Nielsen realization problem

Originally asked by Nielsen (1906) for $G < Mod(S_g)$ finite.

E.g. if $F \in Mod(S_g)$ and $F^n = 1$, does there exist $\varphi \in Diff(S_g)$ such that $[\varphi] = F$ and $\varphi^n = id$?

(Kerckhoff, 1983): For every finite $G < Mod(S_g)$, a lift σ exists.

Question (Thurston). Does p: Diff $(S_g) \to Mod(S_g)$ split? Example. Yes for g=1. Diff $(T^2) \xrightarrow{p} Mod(T^2) \cong GL_2(\mathbb{Z})$ Given $A \in GL_2(\mathbb{Z})$, define $\sigma(A)$: $\mathbb{R}^2 \xrightarrow{A} \mathbb{R}^2$ $\downarrow \qquad \downarrow$ $T^2 = \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}^2/\mathbb{Z}^2$

Realizing $G = Mod(S_g)$

<u>Theorem</u> (Morita, 1987). For $g \ge 10$, $p : \operatorname{Diff}^2(S_g) \to \operatorname{Mod}(S_g)$ does not split.

<u>Improvements</u>:

- Markovic: homeomorphisms, $g \ge 5$ (2007)
- Franks-Handel: C¹ diffeos, $g \ge 5$ (2009)
- Bestvina-Church-Souto: C¹ diffeos, $g \ge 6$ (2013)
- Salter-Tshishiku: C¹ diffeos, $g \ge 2$ (2016)
- Chen, Salter-Chen: homeomorphisms, $g \ge 2$ (2020)

Nielsen realization and flat connections

Fix $S_g \to E \to B$ with monodromy $\alpha : \pi_1(B) \to \operatorname{Mod}(S_g).$ $\pi_1(B) \xrightarrow{\sigma}{\alpha} \operatorname{Mod}(S_g)$

$$\left\{\begin{array}{c}\text{fiber bundles}\\S_g \to E \to B\end{array}\right\} \longleftrightarrow \left\{\begin{array}{c}\text{homomorphisms}\\\pi_1(B) \to \operatorname{Mod}(S_g)\end{array}\right\}$$

 $E \to B \text{ is } flat, \text{ i.e.}$ $E \text{ has horizontal} \iff \begin{array}{l} \alpha : \pi_1(B) \to \operatorname{Mod}(S_g) \\ \text{ has a lift } \sigma \end{array}$

Nielsen realization and flat connections

<u>Theorem</u> (Morita, 1987). For $g \ge 10$, $p : \text{Diff}^2(S_g) \to \text{Mod}(S_g)$ does not split.

<u>Corollary (of Morita's Proof)</u>. For $g \ge 10$, there exists a bundle $S_g \to E \to B^6$ that's not flat.

<u>Question</u>. Does there exist $S_g \to E \to S_h$ that's not flat?

Nielsen realization and K3 manifolds

<u>Theorem</u> (Giansiracusa-Kupers-T). For K a K3 manifold,

 $p: \operatorname{Diff}(K) \to \operatorname{Mod}(K)$ does not split.

K3 manifold $\approx \{x^4 + y^4 + z^4 + w^4 = 0\} \subset \mathbb{C}P^3$

<u>Corollary</u>. There exists a bundle $K \to E \to B^8$ that's not flat.

Proof Sketch

<u>Theorem</u> (Giansiracusa-Kupers-T).

 $p : \operatorname{Diff}(K) \to \operatorname{Mod}(K)$ does not split.

Ingredients of the Proof (following Morita).

• Show $H^*(Mod(K); \mathbb{Q}) \xrightarrow{p^*} H^*(Diff(K); \mathbb{Q})$ not injective. characteristic classes characteristic classes of flat bundles

• Bott vanishing: a certain characteristic class $\alpha \in \mathrm{H}^{8}(\mathrm{Mod}(K);\mathbb{Q})$ vanishes for flat bundles, i.e. $\alpha \in \ker(p^{*})$.

• α obtained from $\beta \in H^8(SO(3,19;\mathbb{Z});\mathbb{Q})$

 $\operatorname{Mod}(K) \to \operatorname{Aut}(\operatorname{H}_2(K)) \simeq \operatorname{SO}(3,19;\mathbb{Z}).$

 $\beta \neq 0$: stable cohomology of arithmetic groups (Borel, Franke) $\alpha \neq 0$: H*(SO(3,19;\mathbb{Z});\mathbb{Q}) \rightarrow H*(Mod(K);\mathbb{Q}) injective moduli space of Einstein metrics (Giansiracusa) Nielsen realization and exotic smooth structures

Symmetries of exotic smooth structures

 $M = \mathbb{H}^n / \pi$ closed hyperbolic manifold

 $N \: {\rm exotic} \: {\rm smooth} \: {\rm structure:} \: N, M \: {\rm homeo}, \: {\rm not} \: {\rm diffeo}$

e.g. $N = M \# \Sigma$ for $\Sigma \in \Theta_n$.

