Positive torus knotted Reeb dynamics in the tight 3-sphere

Jo Nelson (Rice University)

NSF CAREER DMS-2142694

Jo Nelson Torus knotted Reeb dynamics

Contact structures

Definition

A contact structure is a maximally nonintegrable hyperplane field.

The kernel of a 1-form λ on Y^{2n+1} is a contact structure whenever

• $\lambda \wedge (d\lambda)^n$ is a volume form $\Leftrightarrow d\lambda|_{\xi}$ is nondegenerate.

Darboux's Theorem

Let λ be a contact form on Y^{2n+1} and $p \in Y$. Then there are coordinates on $U_p \subset Y$ such that $\lambda|_{U_p} = dz - \sum_{i=1}^n y_i dx_i$.

Locally all contact structures look the same! \sim no local invariants like curvature.

Reeb vector fields

Definition

The **Reeb vector field** *R* on (Y, λ) is uniquely determined by

• $\lambda(R) = 1$

•
$$d\lambda(R,\cdot)=0$$

 $\lambda = dz - ydx, \quad R = \frac{\partial}{\partial z}$

The **Reeb flow** $\varphi_t : Y \to Y$ is defined by $\frac{d}{dt}\varphi_t(x) = R(\varphi_t(x))$.

The Reeb flow preserves the contact form and contact structure.

A closed **Reeb orbit** (modulo reparametrization) satisfies

$$\gamma: \mathbb{R}/T\mathbb{Z} \to Y, \quad \dot{\gamma}(t) = R(\gamma(t)),$$
 (1)

and is **embedded** whenever (1) is injective.

Reeb orbits on a contact 3-manifold

Given an embedded **Reeb orbit** $\gamma : \mathbb{R}/T\mathbb{Z} \to Y$, the linearized flow along γ defines a symplectic linear map

$$d\varphi_t: (\xi|_{\gamma(0)}, d\lambda) \to (\xi|_{\gamma(t)}, d\lambda)$$

 $d\varphi_T$ is called the **linearized return map**.

If 1 is not an eigenvalue of $d\varphi_T$ then γ is **nondegenerate**. λ is **nondegenerate** if all Reeb orbits associated to λ are nondegenerate.

For dim Y = 3, nondegenerate orbits are either **elliptic** or **hyperbolic** according to whether $d\varphi_T$ has eigenvalues on S^1 or real eigenvalues.

Later, we consider an almost complex structure J on $T(\mathbb{R} \times Y)$:

- J is \mathbb{R} -invariant
- $J\xi = \xi$, rotates ξ positively with respect to $d\lambda$
- $J(\partial_s) = R$, where s denotes the \mathbb{R} coordinate

Reeb orbits on S^3

$$S^3 := \{(u, v) \in \mathbb{C}^2 \mid |u|^2 + |v|^2 = 1\}, \lambda = \frac{i}{2}(ud\bar{u} - \bar{u}du + vd\bar{v} - \bar{v}dv).$$

The orbits of the Reeb vector field form the Hopf fibration!

$$R = iu\frac{\partial}{\partial u} - i\bar{u}\frac{\partial}{\partial \bar{u}} + iv\frac{\partial}{\partial v} - i\bar{v}\frac{\partial}{\partial \bar{v}} = (iu, iv).$$

The flow is $\varphi_t(u, v) = (e^{it}u, e^{it}v)$.

Patrick Massot

Niles Johnson,
$$S^3/S^1 = S^2$$

The Hopf Fibration

Niles Johnson

http://www.nilesjohnson.net

Jo Nelson Torus knotted Reeb dynamics

The Weinstein Conjecture (1978)

Let Y be a closed oriented odd-dimensional manifold with a contact form λ . Then the associated Reeb vector field R_{λ} has a closed orbit.

- Weinstein (convex hypersurfaces)
- Rabinowitz (star shaped hypersurfaces)
- Star shaped is secretly contact!
- Viterbo, Hofer, Floer, Zehnder ('80's fun)
- Hofer (overtwisted, $\pi_2(Y) \neq 0$, or S^3)
- Taubes (dimension 3)

Tools > 1985: Floer Theories and Gromov's pseudoholomorphic curves.

