An atomic approach to Wall-type stabilization problems

Kyle Hayden

December 10, 2023

What makes smooth 4-manifolds special?

- Not governed by geometry or homotopy theory as in other dimensions (e.g., exotic \mathbb{R}^{4} 's)
- Can admit infinitely many smooth structures
- 4-dimensional exotic phenomena is uniquely unstable

What makes smooth 4-manifolds special?

- Not governed by geometry or homotopy theory as in other dimensions (e.g., exotic \mathbb{R}^{4} 's)
- Can admit infinitely many smooth structures
- 4-dimensional exotic phenomena is uniquely unstable
$X_{0}, X_{1}=$ smooth, closed, simply-connected, orientable 4-manifolds

Theorem (Wall, 1964)

$$
X_{0} \cong X_{1} \Longrightarrow X_{0} \#^{k}\left(S^{2} \times S^{2}\right) \underset{C^{\infty}}{\cong} X_{1} \#^{k}\left(S^{2} \times S^{2}\right) \text { for large } k \geq 0
$$

Wall's Stabilization Problem

What's k ? \exists such X_{i} with $X_{0} \#\left(S^{2} \times S^{2}\right) \underset{C^{\infty}}{\nVdash} X_{1} \#\left(S^{2} \times S^{2}\right)$?

```
k}\approx\mathrm{ some notion of distance between exotic 4-manifolds
```

Many analogs, including for

- all compact, orientable, exotic 4-manifolds (Gompf '84)
- exotic self-diffeomorphisms (Perron '86, Quinn '86)
- exotically knotted surfaces (Perron '86, Quinn '86 for $\# S^{2} \times S^{2}$, Baykur-Sunukjian '15 for \# T^{2})

How many stabilizations are required to dissolve exotica?

Burst of progress in recent years.

- "One is enough"-type (e.g., Auckly-Kim-Melvin-Ruberman-Schwartz '17)
- "One isn't enough"-type results (e.g., Lin '20, Lin-Mukherjee '21, Guth '22, Kang '22)

Today: Try to approach via failure of h-cobordism theorem.
(1) Construction: Exotic phenomena that are candidates to survive stabilization, e.g., closed 4-manifolds with $\pi_{1}=1$.
(2) Proof of concept: Exotic surfaces in B^{4} that remain exotic after one internal stabilization.

Construction (H'20)

There exist exotic contractible Stein domains X_{0}, X_{1} that are candidates to remain exotic after $\# S^{2} \times S^{2}$.
X_{i} are branched double covers of B^{4} along exotic disks $D_{i} \subset B^{4}$
$\Rightarrow X_{i} \# S^{2} \times S^{2}$ are branched double covers of B^{4} along $D_{i} \# T^{2}$

Theorem ($\mathrm{H}, \mathrm{'} 23$)

The once-stabilized disks $D_{i} \# T^{2}$ remain exotically knotted in B^{4}, distinguished by Bar Natan homology BN over $\mathbb{F}_{2}[H]$

Theorem (H, '23)

The once-stabilized disks $D_{i} \# T^{2}$ remain exotically knotted in B^{4}, distinguished by Bar Natan homology BN over $\mathbb{F}_{2}[H]$

Theorem (H, '23)

The once-stabilized disks $D_{i} \# T^{2}$ remain exotically knotted in B^{4}, distinguished by Bar Natan homology BN over $\mathbb{F}_{2}[H]$

Theorem (H, '23)

The once-stabilized disks $D_{i} \# T^{2}$ remain exotically knotted in B^{4}, distinguished by Bar Natan homology BN over $\mathbb{F}_{2}[H]$

h-cobordisms and Wall-type stabilization problems

Let X_{i} be smooth, closed, orientable 4-manifolds with $\pi_{1}=1$.

Wall '64: X_{i} homotopy equivalent $\Longrightarrow X_{i}$ are h-cobordant 5D cobordism $W: X_{0} \rightarrow X_{1}$ with $X_{i} \hookrightarrow W$ homotopy equiv.

$$
\mathrm{Q}: \text { Is } W \cong X_{i} \times[0,1] ?
$$

Freedman '82: Yes for C^{0}

Donaldson '87: No for C^{∞}
(exotic 4D phenomena \approx failure of 4D h-cobordisms to simplify; higher dimensional exotica \approx failure of h -cobordisms to exist)

Smale: Can eliminate all critical points except index 2, 3 . These occur in algebraically canceling pairs. (h-cob!)

