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Equivalence of links

Two links, L and L', are equivalent if there is an ambient isotopy
between them in S°.

Figure: The figure—8 knot is equivalent to its mirror image.
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Equivalence of links

Two links, L and L', are equivalent if there is an ambient isotopy
between them in S°.

Figure: The figure—8 knot is equivalent to its mirror image.

An equivalence of links L and L’ induces a homeomorphism between
their respective complements, M, = S*\ Land M, = S3\ L'.
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Links and their complements

Question: If two link complements are homeomorphic, then are the
corresponding links equivalent?
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Links and their complements

Question: If two link complements are homeomorphic, then are the
corresponding links equivalent?

Answer: Not always!

M, ( )
Cut along Rotate and
Q the disk reglue

FC(% ()

Figure: Two links whose complements are homeomorphic via a Dehn-twist
along a disk bound by an unknotted component. This procedure frequently
results in links that are not equivalent. The local picture of the corresponding
links is given here.
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Links and Their Complements

Question: Is there a set of links S such that if Ly, L, € S and S3 \ L;
is homeomorphic to S3 \ L, then L is equivalent to L»? (Links in the
set § are determined by their complements.)
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Links and Their Complements

Question: Is there a set of links S such that if Ly, L, € S and S3 \ L;
is homeomorphic to S3 \ L, then L is equivalent to L»? (Links in the
set § are determined by their complements.)

Knots are determined by their complements. I

Theorem (Mangum-Stanford, 2001)

Homologically trivial and Brunnian links are determined by their
complements.
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Links and Their Complements

Question: Is there a set of links S such that if Ly, L, € S and S3 \ L;

is homeomorphic to S3 \ L, then L is equivalent to L»? (Links in the
set § are determined by their complements.)

Knots are determined by their complements. I

Theorem (Mangum-Stanford, 2001)

Homologically trivial and Brunnian links are determined by their
complements.

Any others?
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Links and Their Complements

Question: Is there a set of links S such that if Ly, L, € S and S3 \ L;

is homeomorphic to S3 \ L, then L is equivalent to L»? (Links in the
set § are determined by their complements.)

Knots are determined by their complements. I

Theorem (Mangum-Stanford, 2001)

Homologically trivial and Brunnian links are determined by their
complements.

Any others? YES! Flat fully augmented links (flat FALS).
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Fully Augmented Links (FALS)

Figure: A link diagram on the left, its corresponding FAL diagram in the
middle, and its corresponding flat FAL on the right. Crossing circles labeled
by ¢; in the middle diagram.
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Fully Augmented Links (FALS)

Figure: A link diagram on the left, its corresponding FAL diagram in the
middle, and its corresponding flat FAL on the right. Crossing circles labeled

by ¢; in the middle diagram.

Any reasonable FAL complement decomposes into a pair of identical
right-angled ideal hyperbolic polyhedra with totally geodesic faces.
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Fully Augmented Links (FALS)

Figure: A link diagram on the left, its corresponding FAL diagram in the
middle, and its corresponding flat FAL on the right. Crossing circles labeled
by ¢; in the middle diagram.

Any reasonable FAL complement decomposes into a pair of identical
right-angled ideal hyperbolic polyhedra with totally geodesic faces.

Brief Background and History:
@ Geometry of augmented links first studied by Adams (1984).
@ Geometric decomposition into ideal polyhedra (Agol & D.
Thurston, 2004).
@ Geometry and topology of FALs (Purcell, Futer—Purcell, Flint,
Trapp and REU students, Hoffman—Worden, others).
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Flat FALs are determined by their complements

Technique: Leverage the topology and geometry of totally geodesic
surfaces and cusps in a flat FAL complement.

(a) A crossing disk  (b) A longitudinal disk (¢) A singly-separated disk

Figure: Types of non-reflection, thrice-punctured spheres
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Flat FALs are determined by their complements

Technique: Leverage the topology and geometry of totally geodesic
surfaces and cusps in a flat FAL complement.

o) T

& S

(a) A crossing disk  (b) A longitudinal disk (¢) A singly-separated disk

Figure: Types of non-reflection, thrice-punctured spheres

Theorem (Millichap—Trapp)

Let F and F' be two flat FALs. ThenS®\ F and S® \ F' are
homeomorphic if and only if F and F' are equivalent as links.
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Thank You!