Morse theory

Let $f \in C^{\infty}(M; \mathbb{R})$ be nondegenerate and g be a "reasonable" metric. $\rightsquigarrow (f, g)$ is **Morse-Smale.**

$$\begin{split} & CM_* = \mathbb{Z}\langle \mathsf{Crit}(f) \rangle. \\ & * = \#\{\mathsf{negative \ eigenvalues \ }\mathsf{Hess}(f)\} \\ & \partial^{\mathsf{Morse}} \ \mathsf{counts} \ u \in \mathcal{M}_1(x,y)/\mathbb{R}, \ \mathsf{flow \ lines \ of} \ -\nabla f \ \mathsf{between \ critical \ points} \end{split}$$

Theorem (Floer '80s, with technical conditions)

Floer $HF_*(M, \omega, H, J) \cong$ Morse $H_*(M, (H, \omega(\cdot, J \cdot))) \cong H_*(M; \mathbb{Q})$

The Arnold Conjecture (Floer '80s...)

Let (M^{2n}, ω) be compact symplectic and $H_t = H_{t+1} : M \to \mathbb{R}$ be a smooth time dependent nondegenerate 1-periodic Hamiltonian. Then $\#\{1\text{-periodic orbits of } X_{H_t}\} \ge \sum_{i=0}^{2n} \dim H_i(M; \mathbb{Q})$

Analytic Necessities:

Transversality (for implicit function theorem $\Rightarrow M_k(x, y)$ is a manifold) Compactness (so ∂ is well defined, $\partial^2 = 0$, and invariance holds)

Recollections of spheres

Theorem (Reeb '46)

If there exists a Morse function on a compact connected M with only two critical points then M is homeomorphic to a sphere.

Theorem (Hutchings-Taubes 2008)

A closed contact 3-manifold admits ≥ 2 embedded Reeb orbits and if there are exactly two then Y is diffeomorphic to S^3 or a lens space.

Embedded contact homology (ECH)

ECH is a gauge theory for (Y^3, λ) and $\Gamma \in H_1(Y; \mathbb{Z})$ due to Hutchings.

 $ECC_*(Y, \lambda, \Gamma, J)$ is a \mathbb{Z}_2 vector space generated by **Reeb currents** $\alpha = \{(\alpha_i, m_i)\}$:

- α_i is an embedded Reeb orbit, $m_i \in \mathbb{Z}_{>0}$,
- if α_i is hyperbolic, $m_i = 1$,
- $\sum_i m_i[\alpha_i] = \Gamma$.

* is given by the **ECH index**, a topological index defined via c_1 , CZ, and relative self-intersection pairing, wrt $Z \in H_2(Y, \alpha, \beta)$. Get a relative \mathbb{Z}_d -grading, d is divisibility of $c_1(\xi) + 2PD(\Gamma)$ in $H^2(Y; \mathbb{Z})$ mod torsion.

 $\langle \partial^{\rm ECH} \alpha, \beta \rangle$ counts ${\rm currents},$ realized by unions of holomorphic curves

Partition writhe fun, index inequality, (yay for adjunction!)

-Hutchings' 02 Haiku

Dee squared is zero; obstruction bundle gluing is complicated.

Hutchings-Taubes' 07 & 09 Haiku

Jo Nelson

Invariance of ECH

 $ECC_*(Y, \lambda, \Gamma, J)$ is generated by **Reeb currents** $\alpha = \{(\alpha_i, m_i)\}$ over \mathbb{Z}_2

Grading is given by the **ECH index**, a topological index defined via c_1 , CZ, and relative self-intersection pairing, wrt $Z \in H_2(Y, \alpha, \beta)$.

 $\langle \partial^{\rm ECH} \alpha, \beta \rangle$ counts currents, realized by unions of holomorphic curves

Partition writhe fun, index inequality, (yay for adjunction!)

