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Fundamental Groups
of nonviod 5uw\s-7.
Lefschers fibrations

Sierra. Knavel
Tech Topo\ogu (onfevente 2023
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Lefschetz Fibrations: definition I

LeFschetz fibration:
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Lefschetz Fibrations: definition

Lefschetz fibration:
- Suriection ,F K — 2’_;'\
- SiMgulan point s :F(%.w\z 2w
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The Homotopy Cardinality of the the Representation

Category

Justin Murray
Louisiana State University

Tech Topology
December 8, 2023
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The Setup

For us, A C (R3, ker(dz — ydx)) is a connected Legendrian with r(A) = 0.
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Cooking up Invariants

Given A one can form a differential graded algebra (DGA), (A, dp) such
that H.((Aa, On)) is invariant under Legendrian isotopy.
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Cooking up Invariants

Given A one can form a differential graded algebra (DGA), (A, dp) such
that H.((Aa, On)) is invariant under Legendrian isotopy. BUT
H.((An,Op)) is hard to compute in general! Instead we can look at DGA

maps
e: (Ap,0n) — (F,0) called augmentations

or
p: (Ap,On) — (Mat,(F),0) called representations

Homotopy cardinality of Rep, (A, Fg) December 5, 2023 3/7



Counting

If F = IFg, then you can count these maps

Count all maps and
renormalize

Aug(N\,Fy)

Repn(/\7 Fq)

Count isomorphism
classes of maps

#m>0Augy (A, Fq)*

#Wzonepff(/\, IFQ)A<
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Counting

If F = IFg, then you can count these maps

Count all maps and
renormalize

Aug(N\,Fy) Repn (A, Fg)

Count isomorphism
classes of maps

#m>0Aug (N Fq)* | #m>0Repy (A, Fq)*

Theorem (Pan, Capovilla-Searle-Legout-Limouzineau-Murphy-Pan-Traynor)

If there is an exact Lagrangian cobordism from A_ to Ay then

#r>0Aug(A-,Fq)" < #m>0Augy (A4, Fg)*
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Some Results

Theorem (M'23)

Two representations in the representation category are isomorphic <—
they are conjugate up to DGA homotopy.

Theorem (M'23)
The homotopy cardinality can be computed via colored ruling polynomials:

#rsoRep; (N Fq)* = g7 MN/2R, A(q)

If there is an exact Lagrangian cobordism from A_ to A4 then

#msoRepy (M-, Fq)* < #msoRept (s, Fo)*

Homotopy cardinality of Rep, (A, Fg) December 5, 2023 5/7



Conjectures

Conjecture A

There exists a Legendrian A, that has no augmentations but a higher
n-dimensional (0-graded) representation.

Conjecture B

The obstruction to reversing Lagrangian concordance using representations
is strictly stronger than that for augmentations (would follow from
Conjecture A).

Homotopy cardinality of Rep, (A, Fg) December 5, 2023 6/7



References
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(Where you might find A,, still
under construction)
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Negative contact surgery on Legendrian
non-simple knots
(Joint with Hugo Zhou)

Shunyu Wan
University of Virginia

Tech Topology Conference Lightning Talk



Contact 3-manifolds and Legendrian knots

» A contact 3-manifold (Y, &) is a smooth 3-manifold Y
together with a 2-plane field distribution £ such that for any
one form a with ker(a) =&, a A da > 0.

» A Legendrian knot L in (Y,€) is an embedded S? that is
always tangent to &.



Contact 3-manifolds and Legendrian knots

» A contact 3-manifold (Y, &) is a smooth 3-manifold Y
together with a 2-plane field distribution £ such that for any
one form a with ker(a) =&, a A da > 0.

» A Legendrian knot L in (Y,€) is an embedded S? that is
always tangent to &.

Classical invariants associated to a Legendrian knot L
» tb(L) (Thurston-Bennequin number)
» rot(L) (rotation number)

A knot is called Legendrian non-simple if it has two Legendrian
representatives with same tb and rot that are not Legendrian
isotopic to each other.