My contact info: Christian.Millichap@furman.edu

Preprint will be up on arXiv soon!

%2 |28
o'e L&

Figure: A homeomorphism between FAL complements. The resulting links
are equivalent!
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Plat Representations of the Unknot

Deepisha Solanki

University at Buffalo

9th December 2022, Tech Topology Conference
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Making knots from braids: Plats

We have a method of constructing knots from braids, as outlined below:
Definition

A 2n-braid completed by 2n simple arcs, to make a link, as shown in the
figure below, is called a plat or 2n-plat.
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We have a method of constructing knots from braids, as outlined below:

A 2n-braid completed by 2n simple arcs, to make a link, as shown in the
figure below, is called a plat or 2n-plat.
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%

n is then called the bridge index of the plat. J
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Birman, 1976

Any two plat representatives of a knot K are related to each other via the
following moves, which take plats to plats

(i) Braid isotopies

(i1) Double coset moves

(iif) Addition or deletion of a trivial loop (stabilisation or destabilisation)
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Stabilisation

Stabilising a 2n plat means adding a trivial loop to the plat, thus increasing
its bridge index by 1, as shown below:

STABILISATION

; —

‘ ’ ‘ ’ L ‘ J ‘ ’
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@ These are plat representations of the unknot which can not be
simplified to the standard 0-crossing representation of the unknot
without stabilisation!!
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@ These are plat representations of the unknot which can not be
simplified to the standard 0-crossing representation of the unknot
without stabilisation!!
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@ These are plat representations of the unknot which can not be
simplified to the standard 0-crossing representation of the unknot
without stabilisation!!

@ Connect summing these plats to a plat diagram of any knot, we can
observe the same phenomenon for that knot class, thus making the

need to stabilise all pervasive.
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The main result: Avoiding Stabilisation

1

Any plat representative of the unlink can be simplified to the standard,

0-crossing diagram of the unlink via the following non index-increasing
moves:

(i) Braid isotopies
(ii) Double coset moves

(i) Destabilisation (deletion of a loop)
(iv) The flip move
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We found a new move, called the flip move, which obviates the need to
stabilise.
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The flip move in action

L)

9th December 2022, Tech Topology Co
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Contact info:
solankideepisha@gmail.com

deepisha@buffalo.edu
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Purely pseudo-Anosov subgroups
of fibered 3-manifold groups

w/ Chris Leininger



Hyperbolic group:
Cayley graph with thin triangles



Lemma (Gromov)

G hyperbolic = no BS subgroups



Lemma (Gromov)

G hyperbolic = no BS subgroups

Gromov'’s “no BS” Conjecture:

Does no BS subgroups = hyperbolic?
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Lemma (Gromov)

G hyperbolic = no BS subgroups

Gromov'’s “no BS” Conjecture:

Does no BS subgroups = hyperbolic?
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Finitely Presented 1 (M)




Lemma (Gromov)

G hyperbolic = no BS subgroups

Gromov'’s “no BS” Conjecture:

Does no BS subgroups = hyperbolic?

False True
Finitely Presented T (M3) CAT(0)




Birman Exact Sequence

1 — m;(S) — MCG(S°) — MCG(S) — 1

o~




Birman Exact Sequence

1 — m;(S) — MCG(S°) — MCG(S) — 1
V
G

o~




Birman Exact Sequence

1 — m(S) — MCG(S°) — MCG(S) — 1
V V
E — G

o~




Birman Exact Sequence

1 — m1(S) — MCG(S°) — MCG(S) — 1
| V V
m1(S) — E — G

o~




Birman Exact Sequence

1 — m;(S) — MCG(S°) — MCG(S) — 1
| V V
m1(S) — E — G

E no BS subgroups < G purely pseudo-Anosov



Birman Exact Sequence

1 — m;(S) — MCG(S°) — MCG(S) — 1
| V V
m1(S) — E — G

E no BS subgroups < G purely pseudo-Anosov

E hyperbolic & G convex cocompact



Convex Cocompact = finitely generated + purely pA



Convex Cocompact = finitely generated + purely pA

Farb-Mosher: Does fin. gen. 4+ purely pA = convex cocompact?



