Positive torus knotted Reeb dynamics in the tight 3-sphere

Jo Nelson (Rice University)

NSF CAREER DMS-2142694

Contact structures

Definition

A contact structure is a maximally nonintegrable hyperplane field.

$$
\xi=\operatorname{ker}(d z-y d x)
$$

The kernel of a 1-form λ on $Y^{2 n+1}$ is a contact structure whenever

- $\lambda \wedge(d \lambda)^{n}$ is a volume form $\left.\Leftrightarrow d \lambda\right|_{\xi}$ is nondegenerate.

Darboux's Theorem

Let λ be a contact form on $Y^{2 n+1}$ and $p \in Y$. Then there are coordinates on $U_{p} \subset Y$ such that $\left.\lambda\right|_{U_{p}}=d z-\sum_{i=1}^{n} y_{i} d x_{i}$.

Locally all contact structures look the same!
\sim no local invariants like curvature.

Reeb vector fields

Definition

The Reeb vector field R on (Y, λ) is uniquely determined by

- $\lambda(R)=1$
- $d \lambda(R, \cdot)=0$

$$
\lambda=d z-y d x, \quad R=\frac{\partial}{\partial z}
$$

The Reeb flow $\varphi_{t}: Y \rightarrow Y$ is defined by $\frac{d}{d t} \varphi_{t}(x)=R\left(\varphi_{t}(x)\right)$.
The Reeb flow preserves the contact form and contact structure.
A closed Reeb orbit (modulo reparametrization) satisfies

$$
\begin{equation*}
\gamma: \mathbb{R} / T \mathbb{Z} \rightarrow Y, \quad \dot{\gamma}(t)=R(\gamma(t)) \tag{1}
\end{equation*}
$$

and is embedded whenever (1) is injective.

Reeb orbits on a contact 3-manifold

Given an embedded Reeb orbit $\gamma: \mathbb{R} / T \mathbb{Z} \rightarrow Y$, the linearized flow along γ defines a symplectic linear map

$$
d \varphi_{t}:\left(\left.\xi\right|_{\gamma(0)}, d \lambda\right) \rightarrow\left(\left.\xi\right|_{\gamma(t)}, d \lambda\right)
$$

$d \varphi_{T}$ is called the linearized return map.
If 1 is not an eigenvalue of $d \varphi_{T}$ then γ is nondegenerate. λ is nondegenerate if all Reeb orbits associated to λ are nondegenerate.

For $\operatorname{dim} Y=3$, nondegenerate orbits are either elliptic or hyperbolic according to whether $d \varphi_{T}$ has eigenvalues on S^{1} or real eigenvalues.

Later, we consider an almost complex structure J on $T(\mathbb{R} \times Y)$:

- J is \mathbb{R}-invariant
- $J \xi=\xi$, rotates ξ positively with respect to $d \lambda$
- $J\left(\partial_{s}\right)=R$, where s denotes the \mathbb{R} coordinate

Reeb orbits on S^{3}

$S^{3}:=\left\{\left.(u, v) \in \mathbb{C}^{2}| | u\right|^{2}+|v|^{2}=1\right\}, \lambda=\frac{i}{2}(u d \bar{u}-\bar{u} d u+v d \bar{v}-\bar{v} d v)$.
The orbits of the Reeb vector field form the Hopf fibration!

$$
R=i u \frac{\partial}{\partial u}-i \bar{u} \frac{\partial}{\partial \bar{u}}+i v \frac{\partial}{\partial v}-i \bar{v} \frac{\partial}{\partial \bar{v}}=(i u, i v) .
$$

The flow is $\varphi_{t}(u, v)=\left(e^{i t} u, e^{i t} v\right)$.

Patrick Massot

Niles Johnson, $S^{3} / S^{1}=S^{2}$

The Hopf Fibration

Niles Johnson

http://www.nilesjohnson.net

Existence of periodic orbits

The Weinstein Conjecture (1978)

Let Y be a closed oriented odd-dimensional manifold with a contact form λ. Then the associated Reeb vector field R_{λ} has a closed orbit.

- Weinstein (convex hypersurfaces)
- Rabinowitz (star shaped hypersurfaces)
- Star shaped is secretly contact!
- Viterbo, Hofer, Floer, Zehnder ('80's fun)
- Hofer (overtwisted, $\pi_{2}(Y) \neq 0$, or S^{3})
- Taubes (dimension 3)

Tools > 1985: Floer Theories and Gromov's pseudoholomorphic curves.

