Recognising HER LO Open Book Foliations Vera Vértesi (University of Vienna)

OVERVIEW

- open book foliation" $=$ "open bode $\cap \operatorname{sinface}$ \uparrow
oriented singular foliation
Question: Which oriented singular foliations are open bode foliations?

PLAN:
\rightarrow braid foliations
\rightarrow open book foliations
\rightarrow algorithm

BRAID FOLIATIONS
Bennequin, Binman. Menasco, Latount ain
\mathbb{R}^{3} w/ cylindrical coordinates $(z, r, v) \in \mathbb{R}^{2} \times \mathbb{R}_{\geqslant 0} \times S^{1} / \sim$

- $H_{t}:=\{v=t\}$ half planes
- they intersect in the z-axis

BRAID FOLIATIONS
Bennequin, Binman. Menasco, Katount ain
\mathbb{R}^{3} w/ cylindrical coordinates $(z, r, v) \in \mathbb{R} \times \mathbb{R}_{\geqslant 0} \times S^{1} / \sim$

- $H_{t}:=\{v=t\}$ half planes
- they intersect in the z-axis
- take a surface $\Sigma \hookrightarrow \mathbb{R}^{3}$

BRAID FOLIATIONS
Bennequin, Binman. Menasco, Katount ain
\mathbb{R}^{3} w/ cylindrical coordinates $(z, r, v) \in \mathbb{R} \times \mathbb{R}_{\geqslant 0} \times S^{1} / \sim$

- $H_{t}:=\{v=t\}$ half planes
- they intersect in the z-axis
- take a surface $\Sigma \hookrightarrow \mathbb{R}^{3}$
\& look at its intersection w/ $H_{t} \quad t=\pi$
z-axis

BRAID FOLIATIONS
Bennequin, Binman. Menasco, Katount ain
\mathbb{R}^{3} w/ cylindrical coordinates $(z, r, v) \in \mathbb{R} \times \mathbb{R}_{\geqslant 0} \times S^{1} / \sim$

- $H_{t}:=\{v=t\}$ half planes
- they intersect in the z-axis
- take a surface $\Sigma \hookrightarrow \mathbb{R}^{3}$
\& look at its intersection w/ $H_{t} \quad t=5 \pi / 4$

BRAID FOLIATIONS
Bennequin, Binman. Menasco, Katount ain
\mathbb{R}^{3} w/ cylindrical coordinates $(z, r, v) \in \mathbb{R} \times \mathbb{R}_{\geqslant 0} \times S^{1} / \sim$

- $H_{t}:=\{v=t\}$ half planes
- they intersect in the z-axis
- take a surface $\Sigma \hookrightarrow \mathbb{R}^{3}$
\& look at its intersection w/ $H_{t} \quad t=3 \pi / 2$
z - axis

BRAID FOLIATIONS
Bennequin, Binman. Menasco, Katount ain
\mathbb{R}^{3} w/ cylindrical coordinates $(z, r, v) \in \mathbb{R} \times \mathbb{R}_{\geqslant 00} \times S^{1} / \sim$

- $H_{t}:=\{v=t\}$ half planes
- they intersect in the z-axis
- take a surface $\Sigma \hookrightarrow \mathbb{R}^{3}$
\& look at its intersection w/ H_{t} gives a singular foliation on Σ

BRAID FOLIATIONS
Bennequin, Binman. Menasco, Katount ain
\mathbb{R}^{3} w/ cylindrical coordinates $(z, r, v) \in \mathbb{R} \times \mathbb{R}_{\geqslant 00} \times S^{1} / \sim$

- $H_{t}:=\{v=t\}$ half planes
- they intersect in the z-axis
- take a surface $\Sigma \hookrightarrow \mathbb{R}^{3}$
\& look at its intersection w/ H_{t} gives a singular foliation on Σ : $\mathcal{F}_{\text {braid }}$ singularities:

node
z - axis

BRAID FOLIATIONS
Bennequin, Binman. Menasco, Katount ain
\mathbb{R}^{3} w/ cylindrical coordinates $(z, r, v) \in \mathbb{R} \times \mathbb{R}_{\geqslant 0} \times S^{1} / \sim$