-Hutchings' 02 Haiku

Dee squared is zero; obstruction bundle gluing is complicated.

Jason Hise

Theorem (Taubes G&T (2010), no. 5, 2497-3000)

If Y is connected, there is a canonical isomorphism of relatively graded $\mathbb{Z}[U]-modules$

$$ECH_*(Y, \lambda, \Gamma, J) = \widehat{HM}^{-*}(Y, \mathfrak{s}_{\xi} + \mathsf{PD}(\Gamma))$$

ECH is a topological invariant of Y ! (shift Γ when changing choice of ξ)

Jo Nelson

Theorem (Boothby-Wang construction '58)

Let (Σ_g, ω) be a Riemann surface such that $\frac{[\omega]}{2\pi}$ admits an integral lift. Let $\mathfrak{p}: Y \to \Sigma_g$ be the principal S^1 -bundle with Euler class $e = -\frac{[\omega]}{2\pi}$. Then there is a connection 1-form $-i\lambda$ on Y whose Reeb vector field R is tangent to the S^1 -action.

- (Y, λ) is the **prequantization bundle** over (Σ_g, ω) .
- The Reeb orbits of R are the S^1 -fibers of this bundle.
- $d\lambda = \mathfrak{p}^*\omega$
- $\mathfrak{p}_*\xi = T\Sigma_g$
- The Reeb orbits of *R* are degenerate.

Use a Morse-Smale $H: \Sigma_g \to \mathbb{R}$, which is C^2 close to 1 to perturb λ . The perturbed Reeb vector field for $\lambda_{\varepsilon} := (1 + \varepsilon \mathfrak{p}^* H)\lambda$

$$R_arepsilon = rac{R}{1+arepsilon \mathfrak{p}^*H} + rac{arepsilon ilde{X}_H}{(1+arepsilon \mathfrak{p}^*H)^2}$$

Jo Nelson

Theorem (Nelson-Weiler '20, \mathbb{Z}_2 -grading in Farris '11)

Let $(Y, \xi = \text{ker}\lambda)$ be a prequantization bundle over (Σ_g, ω) of negative Euler class e. Then as \mathbb{Z}_2 -graded \mathbb{Z}_2 -modules,

$$\bigoplus_{\Gamma \in H_1(Y;\mathbb{Z})} ECH_*(Y,\xi,\Gamma) \cong \Lambda^*H_*(\Sigma_g;\mathbb{Z}_2).$$

There is an explicit upgrade to a (relatively) \mathbb{Z} -graded isomorphism.

Corollary (Nelson-Weiler '20)

For * sufficiently large and g > 0, the groups $ECH_*(Y, \xi, \Gamma)$ are isomorphic to $\mathbb{Z}_2^{f(g)}$, where $f(g) = 2^{2g-1}$.

• Critical points of a perfect H form a basis for $H_*(\Sigma_g; \mathbb{Z}_2)$. Generators of *ECC* are $e_-^{m_-} h_1^{m_1} \cdots h_{2g}^{m_{2g}} e_+^{m_+}$ where $m_i = 0, 1$. \sim basis for $\Lambda^* H_*(\Sigma_g; \mathbb{Z}_2)$

 $\begin{array}{l} \textcircled{2} \\ \partial^{ECH} \text{ only counts cylinders corresponding to Morse flows on } \Sigma_g; \\ \partial^{ECH}(e_-^{m_-}h_1^{m_1}\cdots h_{2g}^{m_{2g}}e_+^{m_+}) \text{ is sum of ways to apply } \partial^{Morse} \text{ to } h_i \text{ or } e_+. \end{array}$

Theorem (Nelson-Weiler '20)