nice geometry o mixing dynamics
Convex Cocompact = finitely generated + purely pA

Farb-Mosher: Does fin. gen. 4+ purely pA = convex cocompact?

m1(S) — MCG(S5°) — MCG(S)
| V V Equivalent to
m1(8) » E — G “no BS Conjure” for E

E no BS subgroups < G purely pseudo-Anosov

E hyperbolic & G convex cocompact



Convex Cocompact = finitely generated + purely pA

Farb-Mosher: Does fin. gen. 4+ purely pA = convex cocompact?

Leininger-R. / Dowdall-Kent-Leininger:
Yes, for subgroups of fibered 3-manifold groups.
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MCG(S)
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1 — m(5) — MCG(S°) — MCG(S) — 1
|l V V
T1(S) — E — (f)

'\_/
f € MCG(S)



1 — m,(S) — MCG(S®) — MCG(S) — 1

|l V V
T(S) — E — (f)
|12
Mf T (Mf)
~_

f € MCG(S)



1 — m,(S) — MCG(S®) — MCG(S) — 1

I V V
T(S) — E — (f)
|12
Mf T (Mf)
V
~_ I

f € MCG(S)



Theorem (Dowdall-Kent-Leininger + Leininger-R.)

I' fin. gen. + purely pAin MCG(S°) = I' convex cocompact



M; non-hyp
Theorem (Dowdall-Kent-Leininger + Leininger-R.)

I' fin. gen. + purely pAin MCG(S°) = I' convex cocompact



Theorem (Leininger -R.)
When M¢ is not hyperbolic,

I'<my (Mf) f.g. + purely pA in MCG(S®)
U

[' convex cocompact

47
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A New Condition on the Jones Polynomial of a Fibered

Positive Link

Lizzie Buchanan

Dartmouth College

December 9, 2022
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The End

Theorem (B., 2022)

The Jones polynomial Vi of a fibered positive knot K satisfies

max deg Vk < 4 mindeg V.
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Positivity Classification: |s 12,145! positive?

Image from Knotlnfo

If this knot is positive,

StOimenOW /\

w

then it is positive and fibered, 1

N <

and so maxdeg,, < 4mindeg,, .
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Positivity Classification: |s 12,145! positive?

Image from Knotlnfo

If this knot is positive,

StOimenOW /\

then it is positive and fibered,

N <

and so maxdeg,, < 4mindeg,, .

—

But, Jones polynomial of 12,14g! is:

t3 4+ t0 — 2¢7 4+ 318 — 37 + 310 — 3¢l 4 212 413

Lizzie Buchanan (Dartmouth College) A new condition on the Jones polynomial of a fibered | December 9, 2022



Positivity Classification: |s 12,145! positive?

Image from Knotlnfo

If this knot is positive,

StOimenOW /\

then it is positive and fibered,

N <

and so maxdeg,, < 4mindeg,, .

—

But, Jones polynomial of 12,14g! is:
t3 4 t% — 2¢7 4+ 3¢8 — 3¢7 + 3¢10 — 3¢l 4 212 413

with maxdeg,, # 4mindeg,, , and therefore our knot isn't positive.

Lizzie Buchanan (Dartmouth College) A new condition on the Jones polynomial of a fibered | December 9, 2022



Positivity classification

All seven of the 12-crossing mystery knots are not positive.

Lizzie Buchanan (Dartmouth College) A new condition on the Jones polynomial of a fibered | December 9, 2022



Smoothings

Crossing A-smoothing B-smoothing
Diagram A-state B-state

S5
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Natural bound for positive diagrams

For a positive diagram D, Kauffman state-sum model of Jones polynomial tells us:

(number of circles) _q
in B-state of D

2

crossing )

<
maxdegVD - (number of D
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Natural bound for positive diagrams

For a positive diagram D, Kauffman state-sum model of Jones polynomial tells us:

(number of circles) _q
in B-state of D

2

crossing )

<
maxdegVD - (number of D

We want to replace these diagram dependent quantities
with something that is diagram independent

Lizzie Buchanan (Dartmouth College) A new condition on the Jones polynomial of a fibered | December 9, 2022



A-State Graphs

Diagram A-state A-state graph Reduced A-state graph

O
/ )
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Balanced Diagrams

Diagram A-state A-state graph Reduced A-state graph

¢

Balanced Diagram (roughly): Link diagram whose reduced A-state graph is a tree,
and all edges in A-state graph come in pairs

Lizzie Buchanan (Dartmouth College) A new condition on the Jones polynomial of a fibered | December 9, 2022



Key Theorem

In a Balanced diagram D, the number of circles in the B-state is equal to the
number of link components .