Smale: Can eliminate all critical points except index 2,3 . These occur in algebraically canceling pairs. (h-cob!)

Smale: Can eliminate all critical points except index 2,3 . These occur in algebraically canceling pairs. (h-cob!)

Smale: Can eliminate all critical points except index 2,3 . These occur in algebraically canceling pairs. (h-cob!)

$$
\Longrightarrow X_{0} \#^{k}\left(S^{2} \times S^{2}\right) \underset{c^{\infty}}{\cong} X_{1} \#^{k}\left(S^{2} \times S^{2}\right) \text { for some } k \geq 0
$$

Wall's Stabilization Problem

What's k ? \exists such X_{i} with $X_{0} \#\left(S^{2} \times S^{2}\right) \underset{c_{\infty}^{\infty}}{\neq} X_{1} \#\left(S^{2} \times S^{2}\right)$?
$k \approx$ some notion of distance between exotic 4-manifolds
\approx some notion of complexity for h-cobordisms

Anatomy of an h-cobordism

Critical points

Critical points hand handles ans

Critical points handles spheres in $X_{1 / 2}$

$\mathcal{A}=$ attaching spheres for 3 -handles, $\mathcal{B}=$ belt spheres for 2 -handles
"Atomic" approach: Start with appropriate configuration of spheres, then build out into an h-cobordism.

What's the right type of complexity in our h-cobordism, in terms of these spheres $\mathcal{A} \cup \mathcal{B} \subset X_{1 / 2}$?
...spheres with many intersections?

...many intersecting spheres?

The Recycling Problem

If the various ascending/descending manifolds have little interaction, then often need fewer stabilizations than critical points.

If the various ascending/descending manifolds have little interaction, then often need fewer stabilizations than critical points.

If the various ascending/descending manifolds have little interaction, then often need fewer stabilizations than critical points.

EX: If critical points can be reordered, often have $X_{1 / 3} \underset{c^{\infty}}{\simeq} X_{2 / 3}$

How to prevent recycling?

Any opinions, findings, or recommendations expressed on this slide do not necessarily reflect the views of the National Science Foundation.

Want \mathcal{A} and \mathcal{B} to intersect "completely":

Intersections $\mathcal{A} \cap \mathcal{B}$ prevent reordering of critical points.

Start with simple candidate 2-complex $\mathcal{A} \cup \mathcal{B}$.

Start with simple candidate 2-complex $\mathcal{A} \cup \mathcal{B}$.

Start with simple candidate 2-complex $\mathcal{A} \cup \mathcal{B}$. Thicken to a 4D neighborhood (i.e., plumb copies of $S^{2} \times D^{2}$).

Start with simple candidate 2-complex $\mathcal{A} \cup \mathcal{B}$. Thicken to a 4D neighborhood (i.e., plumb copies of $S^{2} \times D^{2}$).

Start with simple candidate 2-complex $\mathcal{A} \cup \mathcal{B}$. Thicken to a 4D neighborhood (i.e., plumb copies of $S^{2} \times D^{2}$).

Attach 2-handles to kill π_{1} (without killing 4D invariants).

Start with neighborhood of $\mathcal{A} \cup \mathcal{B}$

Start with neighborhood of $\mathcal{A} \cup \mathcal{B}$

Start with neighborhood of $\mathcal{A} \cup \mathcal{B}$

Start with neighborhood of $\mathcal{A} \cup \mathcal{B}$, then build out $X_{1 / 2}$.

Start with neighborhood of $\mathcal{A} \cup \mathcal{B}$, then build out $X_{1 / 2}$.

Start with neighborhood of $\mathcal{A} \cup \mathcal{B}$, then build out $X_{1 / 2}$.

Start with neighborhood of $\mathcal{A} \cup \mathcal{B}$, then build out $X_{1 / 2}$.

Start with neighborhood of $\mathcal{A} \cup \mathcal{B}$, then build out $X_{1 / 2}$.