Morse theory

Let $f \in C^{\infty}(M ; \mathbb{R})$ be nondegenerate and g be a "reasonable" metric. $\sim(f, g)$ is Morse-Smale.
$C M_{*}=\mathbb{Z}\langle\operatorname{Crit}(f)\rangle$.
$*=\#\{$ negative eigenvalues $\operatorname{Hess}(f)\}$
$\partial^{\text {Morse }}$ counts $u \in \mathcal{M}_{1}(x, y) / \mathbb{R}$, flow lines of $-\nabla f$ between critical points

Theorem (Floer '80s, with technical conditions)

Floer $H F_{*}(M, \omega, H, J) \cong$ Morse $H_{*}(M,(H, \omega(\cdot, J \cdot))) \cong H_{*}(M ; \mathbb{Q})$

The Arnold Conjecture (Floer '80s...)

Let $\left(M^{2 n}, \omega\right)$ be compact symplectic and $H_{t}=H_{t+1}: M \rightarrow \mathbb{R}$ be a smooth time dependent nondegenerate 1-periodic Hamiltonian. Then

$$
\#\left\{1 \text {-periodic orbits of } X_{H_{t}}\right\} \geq \sum_{i=0}^{2 n} \operatorname{dim} H_{i}(M ; \mathbb{Q})
$$

Analytic Necessities:

Transversality (for implicit function theorem $\Rightarrow \mathcal{M}_{k}(x, y)$ is a manifold) Compactness (so ∂ is well defined, $\partial^{2}=0$, and invariance holds)

Recollections of spheres

$$
\begin{gathered}
C_{*}\left(S^{2},(f, g)\right)=\left\{\begin{array}{lll}
\mathbb{Z}_{2} & *=0,2 & \partial \equiv 0 \\
0 & \text { else }
\end{array}\right. \\
C_{*}\left(S^{2},(f, g)\right)=\left\{\begin{array}{cll}
\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} & *=2 \\
\mathbb{Z}_{2} & *=1 & \partial c=\partial d=b \\
\mathbb{Z}_{2} & *=0 & \partial b=2 a=0
\end{array}\right.
\end{gathered}
$$

Theorem (Reeb '46)

If there exists a Morse function on a compact connected M with only two critical points then M is homeomorphic to a sphere.

Theorem (Hutchings-Taubes 2008)

A closed contact 3-manifold admits ≥ 2 embedded Reeb orbits and if there are exactly two then Y is diffeomorphic to S^{3} or a lens space.

Embedded contact homology (ECH)

ECH is a gauge theory for $\left(Y^{3}, \lambda\right)$ and $\Gamma \in H_{1}(Y ; \mathbb{Z})$ due to Hutchings.
$E C C_{*}(Y, \lambda, \Gamma, J)$ is a \mathbb{Z}_{2} vector space generated by Reeb currents $\alpha=\left\{\left(\alpha_{i}, m_{i}\right)\right\}$:

- α_{i} is an embedded Reeb orbit, $m_{i} \in \mathbb{Z}_{>0}$,
- if α_{i} is hyperbolic, $m_{i}=1$,
- $\sum_{i} m_{i}\left[\alpha_{i}\right]=\Gamma$.
* is given by the ECH index, a topological index defined via $c_{1}, C Z$, and relative self-intersection pairing, wrt $Z \in H_{2}(Y, \alpha, \beta)$. Get a relative $\mathbb{Z}_{\boldsymbol{d}}$-grading, \boldsymbol{d} is divisibility of $c_{1}(\xi)+2 P D(\Gamma)$ in $H^{2}(Y ; \mathbb{Z})$ mod torsion.
$\left\langle\partial^{E C H} \alpha, \beta\right\rangle$ counts currents, realized by unions of holomorphic curves

Partition writhe fun, index inequality, (yay for adjunction!)

Dee squared is zero; obstruction bundle gluing is complicated.

Invariance of ECH

$E C C_{*}(Y, \lambda, \Gamma, J)$ is generated by Reeb currents $\alpha=\left\{\left(\alpha_{i}, m_{i}\right)\right\}$ over \mathbb{Z}_{2}
Grading is given by the ECH index, a topological index defined via $c_{1}, C Z$, and relative self-intersection pairing, wrt $Z \in H_{2}(Y, \alpha, \beta)$.
$\left\langle\partial^{E C H} \alpha, \beta\right\rangle$ counts currents, realized by unions of holomorphic curves

Partition writhe fun, index inequality, (yay for adjunction!)