5556

Figure: (Left to right:) A Balanced diagram, its A-state, its B-state, and its components
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Burdened Diagram

Diagram A-state A-state graph  Reduced A-state graph

e .

/
< _
9 O—0

O

Burdened Diagram (roughly): Underlying reduced A-state graph is a tree, can
smooth crossings away to obtain a Balanced diagram
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Burdened Diagram

Diagram A-state A-state graph  Reduced A-state graph

e .

/
< _
9 O—0

O

Burdened Diagram (roughly): Underlying reduced A-state graph is a tree, can
smooth crossings away to obtain a Balanced diagram

EVERY reduced positive diagram of a fibered positive link is a Burdened diagram

Lizzie Buchanan (Dartmouth College) A new condition on the Jones polynomial of a fibered | December 9, 2022



The End

Theorem (B., 2022)

The Jones polynomial V| of a fibered positive link with n link components satisfies

—1
maxdeg V; < 4mindeg V| + k >

In particular, the Jones polynomial Vi of a fibered positive knot K satisfies

max deg Vi < 4 mindeg V.
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The End

Theorem (B., 2022)

The Jones polynomial V| of a fibered positive link with n link components satisfies

—1
maxdeg V; < 4mindeg V| + k >

In particular, the Jones polynomial Vi of a fibered positive knot K satisfies

max deg Vi < 4 mindeg V.

Thank youl
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Higher Complex Structures and
SL(3,R) Hitchin Components

Alex Nolte
Rice University

This material is based upon work supported by the National Science Foundation under Grant No. 1842494 and Grant No.
2005551. Thanks to Katherine Booth for illustrations.



Teichmuller Space

T(S): {complex structures on S}/Diffy(S5)
>~{constant curvature — 1 metrics on S}/Diffy(5)

>~{discrete, faithful p: m1(S) — PSL(2,R)}/conjugation



(PSL(n,R)) Hitchin Components

Hit,(S):
@ Special component of Hom(m1(S), PSL(n,R))/PSL(n, R)

@ Remarkable properties analogous to 7(S)

Question
What geometric content does p € Hit,(S) have?



Rephrasing Almost Complex Structures

Jo € End(T}S) with J2 = —Id is determined by either:
@ +/ eigenspace V!,

e Polynomials /, on T**S vanishing on V!



Higher (Degree) Complex Structures

@ n-complex structure I:

» for every point in x, a special ideal /, of codimension n in
polynomials on T*¢S.

@ Moduli space:
» T"(S) : {n-complex structures on S}/Hamg(T*S)

Conjecture (Fock-Thomas '18)
There is a natural diffeomorphism 7"(S) = Hit,(S)




Results (N. '22)

@ New realization of n-complex structures

@ Basic structure of 7"(S):

» Manifold structure
> Tn(S) ~ R—x(5)dim(PSL(n,R))

» Complex structure, Kahler metrics

» Holomorphic vector bundle over T(S)
» Structure of the Mod(S)-action

o Natural diffeomorphism 773(S) = Hit3(S)



Extending Group Actions on Metric Spaces
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Extending Group Actions

G a group, H < G. Suppose H acts on a metric space R.

O e = £ DA
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Extending Group Actions

G a group, H < G. Suppose H acts on a metric space R.

Is there an action of G on a (possibly different) metric space which
“extends” H ~ R?
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Extending Group Actions

G a group, H < G. Suppose H acts on a metric space R.

Is there an action of G on a (possibly different) metric space which
“extends” H ~ R?

Answer: Sometimes yes, sometimes no.