- $H_{t}:=\{v=t\}$ half planes
- they intersect in the z-axis
- take a surface $\Sigma \hookrightarrow \mathbb{R}^{3}$
\& look at its intersection w/ H_{t} gives a singular foliation on Σ : $\mathcal{F}_{\text {bard }}$ singularities:

node saddle

BRAID FOLIATIONS
Bennequin, Binman. Menasco, Katount ain
\mathbb{R}^{3} w/ cylindrical coordinates $(z, r, v) \in \mathbb{R} \times \mathbb{R}_{\geqslant 0} \times S^{1} / \sim$

- $H_{t}:=\{v=t\}$ half planes
- they intersect in the z-axis
- take a surface $\Sigma \hookrightarrow \mathbb{R}^{3}$
\& look at its intersection w/ H_{t} gives a singular foliation on Σ : $\mathcal{F}_{\text {bard }}$ singularities:

node saddle center

BRAID FOLIATION - SINGULARITIES \& ORIENTATION
we can orient the leaves:
\Rightarrow two types of nodes

Source
sink \boldsymbol{x}^{*}
"max"
๑)
"min"

BRAID FOLIATION - SINGULARITIES \& ORIENTATION
there is also two types of saddles

but we cannot distinguish them just from the foliation

BRAID FOLIATION - GETTING RID OF CIRCLES if we have cincles in F braid:

BRAID FOLIATION - GETTING RID OF CIRCLES if we have circles in Farad:

push it through the z-axis

BRAID FOLIATION - GETTING RID OF CIRCLES if we have cincles in $F_{\text {braid }}:$

push it through the z-axis \Rightarrow the circle breath into pieces
if we have cincles in F braid

push it through the z-axis
\Rightarrow the circle breasts into pieces \& no more nearby cincless are created:

\& it dills an interval-waths of circles
\Rightarrow can remove all circles by finitelly many finger-moves

WHAT BRAID FOLIATIONS ARE USED FOR?

- Bennequin 1980: $\left(\mathbb{R}^{3}, \xi=\operatorname{Ger}(d z-y d x)\right)$ is tight
- Birman - Menasco 1990s:- Mankor Theorem w/0 stabilisation
- construction of transuensaly nonsimple Enots
- Dynitor - Prasdor 2018: computing Legendrian gid number
- LaFountrin - Menasco, Dynizor-Prasolor 2013 genenaliscd Yones conjecture
M^{3}

\Rightarrow We can think of $M \backslash B$ as a mapping cylinder of (S, h) :

$$
S \times I /(x, 1) \sim(h(x), 0)
$$

\& we obtain M by further identifying

$$
\begin{aligned}
(x, t) \sim\left(x, t^{\prime}\right) & x \in \partial S \\
& t, t^{\prime} \in I
\end{aligned}
$$

Open Book Decompositions - Examples

1) $S^{3} \subseteq \frac{\mathbb{C}^{2}}{\left(z_{1}, z_{2}\right)}$

$$
\pi=\frac{z_{1}}{\left|z_{1}\right|}
$$

2) $S^{3} \subseteq \mathbb{T}^{2}$

3) $\pi-\frac{z_{1} \bar{z}_{2}}{\left|z_{1} \bar{z}_{2}\right|}$
(annulus, D_{γ}^{-1})

Open Book Decompositions - Properties

- any 3-manifold admits an open bor \& open books describing the same 3-manifold are related by stabilisation

$$
\text { 3-manifolds } \leftrightarrow \text { open boot decomposition/ stabilisation }
$$

- open books actually describe contact 3-manifolds \& open boots describing the same contact 3-manifold are related by positive stabilisation

$$
\text { contact 3-manifolds } \leftrightarrow \text { open boot decomposition }
$$

positive stabilisation

OPEN BOOK FOLIATIONS

- take a surface $\Sigma c M^{3}$
\& look at its intersection w/ S_{t}

OPEN BOOK FOLIATIONS

- take a surface $\Sigma \hookrightarrow M^{3}$
\& look at its intersection w/ S_{t}

OPEN BOOK FOLIATIONS

- take a surface $\Sigma \hookrightarrow M^{3}$
\& look at its intersection w/ S_{t} gives a singular foliation on Σ : $\mathcal{F}_{\text {ob }}$
singularities:

node

saddle

center
\& just as before one can get rid of circle leaves \& thus centers

WHAT OPEN BOOK FOLIATIONS ARE USED FOR 2.