Dee squared is zero; obstruction bundle gluing is complicated.
-Hutchings' 02 Haiku

Jason Hise

Theorem (Taubes G\&T (2010), no. 5, 2497-3000)

If Y is connected, there is a canonical isomorphism of relatively graded $\mathbb{Z}[U]$-modules

$$
E C H_{*}(Y, \lambda, \Gamma, J)=\widehat{H M}^{-*}\left(Y, \mathfrak{s}_{\xi}+\operatorname{PD}(\Gamma)\right)
$$

ECH is a topological invariant of Y !

 (shift Γ when changing choice of ξ)
Prequantization bundles

Theorem (Boothby-Wang construction '58)

Let $\left(\Sigma_{g}, \omega\right)$ be a Riemann surface such that $\frac{[\omega]}{2 \pi}$ admits an integral lift. Let $\mathfrak{p}: Y \rightarrow \Sigma_{g}$ be the principal S^{1}-bundle with Euler class $e=-\frac{[\omega]}{2 \pi}$. Then there is a connection 1-form -i入 on Y whose Reeb vector field R is tangent to the S^{1}-action.

- (Y, λ) is the prequantization bundle over $\left(\Sigma_{g}, \omega\right)$.
- The Reeb orbits of R are the S^{1}-fibers of this bundle.
- $d \lambda=\mathfrak{p}^{*} \omega$
- $\mathfrak{p}_{*} \xi=T \Sigma_{g}$
- The Reeb orbits of R are degenerate.

Use a Morse-Smale $H: \Sigma_{g} \rightarrow \mathbb{R}$, which is C^{2} close to 1 to perturb λ. The perturbed Reeb vector field for $\lambda_{\varepsilon}:=\left(1+\varepsilon \mathfrak{p}^{*} H\right) \lambda$

$$
R_{\varepsilon}=\frac{R}{1+\varepsilon \mathfrak{p}^{*} H}+\frac{\varepsilon \tilde{X}_{H}}{\left(1+\varepsilon \mathfrak{p}^{*} H\right)^{2}}
$$

ECH from Morse H_{*}

Theorem (Nelson-Weiler '20, \mathbb{Z}_{2}-grading in Farris '11)

Let $(Y, \xi=\operatorname{ker} \lambda)$ be a prequantization bundle over $\left(\Sigma_{g}, \omega\right)$ of negative Euler class e. Then as \mathbb{Z}_{2}-graded \mathbb{Z}_{2}-modules,

$$
\bigoplus_{\Gamma \in H_{1}(Y ; \mathbb{Z})} E C H_{*}(Y, \xi, \Gamma) \cong \Lambda^{*} H_{*}\left(\Sigma_{g} ; \mathbb{Z}_{2}\right)
$$

There is an explicit upgrade to a (relatively) \mathbb{Z}-graded isomorphism.

Corollary (Nelson-Weiler '20)

For $*$ sufficiently large and $g>0$, the groups $E C H_{*}(Y, \xi, \Gamma)$ are isomorphic to $\mathbb{Z}_{2}^{f(g)}$, where $f(g)=2^{2 g-1}$.
(1) Critical points of a perfect H form a basis for $H_{*}\left(\Sigma_{g} ; \mathbb{Z}_{2}\right)$. Generators of ECC are $e_{-}^{m_{-}} h_{1}^{m_{1}} \cdots h_{2 g}^{m_{2 g}} e_{+}^{m_{+}}$where $m_{i}=0,1$. \sim basis for $\Lambda^{*} H_{*}\left(\Sigma_{g} ; \mathbb{Z}_{2}\right)$
(2) $\partial^{E C H}$ only counts cylinders corresponding to Morse flows on Σ_{g}; $\partial^{E C H}\left(e_{-}^{m_{-}} h_{1}^{m_{1}} \cdots h_{2 g}^{m_{2 g}} e_{+}^{m_{+}}\right)$is sum of ways to apply $\partial^{\text {Morse }}$ to h_{i} or e_{+}.

