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What makes smooth 4-manifolds special?

® Not governed by geometry or homotopy theory as in other
dimensions (e.g., exotic R*'s)

e Can admit infinitely many smooth structures

e 4-dimensional exotic phenomena is uniquely unstable
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Xo, X1 = smooth, closed, simply-connected, orientable 4-manifolds

Theorem (Wall, 1964)
Xo = X1 = Xo #4(5°%S?) C% Xy #4(5?xS?) for large k > 0
C oo

Wall's Stabilization Problem
What's k? 3 such X; with X #(52xS?) % X; #(5°x 5?)?
COO

~ some notion of distance between exotic 4-manifolds

Many analogs, including for
e all compact, orientable, exotic 4-manifolds (Gompf '84)
e exotic self-diffeomorphisms (Perron '86, Quinn '86)

e exotically knotted surfaces (Perron '86, Quinn '86 for #52 x 52,
Baykur-Sunukjian '15 for # T?2)

5/32



How many stabilizations are required to dissolve exotica?

Burst of progress in recent years.
e “One is enough’-type (e.g., Auckly-Kim-Melvin-Ruberman-Schwartz '17)

e “One isn't enough’-type results (e.g., Lin 20, Lin-Mukherjee 21,
Guth '22, Kang '22)

Today: Try to approach via failure of h-cobordism theorem.

@ Construction: Exotic phenomena that are candidates to
survive stabilization, e.g., closed 4-manifolds with 7; = 1.

® Proof of concept: Exotic surfaces in B* that remain
exotic after one internal stabilization.
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Construction (H '20)

There exist exotic contractible Stein domains Xp, X; that are
candidates to remain exotic after #52%x S2.

X; are branched double covers of B* along exotic disks D; C B*

= Xi#52x 52 are branched double covers of B* along D;# T2
Theorem (H, '23)

The once-stabilized disks D;# T2 remain exotically knotted in
B*, distinguished by Bar Natan homology BN over F;[H]
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h-cobordisms and Wall-type
stabilization problems
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The h-cobordism problem

Let X; be smooth, closed, orientable 4-manifolds with m; = 1.

Wall '64: X; homotopy equivalent = X; are h-cobordant

5D cobordism W : Xy — X; with X; — W homotopy equiv.

X1 - Q: Is W= X;x[0,1]?

w Freedman '82: Yes for C°

X Donaldson '87: No for C*®

(exotic 4D phenomena = failure of 4D h-cobordisms to simplify;

higher dimensional exotica = failure of h-cobordisms to exist)
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Smale: Can eliminate all critical points except index 2, 3.
These occur in algebraically canceling pairs. (h-cob!)
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I
— Xo#*(5?x S?) = X1 #5(52 % §?) for some k > 0

< D

‘ ‘ X1/2 %JX,' #k (S2X52)

Xo

Wall’s Stabilization Problem
What's k? 3 such X; with Xo#(S5?x S?) % X; #(5?%x S5?)?
COO

k ~ some notion of distance between exotic 4-manifolds
~ some notion of complexity for h-cobordisms
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Anatomy of an h-cobordism
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Critical points
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Critical points «~ handles «

14/32



Critical points «~ handles «~ spheres in X;,

A = attaching spheres for 3-handles, B = belt spheres for 2-handles
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“Atomic”’ approach: Start with appropriate configuration of
spheres, then build out into an h-cobordism.

What's the right type of complexity in our h-cobordism, in
terms of these spheres AUB C X 57

...spheres with many ...many intersecting
intersections? spheres?
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The Recycling Problem
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If the various ascending/descending manifolds have little inter-
action, then often need fewer stabilizations than critical points.
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)<2/3 = X1 # 52x S?

)(i/3 = )(b #ff;2 x S?
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If the various ascending/descending manifolds have little inter-
action, then often need fewer stabilizations than critical points.

)(é/3 = X1 # 52x S?

)<1/3 = )(b #ff;2 x S?

EX: If critical points can be reordered, often have X3 c%o Xo/3
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How to prevent recycling?

Any opinions, findings, or recommendations expressed on this slide do not
necessarily reflect the views of the National Science Foundation.
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Want A and B to intersect “completely”

A S B )
HHEHE
LS ¢ S

Intersections A M B prevent reordering of critical points.
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Start with simple candidate 2-complex A U 5.
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Start with simple candidate 2-complex A U . Thicken to a
4D neighborhood (i.e., plumb copies of 52 x D?).
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Start with simple candidate 2-complex A U . Thicken to a
4D neighborhood (i.e., plumb copies of 52 x D?).
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Start with simple candidate 2-complex A U . Thicken to a
4D neighborhood (i.e., plumb copies of 52 x D?).
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Attach 2-handles to kill 71 (without killing 4D invariants).
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Start with neighborhood of AU B
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Start with neighborhood of AU B
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Start with neighborhood of AU B
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Start with neighborhood of AU B, then build out Xj ».
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Start with neighborhood of AU B, then build out Xj ».