Contact surgery on non-simple knots

An oriented Legendrian knot L in a contact 3-manifold (Y, &)
admits a canonical contact framing, and we can perform r-surgery
with respect to the contact framing. Moreover, we can put a
contact structure &,(L) on the surgery manifold Y, (L).



Contact surgery on non-simple knots

An oriented Legendrian knot L in a contact 3-manifold (Y, &)
admits a canonical contact framing, and we can perform r-surgery
with respect to the contact framing. Moreover, we can put a
contact structure &,(L) on the surgery manifold Y, (L).

Question: If K is a Legendrian non-simple knot, and we let L; and
Ly be two Legendrian non isotopic representatives of K in (Y, ¢),
then what can we say about the contact manifolds (Y;(L1),&1),
and (Y;(L2),&2)?



Specific example
We focus on the following two Legendrian non-isotopic
representatives L1 and L, of the twist knot Es in (S3, £,4). Both
L1 and L have tb =1 and rot = 0.

@@ﬁ

Ly Ly



Specific example
We focus on the following two Legendrian non-isotopic
representatives L1 and L, of the twist knot Es in (S3, £,4). Both
L1 and L have tb =1 and rot = 0.
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Theorem 1 (Etnyre, 2006)
(531(L1), &), and (S31(L2), &) are contactomorphic.

),
Theorem 2 (Bourgeois-Ekholm-Eliashberg, 2009)
(S31(L1), &),

and (53,(Lz), &) are not contactomorphic.



Specific example
We focus on the following two Legendrian non-isotopic
representatives L1 and L, of the twist knot Es in (S3, £,4). Both
L1 and L have tb =1 and rot = 0.

" =
=/

Theorem 1 (Etnyre, 2006)

(531(L1), &), and (S31(L2), &) are contactomorphic.
Theorem 2 (Bourgeois-Ekholm-Eliashberg, 2009)
(S31(L1), &),

Theorem 3 (W, Zhou)
(S3(L1),£1), and (S3(L2), &) are not contact isotopic for all r < 0.

and (53,(Lz), &) are not contactomorphic.



Contact invariant and LOSS invariant

Ozsvath-Szabé and later Honda-Kazez-Mati¢ showed that (Y, €)
determines a distinguished element c(¢) € I-/IT-_(—Y), called the
Heegaard Floer "contact invariant". Subsequently, for a Legendrian
knot L in (Y, €), Lisca-Ozsvath-Stipsicz-Szabé defined the “LOSS
invariant” £(L) € HFK— (=Y, L).



Contact invariant and LOSS invariant

Ozsvath-Szabé and later Honda-Kazez-Mati¢ showed that (Y, €)
determines a distinguished element c(¢) € I-/IT-_(—Y), called the
Heegaard Floer "contact invariant". Subsequently, for a Legendrian
knot L in (Y, €), Lisca-Ozsvath-Stipsicz-Szabé defined the “LOSS
invariant” £(L) € HFK— (=Y, L).

Ozsvath and Stipsicz proved these two Legendrian representatives
of Es, L1 and L, have different LOSS invariants.



Relation between contact invariant and LOSS invariant

Lemma 4 (Lisca-Ozsvath-Stipsicz-Szab¢)

For any 3-manifold Y and a knot K in Y there is a natural chain

map e
g : CFK=(Y,K,t) = CF(Y,1).

Moreover let L be a null-homologous Legendrian knot in a contact
3-manifold (Y, &), then the map on homology induced by g

G :HFK (=Y, L,t) = HF(=Y,1) (1.1)
has the property that

G(£(L)) = (&)



Contact —2 surgery on Ly and L,

Theorem 5 (Wan, Zhou)

Contact —2 surgery on L1 and Ly give different contact manifolds
with different contact invariants.
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(Remark: Lisca and Stipsicz showed that contact —1 surgery on L;
and Lp give contact manifolds with same contact invariants.)



Contact —2 surgery on Ly and L,

Theorem 5 (Wan, Zhou)

Contact —2 surgery on L1 and Ly give different contact manifolds
with different contact invariants.