- Pavelstu: Mantor theorem for braids in general open books
- Yto-Mhawamuro: - better understanding of open boots of oventuristed contact structures
- computing self-lineing number
- Licata - V: defined a nicely gluable version of open boots for 3-manifolds w/ bdry
- Alishahi-Földváni - Hendrits - Pettova - V: define gluable contact invariant in bordered Flor homology
Key: understand open book foliations

OPEN BOOK FOLIATION - PROPERTIES
no circles \Longrightarrow no centers

So: after removing all circles we get \rightarrow oriented singular foliation $F_{\text {ob }}$
 on Σ with singularities that are either nodes or saddles

OPEN BOOK FOLIATION - PROPERTIES
no circles \Rightarrow no centers \odot
So: after removing all circles we get \rightarrow oriented singular foliation Fob
 on Σ with singularities that are either nodes or saddles

\rightarrow the leaves are indexed by a circle (coming from the S_{v})

OPEN BOOK FOLIATION - PROPERTIES
no circles \Rightarrow no centers

So: after removing all cincles we get \rightarrow oriented singular foliation $F_{o b}$
 on Σ with singularities that are either nodes or saddles
 (coming from the S_{v})
no circles \Longrightarrow no centers

So: after removing all circles we get \rightarrow oriented singular foliation $F_{\text {ob }}$
 on Σ with singularities that are either nodes or saddles
 (coming from the S_{v})

OPEN BOOK FOLIATION - PROPERTIES
no circles \Rightarrow no centers

So: after removing all cincles we get \rightarrow oriented singular foliation $F_{o b}$
 on Σ with singularities that are either nodes or saddles
 (coming from the S_{v})

OPEN BOOK FOLIATION - PROPERTIES
no circles \Rightarrow no centers

So: after removing all cincles we get \rightarrow oriented singular foliation $F_{\text {ob }}$
 on Σ with singularities that are either nodes or saddles
 (coming from the S_{v})

OPEN BOOK FOLIATION - PROPERTIES
no circles \Rightarrow no centers

So: after removing all cincles we get \rightarrow oriented singular foliation $F_{\text {ob }}$
 on Σ with singularities that are either nodes or saddles
 (coming from the S_{v})

OPEN BOOK FOLIATION - PROPERTIES
no circles \Rightarrow no centers

So: after removing all cincles we get \rightarrow oriented singular foliation F_{ob}
 on Σ with singularities that are either nodes or saddles
 (coming from the S_{v})

OPEN BOOK FOLIATION - PROPERTIES
no circles \Longrightarrow no centers
 on \sum with singularities that are either nodes or saddles
 (coming from the S_{v})

OPEN BOOK FOLIATION - PROPERTIES
no circles \Rightarrow no centers
 on \sum with singularities that are either nodes or saddles
 (coming from the S_{v})

OPEN BOOK FOLIATION - PROPERTIES
no circles \Rightarrow no centers
 on \sum with singularities that are either nodes or saddles
 (coming from the S_{v})

OPEN BOOK FOLIATION - PROPERTIES
no circles \Longrightarrow no centers

So: after removing all circles we get \rightarrow oriented singular foliation F_{ob}
 on \sum with singularities that are either nodes or saddles

OPEN BOOK FOLIATION - PROPERTIES
no circles \Longrightarrow no centers
 on Σ with singularities that are either nodes or saddles

OPEN BOOK FOLIATION - PROPERTIES
no circles \Rightarrow no centers
 on Σ with singularities that are either nodes or saddles

\rightarrow the leaves are indexed by a circle (coming from the S_{v})

OPEN BOOK FOLIATION - PROPERTIES
no circles \Rightarrow no centers
 on \sum with singularities that are either nodes or saddles
 (coming from the S_{v}) \& ARE BACK... AD

RECOGNISING OPEN BOOK FOLIATIONS
Given: F oriented singular foliation on Σ with singularities that are either nodes or saddles

Question: Is F an open boor foliation?

