
1 / 32

An atomic approach to

Wall-type stabilization problems

Kyle Hayden

December 10, 2023



What makes smooth 4-manifolds special?

• Not governed by geometry or homotopy theory as in other

dimensions (e.g., exotic R4
’s)

• Can admit infinitely many smooth structures

• 4-dimensional exotic phenomena is uniquely unstable
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X0,X1 = smooth, closed, simply-connected, orientable 4-manifolds

Theorem (Wall, 1964)

X0 ⇠=
C0

X1 =) X0 #k
(S

2⇥S2
) ⇠=
C1

X1 #k
(S

2⇥S2
) for large k � 0

Wall’s Stabilization Problem
What’s k? 9 such Xi with X 0 #(S2⇥S

2
) 6⇠=
C1

X1 #(S2⇥S
2
) ?

k ⇡ some notion of distance between exotic 4-manifolds

Many analogs, including for

• all compact, orientable, exotic 4-manifolds (Gompf ’84)

• exotic self-diffeomorphisms (Perron ’86, Quinn ’86)

• exotically knotted surfaces (Perron ’86, Quinn ’86 for #S
2⇥S

2,
Baykur-Sunukjian ’15 for #T

2)
5 / 32



How many stabilizations are required to dissolve exotica?

Burst of progress in recent years.

• “One is enough”-type (e.g., Auckly-Kim-Melvin-Ruberman-Schwartz ’17)

• “One isn’t enough”-type results (e.g., Lin ’20, Lin-Mukherjee ’21,
Guth ’22, Kang ’22)

Today: Try to approach via failure of h-cobordism theorem.

1 Construction: Exotic phenomena that are candidates to

survive stabilization, e.g., closed 4-manifolds with ⇡1 = 1.

2 Proof of concept: Exotic surfaces in B
4

that remain

exotic after one internal stabilization.
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Construction (H ’20)

There exist exotic contractible Stein domains X0,X1 that are

candidates to remain exotic after #S2⇥S
2
.

Xi are branched double covers of B
4

along exotic disks Di ⇢ B
4

) Xi#S
2⇥S

2
are branched double covers of B

4
along Di#T

2

Theorem (H, ’23)

The once-stabilized disks Di#T
2

remain exotically knotted in

B
4
, distinguished by Bar Natan homology fBN over F2[H ]
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h-cobordisms and Wall-type

stabilization problems
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Let Xi be smooth, closed, orientable 4-manifolds with ⇡1 = 1.

Wall ’64: Xi homotopy equivalent =) Xi are h-cobordant

5D cobordism W : X0 ! X1 with Xi ,! W homotopy equiv.

X1

X0

W

Q: Is W ⇠= Xi⇥[0, 1] ?

Freedman ’82: Yes for C
0

Donaldson ’87: No for C
1

(exotic 4D phenomena ⇡ failure of 4D h-cobordisms to simplify;
higher dimensional exotica ⇡ failure of h-cobordisms to exist)
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The h-cobordism problem



X1

X0

X1/2

Smale: Can eliminate all critical points except index 2, 3.

These occur in algebraically canceling pairs. (h-cob!)
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=) X0 #k
(S

2⇥S
2
) ⇠=
C1

X1 #k
(S

2⇥S
2
) for some k � 0

X1

X0

X1/2
⇠= Xi #

k
(S

2⇥S
2
)

Wall’s Stabilization Problem
What’s k? 9 such Xi with X 0 #(S2⇥S

2
) 6⇠=
C1

X1 #(S2⇥S
2
) ?

k ⇡ some notion of distance between exotic 4-manifolds

⇡ some notion of complexity for h-cobordisms
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Anatomy of an h-cobordism
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Critical points ! handles ! spheres in X1/2

X1

X0

X1/2

A = attaching spheres for 3-handles, B = belt spheres for 2-handles
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Critical points ! handles ! spheres in X1/2

X1

X0

X1/2A [B ⇢

A = attaching spheres for 3-handles, B = belt spheres for 2-handles
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“Atomic” approach: Start with appropriate configuration of

spheres, then build out into an h-cobordism.

What’s the right type of complexity in our h-cobordism, in

terms of these spheres A[B ⇢ X1/2?

...spheres with many
intersections?

...many intersecting
spheres?
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The Recycling Problem
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If the various ascending/descending manifolds have little inter-

action, then often need fewer stabilizations than critical points.

X1

X0

X1/2

X2/3
⇠= X1 # S

2⇥S
2

X1/3
⇠= X0 # S

2⇥S
2

EX: If critical points can be reordered, often have X1/3
⇠=
C1

X2/3
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How to prevent recycling?