<u>Question</u>. How much symmetry does N have?

symmetry constant $s(N) := \max \{ |G| : G < Diff(N) \text{ finite} \}$ <u>Example</u>. For $\Sigma \in \Theta_n$, define

symmetry constant $s(\Sigma) = \max \{\dim(G) : G < Diff(\Sigma) Lie\}$

(Hsiang-Hsiang). $n \gg 0$ and $\Sigma \neq S^n \Longrightarrow s(\Sigma) < \frac{1}{4} \dim O(n+1)$.

Connection to Nielsen realization

 $M = \mathbb{H}^n / \pi$; N exotic smooth structure

<u>Problem</u>. Compute $s(N) := \max \{ |G| : G < Diff(N) \text{ finite} \}$

(Borel) G < Diff(N) finite $\implies G \hookrightarrow \text{Diff}(N) \to \text{Out}(\pi)$ injective.

Consequently, $1 \leq s(N) \leq |Out(\pi)|$ and $s(N) = \max \{ |G|: G < Out(\pi) \text{ lifts } \int_{G \leftarrow Out(\pi)}^{\sigma} \int_{P}^{Diff(N)} \}$

• For n = 2, $Out(\pi) \cong Mod(M)$. (Dehn-Nielsen-Baer)

• For $n \ge 3$, $Out(\pi) \cong Isom(M)$. (Mostow rigidity)

Nielsen realization/exotic smooth structures

 $M = \mathbb{H}^n / \pi$; N exotic smooth structure

 $1 \leq s(N) := \max \{ |G| : G < \text{Diff}(N) \text{ finite} \} \leq |\text{Out}(\pi)|$

<u>Theorem</u> (Farrell-Jones). $\exists M, N \text{ so that } s(N) < |Out(\pi)|.$

- They consider $N = M \# \Sigma$ for $\Sigma \in \Theta_n$.
- They show $\text{Diff}(N) \rightarrow \text{Out}(\pi)$ is not surjective.
- Consequently, $\text{Diff}(N) \rightarrow \text{Out}(\pi)$ does not split.

<u>Theorem</u> (Bustamante-T). For each $d \ge 2$, $\exists M, N$ so that $s(N) \le \frac{1}{d} |Out(\pi)|$.

- The examples $N = M \# \Sigma$ do not work for $d \geq 3$.
- Show $\operatorname{Im}[\operatorname{Diff}(N) \to \operatorname{Out}(\pi)] < \operatorname{Out}(\pi)$ has index $\geq d$.
- Consequently, no subgroup $G < Out(\pi)$ of index $\leq d$ lifts to Diff(N).

An exotic smooth structure

 $M = \mathbb{H}^n / \pi$; N exotic smooth structure

 $s(N) := \max \{ |G| : G < Diff(N) \text{ finite} \}$

<u>Theorem</u> (Bustamante-T). For each $d \ge 2$, there exists M, N so that $s(N) \le \frac{1}{d} |Out(\pi)|$.

About the Proof

 $M = \mathbb{H}^{n}/\pi ; \quad N_{\gamma,\varphi} = M \setminus S^{1} \times D^{n-1} \cup S^{1} \times D^{n-1}$ $\underline{\text{Want}}: \alpha \not\in \text{Im}[\text{Diff}(N_{\gamma,\varphi}) \to \text{Out}(\pi)], \text{ order}(\alpha) = d.$ $\underline{\text{Key observation}}: \text{ If } \exists f \in \text{Diff}(N_{\gamma,\varphi}) \text{ inducing } \alpha \in \text{Out}(\pi) \cong \text{Isom}(M)$ then $N_{\gamma,\varphi}$ and $N_{\alpha(\gamma),\varphi}$ are *concordant* smooth structures.

$$M \simeq N_{\Upsilon,\phi} \xrightarrow{f^{-1}} N_{\Upsilon,\phi} \xrightarrow{\alpha} N_{\alpha(\Upsilon),\phi} \simeq M$$

homeomorphism, homotopic to id_M

Question

Does there exist M with $|\text{Isom}(M)| \gg 1$ and N exotic smooth structure so that s(N)=1?

Equivalently, Diff(N) has no nontrivial finite order element.

Equivalently, $\text{Diff}(N) \to \text{Out}(\pi)$ is trivial.

Thank you.