(Remark: Lisca and Stipsicz showed that contact —1 surgery on L;
and Lp give contact manifolds with same contact invariants.)

Proof.

1. Let P; be the Legendrian push-offs of L;, P! be the induced
Legendrian knots of P; in S3,(L;).



Contact —2 surgery on Ly and L,

Theorem 5 (Wan, Zhou)

Contact —2 surgery on L1 and Ly give different contact manifolds
with different contact invariants.

(Remark: Lisca and Stipsicz showed that contact —1 surgery on L;
and Lp give contact manifolds with same contact invariants.)

Proof.

1. Let P; be the Legendrian push-offs of L;, P! be the induced
Legendrian knots of P; in S3,(L;).

2. L; have different LOSS invariants will tell us P! have different
LOSS invariants.



Contact —2 surgery on Ly and L,

Theorem 5 (Wan, Zhou)

Contact —2 surgery on L1 and Ly give different contact manifolds
with different contact invariants.

(Remark: Lisca and Stipsicz showed that contact —1 surgery on L;
and Lp give contact manifolds with same contact invariants.)
Proof.

1. Let P; be the Legendrian push-offs of L;, P! be the induced
Legendrian knots of P; in S3,(L;).

2. L; have different LOSS invariants will tell us P! have different
LOSS invariants.

3. Calculate HFK=(—S3,(L;), P!), and show the map G is
injective on the LOSS invariants. (Using Hedden-Levine
mapping cone formula for duel knot.)

OJ



Thank You for Your Attention!
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Towards a count of holomorphic sections of
Lefschetz fibrations over the disc

2023 Tech Topology Conference - Lightning Talk

Riccardo Pedrotti - UT Austin

( Work in progress w/ T. Perutz )



Lefschetz fibration

. 7 : E* > B?(smooth, proper)
. 0E = 77 '(0B)

e Standard neighbourhood around critical
points of

VALVE
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X = S

* “Bijection” between positive factorization of
the identity in MCG(2) and Lefschetz
fibrations over S?




Can we use this combinatorial description of X*to
compute its SW invariants?

 \We want to count pseudo-holomorphic sections of r : X4 - D? by
keeping track of their (relative) homology class

* \We can get insights into SW invariants of the (capped-off) symplectic
manifold X*



Counting sections



Counting sections

3-Wd sectiow
¥

‘\ sl:n&c\niv\y

. —
L j f] j
W, by, ZVZZVI
HF (Ll,) i’ HF (z"zz":.) HF (LL) 01—) HF (7\!1) D—Z—) HF (Zv,?v,_)

o = HF(¢)) = HF () — HF " ($V,, V) — -+



Counting sections keeping track of their homology class



Counting sections keeping track of their homology class

b s B, B,

j%g

~/ ~

o o HF(; ) 3 HF (2 p; &) — HF " ($V,, Vi L) — -+



State of the project

 Using the mapping cone, we have a combinatorial formula for o, . In the
Lagrangian and Fixed Point case (more complicate)

 \We want to compare it with SW invariants (GW=SW)

 Extend to multi-sections (via relative Hilbert schemes?)






Geometric Structures and Foliations
Associated to PSL4R Hitchin
Representations

Alex Nolte
Rice University / Georgia Tech
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This material is based upon work supported by the National Science Foundation under Grant No. 1842494.




PSL,R Hitchin components

Hit,(S):
@ Special component of Hom(m; S, PSL,R)/PSL,R

@ Analogues of Teichmiiller spaces

Question (Hitchin '92)
What geometric content does p € Hit,(S) have?




Guichard-Wienhard's work ('08, '11)

@ Analogues of hyperbolic structures exist. Non-qualitative.

o Qualitative n = 4 theory:
> p € Hits(S) acts on Q, C RP® ~» projective structure on T1S

» 2, has invariant foliations 7, G by convex sets in RP?, RP*
» “Decorates’ projective structure on T1S

» Characterizes Hitchin condition



Motivating Question

How rigid are the “decorations” of these projective structures?