Necessary: leaves ane indexed by the circle, so that near each node the indices go around Once:

from the other side

RECOGNISING OPEN BOOK FOLIATIONS
Question: Is F an open boor foliation?
(seemingly)

Simpler Question Can the leaves be indexed by the circle, so that near each node the indices go around once:

RECOGNISING OPEN BOOK FOLIATIONS
Question: Is F an open book foliation?

$$
\Uparrow \text { Construction }(\text { Licata }-V)
$$

(seemingly)
Simpler Question Can the leaves be indexed by the circle, so that near each node the indices go around once:

RECOGNISING OPEN BOOK FOLIATIONS
So this must be an open book foliation:

RECOGNISING OPEN BOOK FOLIATIONS
So this must be an open book foliation:

indeed:

RECOGNISING OPEN BOOK FOLIATIONS
So this must be an open book foliation:

indeed:

$\leadsto S^{2} \hookrightarrow S^{3}$

RECOGNISING OPEN BOOK FOLIATIONS
So this must be an open book foliation:

indeed:

$\leadsto S^{2} \hookrightarrow S^{3}$

RECOGNISING OPEN BOOK FOLIATIONS
So this must be an open book foliation:

indeed

RECOGNISING OPEN BOOK FOLIATIONS
So this must be an open book foliation:

indeed:

RECOGNISING OPEN BOOK FOLIATIONS - COMPLEXITY

- it is enough to find a cyclic order of the saddles. (the order can then be extended to all the leaves)
- each node gives a partial cyclic order of the saddles \& extending partial cyclic onders to a (total) cyclic order is NP-complete in general (Galil-Megdido 1977)
- the problem can be rephrased to finding maximal acyclic subgraph of an oriented graph D associated to \mathcal{F} \& these are NP-complete in general (Than 1972)
- the problem can be rephrased to finding the minimal genus surface D can be embedded into \& these are NP-complete in general (Thomasse 1988)

RECOGNISING OPEN BOOK FOLIATIONS - ALGORITHM
Thm (Kiss $-V)$: There is a polynomial algorithm that noognises whether a given oriented singular foliation \mathcal{F} is an open book foliation.
(=there is a "good" cyclic order for the saddles) Morover if there is such a cyclic order, then it can be found in polynomial time.

Rue: usually then is more than one cyclic order, \& the algorithm only finds one of them.

Bypass - move:

$$
\longrightarrow
$$

 \mathcal{F}_{ℓ} \mathcal{F}_{r}

Lemma 1 Unless F_{e} or F_{r} has circle leaves we have $\mathcal{F}_{\text {is }}$ an $O B F \Leftrightarrow \mathcal{F}_{r}$ is an $O B F \Leftrightarrow \mathcal{F}_{l}$ is an $O B F$

RECOGNISING OPEN BOOK FOLIATIONS - IDEA
Lemma 1 Unless \mathcal{F}_{e} or F_{r} has circle leaves we have
$\mathcal{F}_{\text {is }}$ an $O B F \Leftrightarrow \mathcal{F}_{r}$ is an $O B F \Leftrightarrow \mathcal{F}_{l}$ is an $O B F$
Lemma 2: By a finite sequence of bypass moves we can turn amy foliation into one where 7 node w/ a leaf to EVERY
saddle:

\& hex it's easy to tell if its an OBF
(and the edges are idenifird in pairs)
IN FACT WE

THEM IN TERMS OF THE GLUING

We need a cyclic order that extends:

We need a cyclic order that extends:

RECOGNISING OPEN BOOK FOLIATIONS - EXAMPLE

We need

RECOGNISING OPEN BOOK FOLIATIONS - EXAMPLE

9 nodes \uparrow, 9 saddles connected to 7 saddle, let's increase!

connected to 7 saddles, let's increase!

9 nodes $\uparrow, 9$ saddles
connected to 7 saddbs, let's increase!

9 nodes, 9 saddles
\Rightarrow only 1 possible cyclic order

9 nodes, 9 saddles
\Rightarrow only 1 possible cyclic order:

but, the order around this node is

docon't go around once
So F was NOT an open book foliation! \&TOD TAD

6 nodes, 6 saddles

connected to 5 saddles

connected to 5 saddles

unique cyclic order \& it is "good"

6 nodes, 6 saddles

RECOGNISING OPEN BOOK FOLIATIONS - EXAMPLE

unique cyclic order \& it is "good"

6 nodes, 6 saddles

getting back the "good" order
Rune: the change in the cyclic order does not have to be "local", it can change even betecel saddles that do not move.

OPEN QUESTIONS

- Can one recognise braid foliations?
(done for: $\Sigma=S^{2}$ or T^{2})
- Can one recognise open boot foliations coming from embeddings into a fixed open book?
- Can one enumerate all possible embeddings giving the same open book foliation?
$\binom{$ for braid foliations, once the order of saddles is fixed }{ there is a unique embedding (Birman-Finkelstein 1998) }

THANKS FOR YOUR ATTENTION!
 QUESTIONS?

