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Equivalence of links

Two links, L and L0, are equivalent if there is an ambient isotopy

between them in S3.

Figure: The figure–8 knot is equivalent to its mirror image.

An equivalence of links L and L0 induces a homeomorphism between

their respective complements, ML = S3 \ L and ML0 = S3 \ L0.
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Links and their complements

Question: If two link complements are homeomorphic, then are the

corresponding links equivalent?
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Links and their complements

Question: If two link complements are homeomorphic, then are the

corresponding links equivalent?

Answer: Not always!

Cut along
the disk

Rotate and 
reglue

ML ML0

Figure: Two links whose complements are homeomorphic via a Dehn-twist

along a disk bound by an unknotted component. This procedure frequently

results in links that are not equivalent. The local picture of the corresponding

links is given here.
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Links and Their Complements

Question: Is there a set of links S such that if L1, L2 2 S and S3 \ L1

is homeomorphic to S3 \ L2, then L1 is equivalent to L2? (Links in the

set S are determined by their complements.)

Theorem (Gordon–Luecke, 1989)

Knots are determined by their complements.

Theorem (Mangum–Stanford, 2001)

Homologically trivial and Brunnian links are determined by their

complements.

Any others? YES! Flat fully augmented links (flat FALs).
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Fully Augmented Links (FALS)

c1

c2 c3

Figure: A link diagram on the left, its corresponding FAL diagram in the

middle, and its corresponding flat FAL on the right. Crossing circles labeled

by ci in the middle diagram.
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Fully Augmented Links (FALS)

c1

c2 c3

Figure: A link diagram on the left, its corresponding FAL diagram in the

middle, and its corresponding flat FAL on the right. Crossing circles labeled

by ci in the middle diagram.

Any reasonable FAL complement decomposes into a pair of identical

right-angled ideal hyperbolic polyhedra with totally geodesic faces.
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Fully Augmented Links (FALS)

c1

c2 c3

Figure: A link diagram on the left, its corresponding FAL diagram in the

middle, and its corresponding flat FAL on the right. Crossing circles labeled

by ci in the middle diagram.

Any reasonable FAL complement decomposes into a pair of identical

right-angled ideal hyperbolic polyhedra with totally geodesic faces.

Brief Background and History:

Geometry of augmented links first studied by Adams (1984).

Geometric decomposition into ideal polyhedra (Agol & D.

Thurston, 2004).

Geometry and topology of FALs (Purcell, Futer–Purcell, Flint,

Trapp and REU students, Hoffman–Worden, others).
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Flat FALs are determined by their complements

Technique: Leverage the topology and geometry of totally geodesic

surfaces and cusps in a flat FAL complement.

(a) A crossing disk (b) A longitudinal disk (c) A singly-separated disk

Figure: Types of non-reflection, thrice-punctured spheres
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Flat FALs are determined by their complements

Technique: Leverage the topology and geometry of totally geodesic

surfaces and cusps in a flat FAL complement.

(a) A crossing disk (b) A longitudinal disk (c) A singly-separated disk

Figure: Types of non-reflection, thrice-punctured spheres

Theorem (Millichap–Trapp)

Let F and F 0 be two flat FALs. Then S3 \ F and S3 \ F 0 are

homeomorphic if and only if F and F 0 are equivalent as links.
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Thank You!

My contact info: Christian.Millichap@furman.edu

Preprint will be up on arXiv soon!

C1'

K1'

D4' Kf'

C'24

Kf C1

K1

D4

hmlC24

Figure: A homeomorphism between FAL complements. The resulting links

are equivalent!
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Legendrian Loops and Mapping Class Groups
James Hughes (UC Davis)
ofTech Topology Conference
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Legendrian LinksLagrangian Fillings

Legendrian (in( 1 =a(0wt =(S3.
x LxE Tx1=5x=NerIdydx)m

C &st

~

-Wiw Exact Lagrangian fillingL:
·27=1

·wa=0
· Xs is exact



drianLoops
Legendrian loops act on the set of exact Lagrangian fillings
by concatenation.