Goal: Understand the sufficient conditions for actions to extend.

Perlmutter (Brandeis) Extending Group Actions December 9, 2022 2/7




Formalizing the Problem

Definition (Abbott—Hume—Osin)

Let H be a subgroup of G and let H ~ R be an action of H on a metric
space R. An action G ~ S of G on a metric space S is an extension of R
iIf there exists a coarsely H-equivariant quasi-isometric embedding R — S.

Perlmutter (Brandeis) Extending Group Actions December 9, 2022 3/7




Example: Extension Exists

Let H < G be a finite subgroup.
Consider any action of H on any metric space R.

The trivial action of G on R is an extension of H ~ R.
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Example: No Extension

Consider the action Z ~ R given by x-r=x+r.

Z, is countable, so it is a subgroup of Sym(N), the group of all
permutations of natural numbers.

Every action of Sym(N) on a metric space S has bounded orbits (Cornulier
2006).

There does not exist a coarsely Z-equivariant map f : R — S because
Z. ~ R is unbounded.

Z, ~ R does not extend to an action of Sym(N).

Perlmutter (Brandeis) Extending Group Actions December 9, 2022 5/7



New Result

Goal is to focus on specific actions, rather than subgroup as a whole.

Theorem (P.)

Let G be a group generated by a subset X relative to a subgroup H, and
let H act on a metric space R. Let (G, X LU H) be hyperbolic. Suppose
for some rp € R there exists some constant C > 0 such that Vh € H,

dr(ro, hro) < Cd(1, h).

Then H ~ R can be extended to an action of G on another metric space.

d is the relative metric on (G, X LI H).
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New Result

Goal is to focus on specific actions, rather than subgroup as a whole.

Theorem (P.)

Let G be a group generated by a subset X relative to a subgroup H, and
let H act on a metric space R. Let I'(G, X LI H) be hyperbolic. Suppose
for some rp € R there exists some constant C > 0 such that Vh € H,

dr(ro, hro) < Cd(1, h).
Then H ~ R can be extended to an action of G on another metric space.

d is the relative metric on (G, X LI H).

New Goal: Find subgroups which admit actions with this condition.

Perlmutter (Brandeis) December 9, 2022 6/7



Thank Youl

O e = £ DA
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Thank you organizers!
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What is a planar algebra?

The planar algebra TL contains the algebras TL,, kK > 0, over C.

v
X = ﬂ
Figure: An element of TLj

index is 4

pul’ =2D
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Going from a planar algebra to a tensor category

@ Objects: Formal direct sums of projections (i.e., m € TL, such that

™ =1 and 7 = )

@ Morphisms: For 71, m projections, Hom(my, m) contains diagrams:

@ There's a notion of @ and ®.

Melody Molander Diagrammatic Presentations of Index 4 Subfactor Planar Algebras



Projections of the Temperley-Lieb Planar Algebra

o The Jones-Wenazl projections () ¢ TL, are the minimal
projections in TL defined recursively by:

U N\
)= | L) 4
| N
|
f(l‘)
7= o |5 |
(7 J,\(K)j
| 5

o Wenzl’s relation: f(¥) @ | = flk+1) g f(k=1)
@ Principal graph:

n
2 j'm J_cﬂ f(a) fw § (s)
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Find all the subfactor planar algebras of index 4 associated with the Asp 1

Dynkin diagram:

L2

(2n vertices)

Melody Molander Diagrammatic Presentations of Index 4 Subfactor Planar Algebras



Theorem (M.)

Fix n. Let w, be a 2nth root of unity. Let PA(U) be the planar algebra with

MY B NG,

generators: %) x| U

)Q) NG and relations:

Y

1.6‘12 . 2.|-—%+$ 3. 4 4'>*/_\ a. ’t&i—.(}

1o 4o y..+m
x| U* x| W
- fofeo W= T4 <] & U toh =y

5. | U | [=*nx|Ik | 6 x| w | U
S } ..-1\@\) ,p M‘U"} \ | 7' (%)) J

Then this is an /N\zn_l subfactor planar algebra of Y Y M/--{/WW'U
index 4 with principal graph: 9 bln)

A AR A A6
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Reference

Thank youl!
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