An atomic approach to Wall-type stabilization problems

Kyle Hayden

December 10, 2023

1/32

What makes smooth 4-manifolds special?

- Not governed by geometry or homotopy theory as in other dimensions (e.g., exotic ℝ⁴'s)
- Can admit infinitely many smooth structures
- 4-dimensional exotic phenomena is uniquely unstable

What makes smooth 4-manifolds special?

- Not governed by geometry or homotopy theory as in other dimensions (e.g., exotic R⁴'s)
- Can admit infinitely many smooth structures
- 4-dimensional exotic phenomena is uniquely unstable

 $X_0, X_1 =$ smooth, closed, simply-connected, orientable 4-manifolds

Theorem (Wall, 1964)

$$X_0 \underset{C^0}{\cong} X_1 \implies X_0 \#^k(S^2 \times S^2) \underset{C^\infty}{\cong} X_1 \#^k(S^2 \times S^2) \text{ for large } k \ge 0$$

Wall's Stabilization Problem

What's k?
$$\exists$$
 such X_i with $X_0 \# (S^2 \times S^2) \underset{C^{\infty}}{\cong} X_1 \# (S^2 \times S^2)$?

 $k \approx$ some notion of distance between exotic 4-manifolds

Many analogs, including for

- all compact, orientable, exotic 4-manifolds (Gompf '84)
- exotic self-diffeomorphisms (Perron '86, Quinn '86)
- exotically knotted surfaces (Perron '86, Quinn '86 for $\#S^2 \times S^2$, Baykur-Sunukjian '15 for $\#T^2$)

How many stabilizations are required to dissolve exotica?

Burst of progress in recent years.

- "One is enough"-type (e.g., Auckly-Kim-Melvin-Ruberman-Schwartz '17)
- "One isn't enough"-type results (e.g., Lin '20, Lin-Mukherjee '21, Guth '22, Kang '22)
- **Today:** Try to approach via failure of *h*-cobordism theorem.
 - Construction: Exotic phenomena that are candidates to survive stabilization, e.g., closed 4-manifolds with $\pi_1 = 1$.
 - Proof of concept: Exotic surfaces in B⁴ that remain exotic after one internal stabilization.

Construction (H '20)

There exist exotic contractible Stein domains X_0, X_1 that are candidates to remain exotic after $\#S^2 \times S^2$.

 X_i are branched double covers of B^4 along exotic disks $D_i \subset B^4$

 $\Rightarrow X_i \# S^2 imes S^2$ are branched double covers of B^4 along $D_i \# T^2$

Theorem (H, '23)

Theorem (H, '23)

Theorem (H, '23)

Theorem (H, '23)

h-cobordisms and Wall-type stabilization problems

Let X_i be smooth, closed, orientable 4-manifolds with $\pi_1 = 1$.

Wall '64: X_i homotopy equivalent $\implies X_i$ are *h*-cobordant

5D cobordism $W: X_0 \rightarrow X_1$ with $X_i \hookrightarrow W$ homotopy equiv.

(exotic 4D phenomena \approx failure of 4D h-cobordisms to simplify; higher dimensional exotica \approx failure of h-cobordisms to exist)

$$\implies X_0 \, {}^{\#k}(S^2 \! imes S^2) \, {\cong}_{C^\infty} \, X_1 \, {}^{\#k}(S^2 \! imes S^2) ext{ for some } k \geq 0$$

$$X_{1/2}\cong X_i\,\#^k\,(S^2\times S^2)$$

Wall's Stabilization Problem

What's k?
$$\exists$$
 such X_i with $X_0 \# (S^2 \times S^2) \underset{C^{\infty}}{\cong} X_1 \# (S^2 \times S^2)$?

 $k \approx$ some notion of distance between exotic 4-manifolds \approx some notion of complexity for *h*-cobordisms

Anatomy of an *h*-cobordism

Critical points \iff

Critical points \longleftrightarrow handles \longleftrightarrow

Critical points \iff handles \iff spheres in $X_{1/2}$

 \mathcal{A} = attaching spheres for 3-handles, \mathcal{B} = belt spheres for 2-handles

"Atomic" approach: Start with appropriate configuration of spheres, then build out into an *h*-cobordism.

What's the right type of complexity in our *h*-cobordism, in terms of these spheres $\mathcal{A} \cup \mathcal{B} \subset X_{1/2}$?

...spheres with many intersections?

...many intersecting spheres?

The Recycling Problem

If the various ascending/descending manifolds have little interaction, then often need fewer stabilizations than critical points.

If the various ascending/descending manifolds have little interaction, then often need fewer stabilizations than critical points.

If the various ascending/descending manifolds have little interaction, then often need fewer stabilizations than critical points.

EX: If critical points can be reordered, often have $X_{1/3} \cong_{C^{\infty}} X_{2/3}$

How to prevent recycling?

Any opinions, findings, or recommendations expressed on this slide do not necessarily reflect the views of the National Science Foundation.

Want \mathcal{A} and \mathcal{B} to intersect "completely":

Intersections $\mathcal{A} \cap \mathcal{B}$ prevent reordering of critical points.