More details

Theorem (Nelson-Weiler '20)

Let $(Y, \xi=\operatorname{ker} \lambda)$ be a prequantization bundle over $\left(\Sigma_{g}, \omega\right)$ of negative Euler class e. Each $\Gamma \in H_{1}(Y ; \mathbb{Z})$ satisfying $E C H_{*}(Y, \xi, \Gamma) \neq 0$ corresponds to a number in $\{0, \ldots,-e-1\}$,

$$
\begin{gathered}
E C H_{*}(Y, \xi, \Gamma) \cong \bigoplus_{d \in \mathbb{Z}_{\geq 0}} \Lambda^{\Gamma+(-e) d} H_{*}\left(\Sigma_{g} ; \mathbb{Z}_{2}\right), \quad d=\frac{M-N}{|e|} \\
|\alpha|_{*}-|\beta|_{*}=-e\left(d_{\alpha}^{2}-d_{\beta}^{2}\right)+\left(\chi\left(\Sigma_{g}\right)+2 \Gamma+e\right)\left(d_{\alpha}-d_{\beta}\right)+|\alpha|_{\bullet}-|\beta|_{\bullet} \\
I(\alpha, \beta)= \\
\chi\left(\Sigma_{g}\right) d-d^{2} e+2 d N+m_{+}-m_{-}-n_{+}+n_{-} \\
c_{\tau}(\alpha, \beta)+Q_{\tau}(\alpha, \beta)+C Z_{\tau}^{\prime}(\alpha)-C Z_{\tau}^{I}(\beta), c z_{t}^{\prime}(\gamma)=\sum_{i} \Sigma_{k=1}^{t} C Z_{\tau}\left(\gamma_{i}^{*}\right)
\end{gathered}
$$

(1) There exists $\varepsilon>0$ so that the generators of $E C C_{*}^{L}\left(Y, \lambda_{\varepsilon}, J\right)$ are $e_{-}^{m_{-}} h_{1}^{m_{1}} \cdots h_{2 g}^{m_{2 g}} e_{+}^{m_{+}}$, e.g. orbits which are fibers over critical points.
(2) $\partial^{E C H, L}$ only counts cylinders over Morse flow lines in Σ_{g}.
(3) Finish with a direct limit argument, sending $\varepsilon \rightarrow 0$ and $L \rightarrow \infty$, by way of the action filtered isomorphism with Seiberg-Witten.

Open book decomposition of $\left(S^{3}, \xi_{s t d}\right)$ along $T(p, q)$

Definition

An open book decomposition of Y^{3} is a pair (B, π) where,

- B is an oriented link in Y, aka the binding;
- $\pi: Y \backslash B \rightarrow S^{1}$ is a fibration of the complement of B such that $\pi^{-1}(\theta)=\Sigma_{\theta}^{\circ}, \partial \Sigma_{\theta}=B$ for all $\theta \in S^{1}, \Sigma \cong \Sigma_{\theta}$ is the page.
- The monodromy ϕ is the self diffeo of the page.

The right handed torus knot is the binding of an open book decomposition of $\left(S^{3}, \xi_{\text {std }}\right)$

$$
T(p, q)=\left\{\left(z_{1}, z_{2}\right) \in S^{3} \mid z_{1}^{p}+z_{2}^{q}=0\right\}
$$

with the Milnor fibration projection map

$$
\pi: S^{3} \backslash T(p, q) \rightarrow S^{1}, \quad\left(z_{1}, z_{2}\right) \mapsto \frac{\frac{z_{1}^{p}+z_{2}^{q}}{\left|z_{1}^{p}+z_{2}^{q}\right|} .}{}
$$

The page Σ is a surface of genus $\frac{(p-1)(q-1)}{2}$. The monodromy ϕ is $p q$-periodic.
(Henry Blanchette)
http://people.reed.edu/~ormsbyk/projectproject/posts/milnor-fibrations.html

Reeb current generators

The open book of ($S^{3}, \xi_{\text {std }}$) along $T(p, q)$ is strictly contactomorphic to

- certain Seifert fiber spaces with $e=-\frac{1}{p q} \quad$ (Lisca-Matic, Colin-Honda)
- the S^{1}-orbibundle $\mathfrak{p}: S^{3} \rightarrow \mathbb{C P}_{p, q}^{1} \quad$ (Kegel-Lange, Dan CG-Mazzuchelli)

$$
\lambda_{p, q}=\frac{\lambda_{0}}{p\left|z_{1}\right|^{2}+q\left|z_{2}\right|^{2}} \leadsto \text { Reeb VF is tangent to the fibers }
$$

- Perturb using orbifold Morse function $H_{p, q}$ on $\mathbb{C P}_{p, q}^{1}$

$$
\begin{gathered}
\lambda_{p, q, \varepsilon}:=\left(1+\varepsilon \mathfrak{p}^{*} H_{p, q}\right) \lambda_{p, q} \\
R_{p, q, \varepsilon}=\frac{R}{1+\varepsilon \mathfrak{p}^{*} H_{p, q}}+\frac{\varepsilon \tilde{X}_{H_{p, q}}}{\left(1+\varepsilon \mathfrak{p}^{*} H_{p, q}\right)^{2}}
\end{gathered}
$$

- pand q are the singular fibers projecting to minima at the orbifold points of isotropy \mathbb{Z} / p and \mathbb{Z} / q.
- The binding b is a regular fiber projecting to max.
- \mathbf{h} is a regular fiber projecting to saddle.