-*I~
Thi(Casals-Gao'20) The Legendrian torus (ints M(n,m)
n>,3,m> 6 admit infinitely many Lagrangian fillings.



#ariants

Cangeometry Emulgebraicinvariants

·Legendrian (intol Algebraic variety X(1)
Cbraid positive

· Exact Lagrangian Toric chart (KY**X(r)
filling of 1

·Legendrian Loop (chester) automorphism of X()



Legendrian Loops (Revisited
Them (H.22) The following cluster automorphism groups

are generated by Legendrian Loops and a
single contactomorphism:
- Aut(X((2, n)))=MCG) ( = Rn+2
- Aut(X((0))) =MCG).) = RuxRa
- Aut(X((0)) =MCG)..) =(0,0,4-
- Aut(X(((,n))) =(0,...,0.,p,t)-)

-* *E
r(a) N(V)

*conjectural for some values of it,n
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Purely pseudo-Anosov subgroups 
of fibered 3-manifold groups

w/ Chris Leininger



Hyperbolic group: 
Cayley graph with thin triangles
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Convex Cocompact ฺ finitely generated + purely pA

FarbȂMosher: Does fin. gen. + purely pA ฺ convex cocompact? 

ଵሺܵሻߨ ื ��
 לܵ ื ��
 ܵ

൏
ܩ

൏

ܧ

ൌ

ଵሺܵሻߨ ืื

ܧ ����������  ܩ convex cocompact

ܧ no BS subgroups  ܩ purely pseudo-Anosov

Equivalent to 
ǲ�������������ǳܧ�����

nice geometry mixing dynamics



Convex Cocompact ฺ finitely generated + purely pA

FarbȂMosher: Does fin. gen. + purely pA ฺ convex cocompact? 

LeiningerȂR. / DowdallȂKentȂLeininger:
Yes, for subgroups of  fibered 3-manifold groups.



ܵ



ܵ



ܵ

݂ א ��
ሺܵሻ

ܯ



ܵ

݂ א ��
ሺܵሻ

ܯ

ͳ ื ଵሺܵሻߨ ื ��
 לܵ ื ��
 ܵ ื ͳ

൏

݂



݂ א ��
ሺܵሻ

ܯ

ܵ
ͳ ื ଵሺܵሻߨ ื ��
 לܵ ื ��
 ܵ ื ͳ

൏

݂

൏

ܧ

ൌ

ଵሺܵሻߨ ืื



݂ א ��
ሺܵሻ

ܯ

ܵ
ͳ ื ଵሺܵሻߨ ื ��
 לܵ ื ��
 ܵ ื ͳ

൏

݂

൏

ܧ

ൌ

ଵሺܵሻߨ ืื

ሻܯଵሺߨ
؆

݂ λ-order



݂ א ��
ሺܵሻ

ܯ

ܵ
ͳ ื ଵሺܵሻߨ ื ��
 לܵ ื ��
 ܵ ื ͳ

൏

݂

൏

ܧ

ൌ

ଵሺܵሻߨ ืื

ሻܯଵሺߨ
؆

൏

Ȟ

݂ λ-order

f.g. + purely pA



ͳ ื ଵሺܵሻߨ ื ��
 לܵ ื ��
 ܵ ื ͳ

൏

݂

൏

ܧ

ൌ

ଵሺܵሻߨ ื

ሻܯଵሺߨ
؆

൏

Ȟ

Theorem (DowdallȂKentȂLeininger + LeiningerȂR.)
Ȟ fin. gen. + purely pA in MCG לܵ ֜ Ȟ convex cocompact