Start with simple candidate 2-complex $\mathcal{A} \cup \mathcal{B}$.

Start with simple candidate 2-complex $\mathcal{A} \cup \mathcal{B}$.

Start with simple candidate 2-complex $\mathcal{A} \cup \mathcal{B}$. Thicken to a 4D neighborhood (i.e., plumb copies of $S^2 \times D^2$).

Start with simple candidate 2-complex $\mathcal{A} \cup \mathcal{B}$. Thicken to a 4D neighborhood (i.e., plumb copies of $S^2 \times D^2$).

Start with simple candidate 2-complex $\mathcal{A} \cup \mathcal{B}$. Thicken to a 4D neighborhood (i.e., plumb copies of $S^2 \times D^2$).

Attach 2-handles to kill π_1 (without killing 4D invariants).

Start with neighborhood of $\mathcal{A} \cup \mathcal{B}$

Start with neighborhood of $\mathcal{A} \cup \mathcal{B}$

Start with neighborhood of $\mathcal{A} \cup \mathcal{B}$

Start with neighborhood of $\mathcal{A} \cup \mathcal{B}$, then build out $X_{1/2}$.

Theorem (H, '23)

There are exotic closed 4-manifolds built out of X_0 and X_1 .

The 4-manifolds Y_0 and Y_1 (with $b_2 = 2$ and $\partial \neq \emptyset$) are exotic.

The 4-manifolds Y_0 and Y_1 (with $b_2 = 2$ and $\partial \neq \emptyset$) are exotic.

The 4-manifolds Y_0 and Y_1 (with $b_2 = 2$ and $\partial \neq \emptyset$) are exotic.

Do they remain exotic after $#S^2 \times S^2$? And their "closures"?

Evidence from downstairs: Surfaces in B^4 and stabilization

Smooth surfaces $S_0, S_1 \subset X$ are exotically knotted if

$$(X, S_0) \underset{C^0}{\cong} (X, S_1)$$
 but $(X, S_0) \underset{C^{\infty}}{\cong} (X, S_1).$

(Not an actual example.)

Baykur-Sunukjian '15: Exotic surfaces are C^{∞} -equivalent after sufficiently many internal stabilizations $S \rightsquigarrow S \# T^2$.

Note:
$$\Sigma_2(X, S \# T^2) \cong \Sigma_2(X, S) \# (S^2 \times S^2)$$

Smooth surfaces $S_0, S_1 \subset X$ are exotically knotted if

(Not an actual example.)

Baykur-Sunukjian '15: Exotic surfaces are C^{∞} -equivalent after sufficiently many internal stabilizations $S \rightsquigarrow S \# T^2$.

Note:
$$\Sigma_2(X, S \# T^2) \cong \Sigma_2(X, S) \# (S^2 \times S^2)$$

 $X_i \# S^2 \times S^2$ are branched covers of B^4 along $D_i \# T^2$.

 D_0 and D_1 remain distinct after one (internal) stabilization, inducing different maps on Bar-Natan homology over $\mathbb{F}_2[H]$.

^

 $\Sigma \subset S^3 \times [0,1]$ L L_0

$$\rightsquigarrow \ \mathsf{Kh}(\Sigma):\mathsf{Kh}(L_0)\to\mathsf{Kh}(L_1)$$

stabilization: $Kh(\Sigma \# T^2) = 0$

 D_0 and D_1 remain distinct after one (internal) stabilization, inducing different maps on Bar-Natan homology over $\mathbb{F}_2[H]$.

$$L \bigoplus \longrightarrow \widetilde{\mathsf{BN}}(L) = \bigoplus \widetilde{\mathsf{BN}}^{h,q}(L)$$

 D_0 and D_1 remain distinct after one (internal) stabilization, inducing different maps on Bar-Natan homology over $\mathbb{F}_2[H]$.

$$L \bigoplus_{\text{(bigraded } \mathbb{F}_2[H]-\text{module})} \rightsquigarrow \widetilde{BN}(L) = \bigoplus_{l} \widetilde{BN}^{h,q}(L)$$

 D_0 and D_1 remain distinct after one (internal) stabilization, inducing different maps on Bar-Natan homology over $\mathbb{F}_2[H]$.

$$L \bigoplus_{\text{(bigraded } \mathbb{F}_2[H]-\text{module})} \overset{k}{\to} \widetilde{\mathsf{BN}}(L) = \bigoplus_{l} \widetilde{\mathsf{BN}}^{h,q}(L) \cong \left(\mathbb{F}_2[H]\right)^{|L|} \oplus \text{Tors}$$

 D_0 and D_1 remain distinct after one (internal) stabilization, inducing different maps on Bar-Natan homology over $\mathbb{F}_2[H]$.