The chain complex

- p and q are the singular fibers projecting to minima at the orbifold points of isotropy \mathbb{Z} / p and \mathbb{Z} / q. (elliptic)
- binding b is a regular fiber projecting to max. (elliptic)
- \mathbf{h} is a regular fiber projecting to saddle.
(pos hyper)
Two nontrivial cylinders with boundary $\mathbf{h}-\mathbf{p}^{p}$ and $\mathbf{h}-q^{q}$.
Two cylinders with boundary b-h, which cancel.
Intersection theory \& more:
$\partial^{E C H}$ only counts unions of cylinders, which are lifts of orbifold Morse flow lines:

$$
\left\langle\partial \mathbf{h} \alpha, \mathbf{q}^{q} \gamma\right\rangle=\left\langle\partial \mathbf{h} \alpha, \mathbf{p}^{\mathbf{p}} \alpha\right\rangle=1, \quad\langle\partial \mathbf{b} \gamma, \mathbf{h} \gamma\rangle=0 .
$$

$\lim _{\varepsilon \rightarrow 0} E C H_{*}^{L(\varepsilon)}\left(S^{3}, \lambda_{p, q, \varepsilon}, J\right)=E C H_{*}\left(S^{3}, \xi_{s t d}\right)= \begin{cases}\mathbb{Z} / 2 & \text { if } * \in 2 \mathbb{Z}_{\geq 0} \\ 0 & \text { else },\end{cases}$

Knot filtered ECH

- Realizes the relationship between action and linking of orbits.
- kECH is a topological spectral invariant (Hutchings '16)
- $\mathcal{F}_{b}\left(b^{B} \alpha\right):=B \operatorname{rot}(b)+\ell(\alpha, b)$
- $\mathcal{F}_{\mathrm{b}}\left(\mathrm{b}^{B} \mathbf{h}^{H} \mathrm{q}^{Q} \mathbf{p}^{P}\right)=$ weighted algebraic multiplicity of fibers $+B \delta_{L}$

$$
=p q \int_{\mathrm{b}^{B} \mathbf{h}^{H} q^{Q} \mathbf{p}^{P}} \lambda_{p, q}+B \delta_{L}
$$

The degree of any generator of $E C H_{2 k}^{L(\varepsilon)}\left(S^{3}, \lambda_{p, q, \varepsilon}\right)$ is $N_{k}(p, q)$,
$c_{k}\left(S^{3}, \lambda_{p, q}\right)=N_{k}\left(\frac{1}{p}, \frac{1}{q}\right)$, the inf of the action any generator with $I=2 k$

Theorem (Nelson-Weiler '23)

Let be be the standard transverse positive $T(p, q)$ in $\left(S^{3}, \xi_{s t d}\right)$ with rotation number pq (aka maximal self-linking number, invoke Etnyre '99). Then

$$
E C H_{2 k}^{\mathcal{F}_{\mathrm{b}} \leq K}\left(S^{3}, \xi_{s t d}, \mathrm{~b}, p q\right)= \begin{cases}\mathbb{Z} / 2 & K \geq N_{k}(p, q)=\left\{m p+n q \mid m, n \in \mathbb{Z}_{\geq 0}\right\}_{k} \\ 0 & \text { otherwise }\end{cases}
$$

and $E C H_{*}^{\mathcal{F}_{\mathrm{b}} \leq K}=0$ in all other gradings $*$.

Applications

Theorem (Nelson-Weiler '23)

Let be the standard transverse positive $T(p, q)$ in $\left(S^{3}, \xi_{s t d}\right)$ with rotation number pq (aka maximal self-linking number, invoke Etnyre '99). Then

$$
E C H_{2 k}^{\mathcal{F}_{\mathrm{b}} \leq K}\left(S^{3}, \xi_{s t d}, \mathrm{~b}, p q\right)= \begin{cases}\mathbb{Z} / 2 & K \geq N_{k}(p, q)=\left\{m p+n q \mid m, n \in \mathbb{Z}_{\geq 0}\right\}_{k} \\ 0 & \text { otherwise }\end{cases}
$$ and $E C H_{*}^{\mathcal{F}_{\mathrm{b}} \leq K}=0$ in all other gradings $*$.