ื

݂ א ��
ሺܵሻ

ܯ

ܵ



ͳ ื ଵሺܵሻߨ ื ��
 לܵ ื ��
 ܵ ื ͳ

൏

݂

൏

ܧ

ൌ

ଵሺܵሻߨ ื

ሻܯଵሺߨ
؆

൏

Ȟ

Theorem (DowdallȂKentȂLeininger + LeiningerȂR.)
ܯ hyp ܯ non-hyp

Ȟ fin. gen. + purely pA in MCG לܵ ֜ Ȟ convex cocompact

ื

݂ א ��
ሺܵሻ

ܯ

ܵ



Theorem (Leininger ȂR.)
When ܯ is not hyperbolic,

Ȟ ൏ ଵߨ ܯ f.g. + purely pA in MCG לܵ
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A New Condition on the Jones Polynomial of a Fibered
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Lizzie Buchanan

Dartmouth College

December 9, 2022
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The End

Theorem (B., 2022)

The Jones polynomial VK of a fibered positive knot K satisfies

max degVK  4min degVK .
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Positivity Classification: Is 12n148! positive?

If this knot is positive,

Stoimenow

✏✏
then it is positive and fibered,

Buchanan

✏✏
and so max degVK

 4min degVK
.

Image from KnotInfo

But, Jones polynomial of 12n148! is:

t
3 + t

6 � 2t7 + 3t8 � 3t9 + 3t10 � 3t11 + 2t12 � t
13

with max degVK
⇥ 4min degVK

, and therefore our knot isn’t positive.
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Positivity classification

All seven of the 12-crossing mystery knots are not positive.
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Smoothings

Crossing A-smoothing B-smoothing

Diagram A-state B-state
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Natural bound for positive diagrams

For a positive diagram D, Kau↵man state-sum model of Jones polynomial tells us:

max degVD


⇣
crossing

number of D

⌘
+

⇣
number of circles
in B-state of D

⌘
� 1

2

We want to replace these diagram dependent quantities
with something that is diagram independent
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A-State Graphs

Diagram A-state A-state graph Reduced A-state graph
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Balanced Diagrams

Diagram A-state A-state graph Reduced A-state graph

Balanced Diagram (roughly): Link diagram whose reduced A-state graph is a tree,
and all edges in A-state graph come in pairs

Lizzie Buchanan (Dartmouth College) A new condition on the Jones polynomial of a fibered positive link December 9, 2022 8 / 11



Key Theorem

Theorem (B., 2022)

In a Balanced diagram D, the number of circles in the B-state is equal to the

number of link components .

Figure: (Left to right:) A Balanced diagram, its A-state, its B-state, and its components
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Burdened Diagram

Diagram A-state A-state graph Reduced A-state graph

Burdened Diagram (roughly): Underlying reduced A-state graph is a tree, can
smooth crossings away to obtain a Balanced diagram

EVERY reduced positive diagram of a fibered positive link is a Burdened diagram

Lizzie Buchanan (Dartmouth College) A new condition on the Jones polynomial of a fibered positive link December 9, 2022 10 / 11
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The End

Theorem (B., 2022)

The Jones polynomial VL of a fibered positive link with n link components satisfies

max degVL  4min degVL +
n � 1

2
.

In particular, the Jones polynomial VK of a fibered positive knot K satisfies

max degVK  4min degVK .

Thank you!
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Higher Complex Structures and

SL(3,R) Hitchin Components

Alex Nolte
Rice University

This material is based upon work supported by the National Science Foundation under Grant No. 1842494 and Grant No.
2005551. Thanks to Katherine Booth for illustrations.



Teichmüller Space

S:

T (S) : {complex structures on S}/Di↵0(S)

⇠={constant curvature � 1 metrics on S}/Di↵0(S)

⇠={discrete, faithful ⇢ : ⇡1(S) ! PSL(2,R)}/conjugation



(PSL(n,R)) Hitchin Components

Hitn(S):

Special component of Hom(⇡1(S),PSL(n,R))/PSL(n,R)

Remarkable properties analogous to T (S)

Question
What geometric content does ⇢ 2 Hitn(S) have?