Let $(Y, \xi = \ker \lambda)$ be a prequantization bundle over (Σ_g, ω) of negative Euler class e. Each $\Gamma \in H_1(Y; \mathbb{Z})$ satisfying $ECH_*(Y, \xi, \Gamma) \neq 0$ corresponds to a number in $\{0, \ldots, -e-1\}$,

$$ECH_*(Y,\xi,\Gamma) \cong \bigoplus_{d \in \mathbb{Z}_{\geq 0}} \Lambda^{\Gamma+(-e)d} H_*(\Sigma_g;\mathbb{Z}_2), \qquad d = \frac{M-N}{|e|}$$

$$\begin{aligned} |\alpha|_* - |\beta|_* &= -e(d_\alpha^2 - d_\beta^2) + (\chi(\Sigma_g) + 2\Gamma + e)(d_\alpha - d_\beta) + |\alpha|_{\bullet} - |\beta|_{\bullet} \\ I(\alpha, \beta) &= \chi(\Sigma_g)d - d^2e + 2dN + m_+ - m_- - n_+ + n_- \\ c_\tau(\alpha, \beta) + Q_\tau(\alpha, \beta) + CZ_\tau^I(\alpha) - CZ_\tau^I(\beta), cZ_\tau^I(\gamma) = \sum_i \sum_{k=1}^{L} CZ_\tau(\gamma_k^i) \end{aligned}$$

- There exists $\varepsilon > 0$ so that the generators of $ECC^L_*(Y, \lambda_{\varepsilon}, J)$ are $e^{m_-}_- h^{m_1}_1 \cdots h^{m_{2g}}_{2g} e^{m_+}_+$, e.g. orbits which are fibers over critical points.
- **2** $\partial^{ECH,L}$ only counts cylinders over Morse flow lines in Σ_g .
- **③** Finish with a direct limit argument, sending $\varepsilon \rightarrow 0$ and $L \rightarrow \infty$, by way of the action filtered isomorphism with Seiberg-Witten.

Open book decomposition of (S^3, ξ_{std}) along T(p, q)

Definition

An open book decomposition of Y^3 is a pair (B, π) where,

- B is an oriented link in Y, aka the **binding**;
- $\pi: Y \setminus B \to S^1$ is a **fibration** of the complement of *B* such that $\pi^{-1}(\theta) = \mathring{\Sigma}_{\theta}, \ \partial \Sigma_{\theta} = B$ for all $\theta \in S^1, \ \Sigma \cong \Sigma_{\theta}$ is the **page**.
- The monodromy ϕ is the self diffeo of the page.

The right handed torus knot is the binding of an open book decomposition of (S^3, ξ_{std})

$$T(p,q) = \left\{ (z_1, z_2) \in S^3 \mid z_1^p + z_2^q = 0 \right\},$$

with the Milnor fibration projection map

$$\pi: S^3 \setminus T(p,q) o S^1, \ \ (z_1,z_2) \mapsto rac{z_1^p + z_2^q}{|z_1^p + z_2^q|}.$$

The page Σ is a surface of genus $\frac{(p-1)(q-1)}{2}$. The monodromy ϕ is pq-periodic.

(Henry Blanchette)

http://people.reed.edu/~ormsbyk/projectproject/posts/milnor-fibrations.html

Reeb current generators

The open book of (S^3, ξ_{std}) along T(p, q) is strictly contactomorphic to

- certain Seifert fiber spaces with $e = -\frac{1}{pq}$ (Lisca-Matic, Colin-Honda)
- the S¹-orbibundle $\mathfrak{p}: S^3 \to \mathbb{CP}^1_{\rho,q}$ (Kegel-Lange, Dan CG-Mazzuchelli) $\lambda_{\rho,q} = \frac{\lambda_0}{\rho|z_1|^2 + q|z_2|^2} \longrightarrow$ Reeb VF is tangent to the fibers

• Perturb using orbifold Morse function $H_{p,q}$ on $\mathbb{CP}^1_{p,q}$

$$\lambda_{p,q,\varepsilon} := (1 + \varepsilon \mathfrak{p}^* H_{p,q}) \lambda_{p,q}$$
$$R_{p,q,\varepsilon} = \frac{R}{1 + \varepsilon \mathfrak{p}^* H_{p,q}} + \frac{\varepsilon \tilde{X}_{H_{p,q}}}{(1 + \varepsilon \mathfrak{p}^* H_{p,q})^2}$$