Start with neighborhood of $\mathcal{A} \cup \mathcal{B}$, then build out $X_{1 / 2}$.

Start with neighborhood of $\mathcal{A} \cup \mathcal{B}$, then build out $X_{1 / 2}$.

Theorem (H, '23)
There are exotic closed 4-manifolds built out of X_{0} and X_{1}.

Theorem (H, '23)
The 4-manifolds Y_{0} and Y_{1} (with $b_{2}=2$ and $\partial \neq \emptyset$) are exotic.

Theorem (H, '23)
The 4-manifolds Y_{0} and Y_{1} (with $b_{2}=2$ and $\partial \neq \emptyset$) are exotic.

Theorem ($\mathrm{H}, \mathrm{'} 23$)

The 4-manifolds Y_{0} and Y_{1} (with $b_{2}=2$ and $\partial \neq \emptyset$) are exotic.

Do they remain exotic after $\# S^{2} \times S^{2}$? And their "closures" ?

Evidence from downstairs:
Surfaces in B^{4} and stabilization

Smooth surfaces $S_{0}, S_{1} \subset X$ are exotically knotted if

$$
\left(X, S_{0}\right) \underset{C^{0}}{\cong}\left(X, S_{1}\right) \quad \text { but } \quad\left(X, S_{0}\right) \underset{C^{\infty}}{\neq}\left(X, S_{1}\right) .
$$

(Not an actual example.)

Baykur-Sunukjian '15: Exotic surfaces are C^{∞}-equivalent after sufficiently many internal stabilizations $S \rightsquigarrow S \# T^{2}$.

Note: $\Sigma_{2}\left(X, S \# T^{2}\right) \cong \Sigma_{2}(X, S) \#\left(S^{2} \times S^{2}\right)$

Smooth surfaces $S_{0}, S_{1} \subset X$ are exotically knotted if

$$
\left(X, S_{0}\right) \underset{C^{0}}{\cong}\left(X, S_{1}\right) \quad \text { but } \quad\left(X, S_{0}\right) \underset{C^{\infty}}{\neq}\left(X, S_{1}\right) .
$$

(Not an actual example.)

Baykur-Sunukjian '15: Exotic surfaces are C^{∞}-equivalent after sufficiently many internal stabilizations $S \rightsquigarrow S \# T^{2}$.

Note: $\Sigma_{2}\left(X, S \# T^{2}\right) \cong \Sigma_{2}(X, S) \#\left(S^{2} \times S^{2}\right)$
X_{i} are branched covers of B^{4} along disks D_{i} with $\partial D_{0}=\partial D_{1}$.

X_{i} are branched covers of B^{4} along disks D_{i} with $\partial D_{0}=\partial D_{1}$.

X_{i} are branched covers of B^{4} along disks D_{i} with $\partial D_{0}=\partial D_{1}$.

X_{i} are branched covers of B^{4} along disks D_{i} with $\partial D_{0}=\partial D_{1}$.

X_{i} are branched covers of B^{4} along disks D_{i} with $\partial D_{0}=\partial D_{1}$.

X_{i} are branched covers of B^{4} along disks D_{i} with $\partial D_{0}=\partial D_{1}$.

X_{i} are branched covers of B^{4} along disks D_{i} with $\partial D_{0}=\partial D_{1}$.

X_{i} are branched covers of B^{4} along disks D_{i} with $\partial D_{0}=\partial D_{1}$.

X_{i} are branched covers of B^{4} along disks D_{i} with $\partial D_{0}=\partial D_{1}$.

X_{i} are branched covers of B^{4} along disks D_{i} with $\partial D_{0}=\partial D_{1}$.

X_{i} are branched covers of B^{4} along disks D_{i} with $\partial D_{0}=\partial D_{1}$.

X_{i} are branched covers of B^{4} along disks D_{i} with $\partial D_{0}=\partial D_{1}$.

$X_{i} \# S^{2} \times S^{2}$ are branched covers of B^{4} along $D_{i} \# T^{2}$.