[ G0) Ay
6/\6/\ Sg mﬁr\ﬁ
(D) )
RERCARN éo oEUT




X/
t n

]

b

Ig

WI

Sa

o \Q@/
& 2
\//\\/\/\\//
(2L

o

<




eighborhood of A U B3, then build out Xj 5.
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Start with neighborhood of AU B, then build out Xj ».
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There are exotic closed 4-manifolds built out of Xy and Xj.
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The 4-manifolds Yy and Y; (with by = 2 and 9 # () are exotic.

Do they remain exotic after #52x 527 And their “closures”?



Evidence from downstairs:

Surfaces in B* and stabilization
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Smooth surfaces Sy, S; C X are exotically knotted if
(X S()) (X 51) but (X, So) C%l\—i (X, 51)

(Not an actual example.)

Baykur-Sunukjian '15: Exotic surfaces are C*-equivalent
after sufficiently many internal stabilizations S ~» S# T2,

Note: To(X,S#T?) = X5(X, S)#(5%%x S?)
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of B* along disks D; with 9Dy = dD;.

X; are branched covers
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X; are branched covers of B* along disks D; with 0Dy = dD;.
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X; are branched covers of B* along disks D; with 9Dy = dD;.
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X; are branched covers of B* along disks D; with 9Dy = dD;.

Xi # 5% x 52 are branched covers of B* along D;j# T?2.
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Dy and D; remain distinct after one (internal) stabilization,
inducing different maps on Bar-Natan homology over F,[H].

L @ ~  Kh(L) = @ Kh"9(L)

(bigraded [F»-vector space)

Y C S x]0,1]
Ly

Lo
@ S ~» Kh(X) : Kh(Ly) — Kh(L;)

stabilization: Kh(X#72) =0
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Do and D; remain distinct after one (internal) stabilization,
inducing different maps on Bar-Natan homology over F,[H].

‘ @ ~ BN(L) = @ éT\Ih’q(L) = (Fz[H])|L| @ Tors

(bigraded F»[H]-module)
Y C S x0,1]
Lo Ll
(D! < ~s BN(T) : BN(Lo) — BN(Ly)

stabilization: BN(Z #72) = H-BN(X)
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Claim: BN(D) # BN(D,)
e Puncture D; and view as concordance U — K

e Manually distinguish induced maps on Khovanov homology
Kh(D;) : F» = Kh(U) — Kh(K)
(Uses approach developed with Sundberg in 2021)

e Lift to Bar Natan homology

CBN(Do)—CBN(Dy) =

CBN(UV) » CBN(K)

éiZB((/) CKh(DO}—CKh(D1)> Eﬁ{h(f{)
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Claim: BN(D) # BN(D,)
e Puncture D; and view as concordance U — K

e Manually distinguish induced maps on Khovanov homology
Kh(D;) : F» = Kh(U) — Kh(K)
(Uses approach developed with Sundberg in 2021)

e Lift to Bar Natan homology

F,[H] = BN(U) 22 07BYOBY gy k)

I~ I~

F, = F(T](U) Kh(Do)Kh(D1) th(K)
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Claim: BN(Zo#T7?2) # BN(X; #T?)
e Image of éT\I(D,-) generated by image of 1 € éT\I(U) = F,[H].
— & := BN(Dp)(1) — BN(Dy)(1) # 0 € BN(K)

e BN(D; #T2) = H-BN(D;) = Need to show H - § # 0.
e 0 lies in bigrading é\IJ\I(K)Qo
Computer calculation shows every

nonzero element in éN(K)o’o survives
multiplication by H. This includes §. [J




The first two pages of the reduced Bar-Natan—Lee—Turner spec-
tral sequence for the knot K, shown for h > —4 and q > —12:

Page 1 Page 2

BEEEENDBD NN BEEERnDnD

2
2

2 3
2 6

13 | 44 | 24
75 | 28
26
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Connections to Floer homology

e F. Lin (2019): spectral sequence from (truncated)
Bar-Natan homology to involutive monopole Floer
homology

e Ladu (2022): monopole Floer homology of “protocork
twists” (i.e., neighborhoods of configurations of 2-spheres)

Possible to prove twisting along Xy and X; changes cobordism
map on involutive Floer homology or related invariant?
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Example: This L bounds F, F’ C B* such that X = ¥,(B*, F)
and X’ = X5(B*, F’) induce distinct maps on HF.

oD
Cosier

Consider HFI over F»[Q]/(Q?2). Using BN(—L) = HFI(Y):

X#S52x S? and X'#5%x S? induce distinct maps on HFI
<~
Y = ¥,(L) satisfies dimp,(Q - HFI(Y)) > 1

(bridge index = 4 = bfh_python program might work!)
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Thank youl!
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