- p and q are the singular fibers projecting to minima at the orbifold points of isotropy Z/p and Z/q.
- The binding **b** is a regular fiber projecting to max.
- **h** is a regular fiber projecting to saddle. (positive hyperbolic)

(elliptic)

(elliptic)

The chain complex

- p and q are the singular fibers projecting to minima at the orbifold points of isotropy Z/p and Z/q. (elliptic)
- binding **b** is a regular fiber projecting to max. (elliptic)
- h is a regular fiber projecting to saddle. (pos hyper)

Two nontrivial cylinders with boundary $\mathbf{h} - \mathbf{p}^p$ and $\mathbf{h} - \mathbf{q}^q$. Two cylinders with boundary $\mathbf{b} - \mathbf{h}$, which cancel.

Intersection theory & more: ∂^{ECH} only counts unions of cylinders,

which are lifts of orbifold Morse flow lines:

$$\langle \partial \mathbf{h} \alpha, \mathbf{q}^{q} \gamma \rangle = \langle \partial \mathbf{h} \alpha, \mathbf{p}^{\mathbf{p}} \alpha \rangle = 1, \quad \langle \partial \mathbf{b} \gamma, \mathbf{h} \gamma \rangle = 0.$$

$$\lim_{\varepsilon \to 0} ECH^{L(\varepsilon)}_{*}(S^{3}, \lambda_{p,q,\varepsilon}, J) = ECH_{*}(S^{3}, \xi_{std}) = \begin{cases} \mathbb{Z}/2 & \text{if } * \in 2\mathbb{Z}_{\geq 0} \\ 0 & \text{else}, \end{cases}$$

Knot filtered ECH

- Realizes the relationship between action and linking of orbits.
- kECH is a topological spectral invariant (Hutchings '16)

•
$$\mathcal{F}_b(b^B\alpha) := B \operatorname{rot}(b) + \ell(\alpha, b)$$

•
$$\mathcal{F}_{\mathbf{b}}(\mathbf{b}^{B}\mathbf{h}^{H}\mathbf{q}^{Q}\mathbf{p}^{P}) = weighted algebraic multiplicity of fibers + B\delta_{L}$$

= $pq \int_{\mathbf{b}^{B}\mathbf{h}^{H}\mathbf{q}^{Q}\mathbf{p}^{P}} \lambda_{p,q} + B\delta_{L}$

The *degree* of any generator of $ECH_{2k}^{L(\varepsilon)}(S^3, \lambda_{p,q,\varepsilon})$ is $N_k(p,q)$, $c_k(S^3, \lambda_{p,q}) = N_k(\frac{1}{p}, \frac{1}{q})$, the inf of the action any generator with I = 2k

Theorem (Nelson-Weiler '23)

Let **b** be the standard transverse positive T(p, q) in (S^3, ξ_{std}) with rotation number pq (aka maximal self-linking number, invoke Etnyre '99). Then

$$ECH_{2k}^{\mathcal{F}_{\mathbf{b}} \leq K}(S^{3}, \xi_{std}, \mathbf{b}, pq) = \begin{cases} \mathbb{Z}/2 & K \geq N_{k}(p, q) = \{mp + nq | m, n \in \mathbb{Z}_{\geq 0}\}_{k} \\ 0 & otherwise \end{cases}$$

and $ECH_*^{\mathcal{F}_b \leq K} = 0$ in all other gradings *.

Theorem (Nelson-Weiler '23)

Let **b** be the standard transverse positive T(p, q) in (S^3, ξ_{std}) with rotation number pq (aka maximal self-linking number, invoke Etnyre '99). Then

$$ECH_{2k}^{\mathcal{F}_{\mathbf{b}} \leq K}(S^{3}, \xi_{std}, \mathbf{b}, pq) = \begin{cases} \mathbb{Z}/2 & K \geq N_{k}(p, q) = \{mp + nq | m, n \in \mathbb{Z}_{\geq 0}\}_{k} \\ 0 & otherwise \end{cases}$$

$$end ECH_{*}^{\mathcal{F}_{\mathbf{b}} \leq K} = 0 \text{ in all other gradings } *.$$

Corollary

Let $pq \ge p'q'$. If there is a symplectic cobordism from T(p,q) to T(p',q') in $\mathbb{R} \times S^3$ then $N_k(p,q) \ge N_k(p',q')$ for all k.