Rephrasing Almost Complex Structures

Jx 2 End(T ⇤
x S) with J2

x = �Id is determined by either:

+i eigenspace V i
x ,

Polynomials Ix on T ⇤C
x S vanishing on V i

x



Higher (Degree) Complex Structures

n-complex structure I:
I for every point in x , a special ideal Ix of codimension n in

polynomials on T
⇤C
x S .

Moduli space:
I T n(S) : {n-complex structures on S}/Ham0

c(T
⇤
S)

Conjecture (Fock-Thomas ’18)
There is a natural di↵eomorphism T n(S) ⇠= Hitn(S)



Results (N. ’22)

New realization of n-complex structures

Basic structure of T n(S):
I Manifold structure
I T n(S) ⇠= R��(S)dim(PSL(n,R))

I Complex structure, Kähler metrics
I Holomorphic vector bundle over T (S)
I Structure of the Mod(S)-action

Natural di↵eomorphism T 3(S) ⇠= Hit3(S)
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Extending Group Actions

G a group, H  G . Suppose H acts on a metric space R .

Is there an action of G on a (possibly di↵erent) metric space which
“extends” H y R?

Answer: Sometimes yes, sometimes no.

Goal: Understand the su�cient conditions for actions to extend.
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Formalizing the Problem

Definition (Abbott–Hume–Osin)

Let H be a subgroup of G and let H y R be an action of H on a metric
space R . An action G y S of G on a metric space S is an extension of R
if there exists a coarsely H-equivariant quasi-isometric embedding R ! S .
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Example: Extension Exists

Let H  G be a finite subgroup.

Consider any action of H on any metric space R .

The trivial action of G on R is an extension of H y R .
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Example: No Extension

Consider the action Z y R given by x · r = x + r .

Z is countable, so it is a subgroup of Sym(N), the group of all
permutations of natural numbers.

Every action of Sym(N) on a metric space S has bounded orbits (Cornulier
2006).

There does not exist a coarsely Z-equivariant map f : R ! S because
Z y R is unbounded.

Z y R does not extend to an action of Sym(N).

Perlmutter (Brandeis) Extending Group Actions December 9, 2022 5 / 7



New Result

Goal is to focus on specific actions, rather than subgroup as a whole.

Theorem (P.)

Let G be a group generated by a subset X relative to a subgroup H, and

let H act on a metric space R . Let �(G ,X t H) be hyperbolic. Suppose

for some r0 2 R there exists some constant C > 0 such that 8h 2 H,

dR(r0, hr0)  Cd̂(1, h).

Then H y R can be extended to an action of G on another metric space.

d̂ is the relative metric on �(G ,X t H).

New Goal: Find subgroups which admit actions with this condition.
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Thank You!
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Thank you organizers!
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What is a planar algebra?

The planar algebra TL contains the algebras TLk , k � 0, over C.

Figure: An element of TL3

index is 4
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Going from a planar algebra to a tensor category

Objects: Formal direct sums of projections (i.e., ⇡ 2 TLn such that
⇡2 = ⇡ and ⇡⇤ = ⇡)

Morphisms: For ⇡1, ⇡2 projections, Hom(⇡1, ⇡2) contains diagrams:

There’s a notion of � and ⌦.
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Projections of the Temperley-Lieb Planar Algebra

The Jones-Wenzl projections f
(k) 2 TLk are the minimal

projections in TL defined recursively by:

Wenzl’s relation: f (k) ⌦ | ⇠= f
(k+1) � f

(k�1)

Principal graph:
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Goal

Find all the subfactor planar algebras of index 4 associated with the Ã2n�1

Dynkin diagram:
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Theorem (M.)

Fix n. Let !n be a 2nth root of unity. Let PA(U) be the planar algebra with

generators: and relations:

1. 2. 3. 4.

5. 6.

Then this is an Ã2n�1 subfactor planar algebra of
index 4 with principal graph:
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Reference

Thank you!

Scott Morrison, Emily Peters, and Noah Snyder.

Skein theory for the D2n planar algebras.

J. Pure Appl. Algebra, 214(2):117–139, 2010.
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