Theorem ($\mathrm{H}, \mathrm{'} 23$)

D_{0} and D_{1} remain distinct after one (internal) stabilization, inducing different maps on Bar-Natan homology over $\mathbb{F}_{2}[H]$.

$$
\Sigma \subset S^{3} \times[0,1]
$$

stabilization: $\operatorname{Kh}\left(\Sigma \# T^{2}\right)=0$

Theorem ($\mathrm{H}, \mathrm{'} 23$)

D_{0} and D_{1} remain distinct after one (internal) stabilization, inducing different maps on Bar-Natan homology over $\mathbb{F}_{2}[H]$.

Theorem ($\mathrm{H}, \mathrm{'} 23$)

D_{0} and D_{1} remain distinct after one (internal) stabilization, inducing different maps on Bar-Natan homology over $\mathbb{F}_{2}[H]$.

$\rightsquigarrow \widetilde{\mathrm{BN}}(L)=\bigoplus \widetilde{\mathrm{BN}}^{h, q}(L)$
(bigraded $\mathbb{F}_{2}[H]$-module)

Theorem ($\mathrm{H}, \mathrm{'} 23$)

D_{0} and D_{1} remain distinct after one (internal) stabilization, inducing different maps on Bar-Natan homology over $\mathbb{F}_{2}[H]$.

(bigraded $\mathbb{F}_{2}[H]$-module)

Theorem ($\mathrm{H}, \mathrm{'} 23$)

D_{0} and D_{1} remain distinct after one (internal) stabilization, inducing different maps on Bar-Natan homology over $\mathbb{F}_{2}[H]$.
 (bigraded $\mathbb{F}_{2}[H]$-module)

$$
\begin{aligned}
& \text { stabilization: } \widetilde{\mathrm{BN}}\left(\Sigma \# T^{2}\right)=H \cdot \widetilde{\mathrm{BN}}(\Sigma)
\end{aligned}
$$

Claim: $\widetilde{\mathrm{BN}}\left(D_{0}\right) \neq \widetilde{\mathrm{BN}}\left(D_{1}\right)$

- Puncture D_{i} and view as concordance $U \rightarrow K$
- Manually distinguish induced maps on Khovanov homology

$$
\widetilde{\mathrm{Kh}}\left(D_{i}\right): \mathbb{F}_{2} \cong \widetilde{\mathrm{Kh}}(U) \rightarrow \widetilde{\mathrm{Kh}}(K)
$$

(Uses approach developed with Sundberg in 2021)

- Lift to Bar Natan homology

$$
\begin{aligned}
& \widetilde{\operatorname{CBN}}(U) \xrightarrow{\widetilde{\operatorname{CBN}}\left(D_{0}\right)-\widetilde{\operatorname{CBN}}\left(D_{1}\right)} \widetilde{\mathrm{CBN}}(K) \\
& \downarrow^{\pi} \\
& \widetilde{\mathrm{CKh}}(U) \xrightarrow{\widetilde{\operatorname{CKh}}\left(D_{0}\right)-\widetilde{\mathrm{CKh}}\left(D_{1}\right)} \widetilde{\downarrow^{-1}} \widetilde{\downarrow^{\pi}}
\end{aligned}
$$

Claim: $\widetilde{\mathrm{BN}}\left(D_{0}\right) \neq \widetilde{\mathrm{BN}}\left(D_{1}\right)$

- Puncture D_{i} and view as concordance $U \rightarrow K$
- Manually distinguish induced maps on Khovanov homology

$$
\widetilde{\mathrm{Kh}}\left(D_{i}\right): \mathbb{F}_{2} \cong \widetilde{\mathrm{Kh}}(U) \rightarrow \widetilde{\mathrm{Kh}}(K)
$$

(Uses approach developed with Sundberg in 2021)

- Lift to Bar Natan homology

$$
\begin{aligned}
& \widetilde{\operatorname{BN}}(U) \xrightarrow{\widetilde{\operatorname{BN}}\left(D_{0}\right)-\widetilde{\operatorname{BN}}\left(D_{1}\right)} \widetilde{\operatorname{BN}}(K)
\end{aligned}
$$

Claim: $\widetilde{\mathrm{BN}}\left(D_{0}\right) \neq \widetilde{\mathrm{BN}}\left(D_{1}\right)$