@ Going the “other way" of Guichard-Wienhard's '08



Results (N)

@ Classification of similar “decorations”:
» There are 2. (1 new). Analogue for other connected component

@ Foliations of €2, by properly embedded properly convex domains:

» In RP!s: exactly 2 group-invariant foliations (central theorem)
» In RP?s: unique foliation

@ Detailed basic structure of 2,

@ Projective equivalences of Guichard-Wienhard's structures
automatically preserve decorations

» Answers question in Guichard-Wienhard '08



Fuchsian domain

Not like SL(3,R), where domain is convex!



Sample Basic Structure Theorem (N)
p € Hity(S). Frenét curve (£, €2, £3). Projective planes in RP* and

their qualitative intersections with 92, have 4 forms:

&) 1 £() @)

& (x) ()




Geometry in Pf. of Only 2 Foliations by Segments

@ Invariant foliation F. Arrange for a leaf to stare straight at cusp

@ Control these with qualitative geometry:
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Crossing Number

@ Knot Theory is the study of knots and links.

@ We study invariants of links to differentiate links, but also other topological objects which
arise.

@ One such invariant is the crossing number, which is the minimum number of crossing for
a knot across all diagrams.

@ We will refer to the crossing number of a knot K as ¢(K).

@ Despite being easy to define, the crossing number is notoriously intractable.

Rob McConkey (Binghamton University) BUGCAT 2023 November 11th, 2023



Satellite Knots

@ To construct a satellite knot K start with a non-trivial knot K’ inside of a torus T, then
given a non-trivial knot C in S3 we map T to a neighborhood of C.

@ We will refer to C as the companion knot for K.

Rob McConkey (Binghamton University) BUGCAT 2023 November 11th, 2023



Satellite Knots

@ Crossing number is not well understood for satellite and connect sums of knots.

@ Remains an open conjecture whether or not ¢(K) > ¢(C) where C is the companion knot
for a satellite knot K.

Rob McConkey (Binghamton University) BUGCAT 2023 November 11th, 2023



History

Theorem (Kalfagianni and Lee)

Let W(K) be the untwisted whitehead double of a knot K. If K is adequate with writhe
number zero, then c(W(K)) = 4c(K) + 2.

Rob McConkey (Binghamton University) BUGCAT 2023

November 11th, 2023



Satellite Knots

@ We consider the satellite knots K}, q which is the (p, g)-cabling operation on a knot K.

)
o)

G,

0
@
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Results

Theorem (Kalfagianni and M.)

For any adequate knot K with crossing number ¢(K), and any coprime integers p, g, we have
c(Kp,q) > ¢° - c(K) + 1.

A\

Corollary (Kalfagianni and M.)

Let K be an adequate knot with crossing number ¢(K) and writhe number w(K). If
p =2w(K) £ 1, the K, is non-adequate and ¢c(Kp2) = 4c(K) + 1.

Rob McConkey (Binghamton University) BUGCAT 2023 November 11th, 2023
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S On the Hofer Zeander (omjecture for Seniipositive Sympletic  Momifolds !

. jomt Wwork with Marcelo Atallah '
l{ﬁ Hon Low
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Main Resure (Awllah —L.) (W, w> Closed seipositive Symplettic Manifold
for definttions of Hamitionian Hoer homology Gnd Gromov - Witten Tvanants.

Ho (M, 8) @ Ng.wiv  is Semisimple
TRV, lhe®. MelR  encrated oy idempotents

Homitorian  diffeomorphiom ¢ has finmely meny Umcracible 4= periodiv 0roits
Ptix) where P=x ¢*=

# 1 wontractible 4- Pertodic orottsd 7 dim g HIM, &)
= ¢ hos Tnfinitely many Wneractible periodit rdTES.

key ¢ The weffiient fid of Hanittonian FHoer homology has Charatteristic p.
There 15 Gn upper bound of Usher's boundary depth thatx  Tndepemdent of p for suficiently

lo\rge, P Busio of Chan (omplex T4, i Moo ey Su- o %1 sih that dlgui=0 . db ="
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disil=ni: LA, sl “longest finre bar lenguh”
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