Any opinions, findings, or recommendations expressed on this slide do not
necessarily reflect the views of the National Science Foundation.
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? ?

Want A and B to intersect “completely”:

A2B1

B2A1

Intersections A \ B prevent reordering of critical points.
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Start with simple candidate 2-complex A [ B .

Thicken to a

4D neighborhood (i.e., plumb copies of S
2 ⇥ D

2
).

Attach 2-handles to kill ⇡1 (without killing 4D invariants).
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Start with neighborhood of A [ B

, then build out X1/2.

Theorem (H, ’23)
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Start with neighborhood of A [ B, then build out X1/2.

0

0

X1 =

Theorem (H, ’23)

There are exotic closed 4-manifolds built out of X0 and X1.
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Start with neighborhood of A [ B, then build out X1/2.

0

0

Y1 =

0

�2

Theorem (H, ’23)

The 4-manifolds Y0 and Y1 (with b2 = 2 and @ 6= ;) are exotic.
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Start with neighborhood of A [ B, then build out X1/2.
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Y0 =

0

0
0

�2

Theorem (H, ’23)

The 4-manifolds Y0 and Y1 (with b2 = 2 and @ 6= ;) are exotic.

Do they remain exotic after #S2⇥S
2
? And their “closures” ?
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Evidence from downstairs:

Surfaces in B4
and stabilization
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Smooth surfaces S0, S1 ⇢ X are exotically knotted if

(X , S0) ⇠=
C0

(X , S1) but (X , S0) 6⇠=
C1

(X , S1).

(Not an actual example.)

Baykur-Sunukjian ’15: Exotic surfaces are C
1

-equivalent

after sufficiently many internal stabilizations S  S#T 2
.

Note: ⌃2(X , S#T 2
) ⇠= ⌃2(X , S)#(S2⇥S

2
)
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Xi are branched covers of B
4

along disks Di with @D0 = @D1.

⌧

D1 =

Xi # S
2⇥S

2
are branched covers of B

4
along Di#T

2
.
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Theorem (H, ’23)

D0 and D1 remain distinct after one (internal) stabilization,

inducing different maps on Bar-Natan homology over F2[H ].

L  Kh(L) =
L

Kh
h,q

(L)

(bigraded F2-vector space)

L0 L1

⌃ ⇢ S
3 ⇥ [0, 1]

 Kh(⌃) : Kh(L0) ! Kh(L1)

stabilization: Kh(⌃#T 2
) = 0
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Claim: fBN(D0) 6= fBN(D1)

• Puncture Di and view as concordance U ! K

• Manually distinguish induced maps on Khovanov homology

fKh(Di) : F2 ⇠= fKh(U) ! fKh(K )

(Uses approach developed with Sundberg in 2021)

• Lift to Bar Natan homology

]CBN(U) ]CBN(K )

gCKh(U) gCKh(K )

]CBN(D0)�]CBN(D1)

⇡ ⇡

gCKh(D0)�gCKh(D1)
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Claim: fBN(⌃0 #T 2
) 6= fBN(⌃1 #T 2

)

• Image of fBN(Di) generated by image of 1 2 fBN(U) ⇠= F2[H ].

=) � := fBN(D0)(1)� fBN(D1)(1) 6= 0 2 fBN(K )

• fBN(Di #T
2
) = H · fBN(Di) =) Need to show H · � 6= 0.

• � lies in bigrading fBN(K )0,0

Computer calculation shows every
nonzero element in fBN(K )0,0 survives

multiplication by H . This includes �. ⇤
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The first two pages of the reduced Bar-Natan–Lee–Turner spec-

tral sequence for the knot K , shown for h � �4 and q � �12:
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Connections to Floer homology

• F. Lin (2019): spectral sequence from (truncated)

Bar-Natan homology to involutive monopole Floer

homology

• Ladu (2022): monopole Floer homology of “protocork

twists” (i.e., neighborhoods of configurations of 2-spheres)

Possible to prove twisting along X0 and X1 changes cobordism

map on involutive Floer homology or related invariant?
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Example: This L bounds F , F 0 ⇢ B
4
such that X = ⌃2(B

4, F )

and X
0
= ⌃2(B

4, F 0
) induce distinct maps on cHF.

Consider dHFI over F2[Q]/(Q2
). Using fBN(�L)◆dHFI(Y ):

X#S2⇥S
2 and X

0#S2⇥S
2 induce distinct maps on dHFI
()

Y = ⌃2(L) satisfies dimF2(Q · dHFI(Y )) > 1

(bridge index = 4 =) bfh_python program might work!)
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Thank you!
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