Corollary

kECH + ECH Weyl Law \Rightarrow quantitative existence of Reeb orbits.

Corollary (NW '23 + ECH Weyl law by Cristofaro-Gardiner–Hutchings–Ramos '15)

Let λ be a contact form on (S^3, ξ_{std}) whose Reeb VF admits the positive T(p, q) torus knot as an elliptic Reeb orbit with symplectic action 1 and rotation number $pq + \Delta$, where Δ is a positive irrational number. If $Vol(\lambda) < \frac{pq}{(pq+\Delta)^2}$ then

$$\inf\left\{\frac{\operatorname{action}(\gamma)}{\operatorname{linking of }\gamma \text{ with } \mathcal{T}(p,q)}\right\} \leq \sqrt{\frac{\operatorname{Vol}(\lambda)}{pq}}.$$

This result implies existence of periodic orbits and mean action bounds in terms of the Calabi invariant for surface dynamics.

Generalizes Hutchings '16 for $\mathbb D$ maps; Weiler '18 for $\mathbb A$ maps.

Results for C^{∞} generic Hamiltonians by Pirnapasov-Prasad '22.

Applications to surface dynamics and Calabi

Study symplectomorphisms $\psi : (\mathring{\Sigma}_g, d\eta) \circlearrowleft$, $\partial \mathring{\Sigma}_g = T(p, q)$ such that ψ is freely isotopic to the right handed pq-periodic rep of Mod $(\mathring{\Sigma}_g)$ and isotopic rel $\partial \mathring{\Sigma}_g$ to this rep twisted positively near ∂ by $-\frac{1}{pq} < d \leq 0$,

The action function f of ψ wrt η measures the ψ distortion of curves; it's defined by $df = \psi^* \eta - \eta$ and $f = \frac{1}{pq} + d$.

The **Calabi invariant** of ψ is the average of the action function:

$$\mathsf{Cal}_\eta(\psi) := \int_{\mathring{\Sigma}_g} \mathit{fd}\eta$$

Theorem (NW '23)

Given any such ψ , if f > 0 and $Cal(\psi) < pq \cdot \theta_0^2$, where $\theta_0 = \frac{1}{pq} + d$, then

$$\inf \left\{ \frac{Action(\gamma)}{Period(\gamma)} \mid \gamma \text{ is a periodic orbit of } \psi \right\} < \sqrt{\frac{\mathsf{Cal}(\psi)}{pq}}.$$

A periodic orbit of ψ is a tuple of points $(x_1, ...x_\ell)$ s.t. $\psi(x_i) = x_{i+1} \mod \ell$. Action $(\gamma) := \sum_{i=1}^{\ell} f(\gamma_i)$, Period $(\gamma) := \ell$.

Jo Nelson

Thanks!

Hopf fibration: https://nilesjohnson.net/hopf.html

Spinors exhibit a sign-reversal that depends on the homotopy class of the continuous rotation of the coordinate system between some initial and final configuration in contrast to vectors and other tensors. https://en.wikipedia.org/wiki/Spinor In the limit, a piece of solid continuous space can rotate in place like this without tearing or intersecting itself. (A more extreme example of the **belt trick**.)

https://www.youtube.com/watch?v=LLw3BaliDUQ

Milnor fibrations of torus knots (& open book decompositions)

http://people.reed.edu/~ormsbyk/projectproject/posts/milnor-fibrations.html
https://www.unf.edu/~ddreibel/research/milnor/milnor.html
https://sketchesoftopology.wordpress.com/2012/08/24/bowman/