$$L \bigoplus_{\text{(bigraded } \mathbb{F}_2[H]-\text{module})} \rightsquigarrow \widetilde{BN}(L) = \bigoplus_{\substack{i \in \mathbb{F}_2[H]-\text{module}}} \widetilde{BN}^{h,q}(L) \cong \left(\mathbb{F}_2[H]\right)^{|L|} \oplus \text{Tors}$$

stabilization: $BN(\Sigma \# T^2) = H \cdot BN(\Sigma)$

Claim: $BN(D_0) \neq BN(D_1)$

- Puncture D_i and view as concordance $U \rightarrow K$
- Manually distinguish induced maps on Khovanov homology

$$\widetilde{\mathsf{Kh}}(D_i):\mathbb{F}_2\cong\widetilde{\mathsf{Kh}}(U)\to\widetilde{\mathsf{Kh}}(K)$$

(Uses approach developed with Sundberg in 2021)

• Lift to Bar Natan homology

$$\begin{array}{c} \widetilde{\mathsf{CBN}}(U) \xrightarrow{\widetilde{\mathsf{CBN}}(D_0) - \widetilde{\mathsf{CBN}}(D_1)} \widetilde{\mathsf{CBN}}(K) \\ \downarrow^{\pi} & \downarrow^{\pi} \\ \widetilde{\mathsf{CKh}}(U) \xrightarrow{\widetilde{\mathsf{CKh}}(D_0) - \widetilde{\mathsf{CKh}}(D_1)} \widetilde{\mathsf{CKh}}(K) \end{array}$$

Claim: $BN(D_0) \neq BN(D_1)$

- Puncture D_i and view as concordance $U \rightarrow K$
- Manually distinguish induced maps on Khovanov homology

$$\widetilde{\mathsf{Kh}}(D_i):\mathbb{F}_2\cong\widetilde{\mathsf{Kh}}(U)\to\widetilde{\mathsf{Kh}}(K)$$

(Uses approach developed with Sundberg in 2021)

• Lift to Bar Natan homology

$$\widetilde{\mathsf{BN}}(U) \xrightarrow{\widetilde{\mathsf{BN}}(D_0) - \widetilde{\mathsf{BN}}(D_1)} \widetilde{\mathsf{BN}}(K)$$

$$\downarrow^{\pi_*} \qquad \qquad \downarrow^{\pi_*}$$

$$\widetilde{\mathsf{Kh}}(U) \xrightarrow{\widetilde{\mathsf{Kh}}(D_0) - \widetilde{\mathsf{Kh}}(D_1)} \widetilde{\mathsf{Kh}}(K)$$

Claim: $BN(D_0) \neq BN(D_1)$

- Puncture D_i and view as concordance $U \rightarrow K$
- Manually distinguish induced maps on Khovanov homology

$$\widetilde{\mathsf{Kh}}(D_i):\mathbb{F}_2\cong\widetilde{\mathsf{Kh}}(U)\to\widetilde{\mathsf{Kh}}(K)$$

(Uses approach developed with Sundberg in 2021)

• Lift to Bar Natan homology

Claim: $\widetilde{BN}(\Sigma_0 \# T^2) \neq \widetilde{BN}(\Sigma_1 \# T^2)$

• Image of $\widetilde{BN}(D_i)$ generated by image of $1 \in \widetilde{BN}(U) \cong \mathbb{F}_2[H]$.

$$\implies \delta := \widetilde{\mathsf{BN}}(D_0)(1) - \widetilde{\mathsf{BN}}(D_1)(1) \neq 0 \in \widetilde{\mathsf{BN}}(\mathcal{K})$$

- $\widetilde{\mathrm{BN}}(D_i \# T^2) = H \cdot \widetilde{\mathrm{BN}}(D_i) \implies$ Need to show $H \cdot \delta \neq 0$.
- δ lies in bigrading $\widetilde{BN}(K)_{0,0}$

Computer calculation shows every nonzero element in $\widetilde{BN}(K)_{0,0}$ survives multiplication by H. This includes δ . \Box

The first two pages of the reduced Bar-Natan–Lee–Turner spectral sequence for the knot K, shown for $h \ge -4$ and $q \ge -12$:

Connections to Floer homology

- F. Lin (2019): spectral sequence from (truncated) Bar-Natan homology to involutive monopole Floer homology
- Ladu (2022): monopole Floer homology of "protocork twists" (i.e., neighborhoods of configurations of 2-spheres)

Possible to prove twisting along X_0 and X_1 changes cobordism map on involutive Floer homology or related invariant?
Example: This *L* bounds $F, F' \subset B^4$ such that $X = \Sigma_2(B^4, F)$ and $X' = \Sigma_2(B^4, F')$ induce distinct maps on \widehat{HF} .

Consider \widehat{HFI} over $\mathbb{F}_2[Q]/(Q^2)$. Using $\widetilde{BN}(-L) \rightrightarrows \widehat{HFI}(Y)$:

$$X \# S^2 \times S^2$$
 and $X' \# S^2 \times S^2$ induce distinct maps on \widehat{HFI}
 \iff
 $Y = \Sigma_2(L)$ satisfies $\dim_{\mathbb{F}_2}(Q \cdot \widehat{HFI}(Y)) > 1$
(bridge index = 4 \implies bfh python program might work!

Thank you!