- Puncture D_{i} and view as concordance $U \rightarrow K$
- Manually distinguish induced maps on Khovanov homology

$$
\widetilde{\mathrm{Kh}}\left(D_{i}\right): \mathbb{F}_{2} \cong \widetilde{\mathrm{Kh}}(U) \rightarrow \widetilde{\mathrm{Kh}}(K)
$$

(Uses approach developed with Sundberg in 2021)

- Lift to Bar Natan homology

$$
\begin{array}{rlr}
\mathbb{F}_{2}[H]= & \widetilde{\mathrm{BN}}(U) \xrightarrow{\widetilde{\operatorname{BN}}\left(D_{0}\right)-\widetilde{\operatorname{BN}}\left(D_{1}\right)} \widetilde{\mathrm{BN}}(K) \\
& \stackrel{{ }^{-}}{\pi_{*}} & \\
\mathbb{F}_{2} & \widetilde{\mathrm{Kh}}(U) \xrightarrow{\widetilde{\mathrm{Kh}}\left(D_{0}\right)-\widetilde{\mathrm{Kh}}\left(D_{1}\right)} \widetilde{\mathrm{Kh}}(K)
\end{array}
$$

Claim: $\widetilde{\mathrm{BN}}\left(\Sigma_{0} \# T^{2}\right) \neq \widetilde{\mathrm{BN}}\left(\Sigma_{1} \# T^{2}\right)$

- Image of $\widetilde{\mathrm{BN}}\left(D_{i}\right)$ generated by image of $1 \in \widetilde{\mathrm{BN}}(U) \cong \mathbb{F}_{2}[H]$.

$$
\Longrightarrow \delta:=\widetilde{\mathrm{BN}}\left(D_{0}\right)(1)-\widetilde{\mathrm{BN}}\left(D_{1}\right)(1) \neq 0 \in \widetilde{\mathrm{BN}}(K)
$$

- $\widetilde{\operatorname{BN}}\left(D_{i} \# T^{2}\right)=H \cdot \widetilde{\operatorname{BN}}\left(D_{i}\right) \Longrightarrow$ Need to show $H \cdot \delta \neq 0$.
- δ lies in bigrading $\widetilde{\mathrm{BN}}(K)_{0,0}$

Computer calculation shows every nonzero element in $\widetilde{\mathrm{BN}}(K)_{0,0}$ survives multiplication by H. This includes δ. \square

The first two pages of the reduced Bar-Natan-Lee-Turner spectral sequence for the knot K, shown for $h \geq-4$ and $q \geq-12$:

Page 1

	-4	-3	-2	-1	0	1	2	3
2								2
0					2		3	
-2					2	6		
-4			2	13	14			
-6		4	24	19				
-8	13	44	24					
-10	75	28						
-12	26							

Page 2

Connections to Floer homology

- F. Lin (2019): spectral sequence from (truncated) Bar-Natan homology to involutive monopole Floer homology
- Ladu (2022): monopole Floer homology of "protocork twists" (i.e., neighborhoods of configurations of 2-spheres)

Possible to prove twisting along X_{0} and X_{1} changes cobordism map on involutive Floer homology or related invariant?

Example: This L bounds $F, F^{\prime} \subset B^{4}$ such that $X=\Sigma_{2}\left(B^{4}, F\right)$ and $X^{\prime}=\Sigma_{2}\left(B^{4}, F^{\prime}\right)$ induce distinct maps on $\widehat{\mathrm{HF}}$.

Consider $\widehat{\mathrm{HFl}}$ over $\mathbb{F}_{2}[Q] /\left(Q^{2}\right)$. Using $\widetilde{\mathrm{BN}}(-L) \rightrightarrows \widehat{\mathrm{HFI}}(Y)$:
$X \# S^{2} \times S^{2}$ and $X^{\prime} \# S^{2} \times S^{2}$ induce distinct maps on $\widehat{\mathrm{HFI}}$

$$
Y=\Sigma_{2}(L) \text { satisfies } \operatorname{dim}_{\mathbb{F}_{2}}(Q \cdot \widehat{\mathrm{HFI}}(Y))>1
$$

(bridge index $=4 \Longrightarrow$ bfh_python program might work!)

Thank you!