Corollary

Let $p q \geq p^{\prime} q^{\prime}$. If there is a symplectic cobordism from $T(p, q)$ to $T\left(p^{\prime}, q^{\prime}\right)$ in $\mathbb{R} \times S^{3}$ then $N_{k}(p, q) \geq N_{k}\left(p^{\prime}, q^{\prime}\right)$ for all k.

Corollary

$k E C H+E C H$ Weyl Law \Rightarrow quantitative existence of Reeb orbits.

Quantitative bounds on arbitrary Reeb currents

Corollary (NW '23 + ECH Weyl law by Cristofaro-Gardiner-Hutchings-Ramos '15)

Let λ be a contact form on $\left(S^{3}, \xi_{s t d}\right)$ whose Reeb VF admits the positive $T(p, q)$ torus knot as an elliptic Reeb orbit with symplectic action 1 and rotation number $p q+\Delta$, where Δ is a positive irrational number. If $\operatorname{Vol}(\lambda)<\frac{p q}{(p q+\Delta)^{2}}$ then

$$
\inf \left\{\frac{\operatorname{action}(\gamma)}{\text { linking of } \gamma \text { with } T(p, q)}\right\} \leq \sqrt{\frac{\operatorname{Vol}(\lambda)}{p q}} .
$$

This result implies existence of periodic orbits and mean action bounds in terms of the Calabi invariant for surface dynamics.

Generalizes Hutchings '16 for \mathbb{D} maps; Weiler '18 for \mathbb{A} maps.
Results for C^{∞} generic Hamiltonians by Pirnapasov-Prasad '22.

Applications to surface dynamics and Calabi

Study symplectomorphisms $\psi:\left(\Sigma_{g}, d \eta\right) \circlearrowleft, \partial \Sigma_{g}=T(p, q)$ such that ψ is freely isotopic to the right handed $p q$-periodic rep of $\operatorname{Mod}\left(\Sigma_{g}^{\circ}\right)$ and isotopic rel $\partial \Sigma_{g}$ to this rep twisted positively near ∂ by $-\frac{1}{p q}<d \leq 0$, The action function f of ψ wrt η measures the ψ distortion of curves; it's defined by $d f=\psi^{*} \eta-\eta$ and $f=\frac{1}{p q}+d$.
The Calabi invariant of ψ is the average of the action function:

$$
\operatorname{CaI}_{\eta}(\psi):=\int_{\Sigma_{g}} f d \eta
$$

Theorem (NW '23)

Given any such ψ, if $f>0$ and $C a l(\psi)<p q \cdot \theta_{0}^{2}$, where $\theta_{0}=\frac{1}{p q}+d$, then

$$
\inf \left\{\left.\frac{\operatorname{Action}(\gamma)}{\operatorname{Period}(\gamma)} \right\rvert\, \gamma \text { is a periodic orbit of } \psi\right\}<\sqrt{\frac{\mathrm{Cal}(\psi)}{p q}}
$$

A periodic orbit of ψ is a tuple of points $\left(x_{1}, . . x_{\ell}\right)$ s.t. $\psi\left(x_{i}\right)=x_{i+1} \bmod \ell$.

$$
\operatorname{Action}(\gamma):=\sum_{i=1}^{\ell} f\left(\gamma_{i}\right), \quad \operatorname{Period}(\gamma):=\ell
$$

Thanks!

Jo Nelson
Torus knotted Reeb dynamics

Visualizations

Hopf fibration: https://nilesjohnson.net/hopf.html
Spinors exhibit a sign-reversal that depends on the homotopy class of the continuous rotation of the coordinate system between some initial and final configuration in contrast to vectors and other tensors. https://en.wikipedia.org/wiki/Spinor
In the limit, a piece of solid continuous space can rotate in place like this without tearing or intersecting itself.
(A more extreme example of the belt trick.)
https://www. youtube.com/watch?v=LLw3BaliDUQ
Milnor fibrations of torus knots (\& open book decompositions)

```
http://people.reed.edu/~ormsbyk/projectproject/posts/milnor-fibrations.html
https://www.unf.edu/~ddreibel/research/milnor/milnor.html
https://sketchesoftopology.wordpress.com/2012/08/24/bowman/
```

