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LegendrianLoops
Def : A Legendrian Loop of1 is a Legendrian

isotopy fixing 1 pointwise at time I
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The Setup

For us, Λ ⊂ (R3, ker(dz − ydx)) is a connected Legendrian with r(Λ) = 0.

I

III

II

Homotopy cardinality of Repn(Λ, Fq) December 5, 2023 2 / 7



Cooking up Invariants

Given Λ one can form a differential graded algebra (DGA), (AΛ, ∂Λ) such
that H∗((AΛ, ∂Λ)) is invariant under Legendrian isotopy.

BUT
H∗((AΛ, ∂Λ)) is hard to compute in general! Instead we can look at DGA

maps
ε : (AΛ, ∂Λ) → (F, 0) called augmentations

or
ρ : (AΛ, ∂Λ) → (Matn(F), 0) called representations
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Counting

If F = Fq, then you can count these maps

Count all maps and
renormalize

Aug(Λ,Fq) Repn(Λ,Fq)

Count isomorphism
classes of maps

#π≥0Aug+(Λ,Fq)
∗ #π≥0Rep+n (Λ,Fq)

∗

Theorem (Pan, Capovilla-Searle-Legout-Limouzineau-Murphy-Pan-Traynor)

If there is an exact Lagrangian cobordism from Λ− to Λ+ then

#π≥0Aug+(Λ−,Fq)
∗ ≤ #π≥0Aug+(Λ+,Fq)

∗
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Some Results

Theorem (M’23)

Two representations in the representation category are isomorphic ⇐⇒
they are conjugate up to DGA homotopy.

Theorem (M’23)

The homotopy cardinality can be computed via colored ruling polynomials:

#π≥0Rep+n (Λ,Fq)
∗ = qn

2tb(Λ)/2Rn,Λ(q)

Corollary

If there is an exact Lagrangian cobordism from Λ− to Λ+ then

#π≥0Rep+n (Λ−,Fq)
∗ ≤ #π≥0Rep+n (Λ+,Fq)

∗
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Conjectures

Conjecture A

There exists a Legendrian Λn that has no augmentations but a higher
n-dimensional (0-graded) representation.

Conjecture B

The obstruction to reversing Lagrangian concordance using representations
is strictly stronger than that for augmentations (would follow from
Conjecture A).

Homotopy cardinality of Repn(Λ, Fq) December 5, 2023 6 / 7
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Preprint: Legendrian Knot Atlas:

(Where you might find Λn, still
under construction)
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Negative contact surgery on Legendrian
non-simple knots

(Joint with Hugo Zhou)

Shunyu Wan
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Contact 3-manifolds and Legendrian knots

▶ A contact 3-manifold (Y , ξ) is a smooth 3-manifold Y
together with a 2-plane field distribution ξ such that for any
one form α with ker(α) = ξ, α ∧ dα > 0.

▶ A Legendrian knot L in (Y , ξ) is an embedded S1 that is
always tangent to ξ.

Classical invariants associated to a Legendrian knot L
▶ tb(L) (Thurston-Bennequin number)
▶ rot(L) (rotation number)

A knot is called Legendrian non-simple if it has two Legendrian
representatives with same tb and rot that are not Legendrian
isotopic to each other.
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Contact surgery on non-simple knots

An oriented Legendrian knot L in a contact 3-manifold (Y , ξ)
admits a canonical contact framing, and we can perform r -surgery
with respect to the contact framing. Moreover, we can put a
contact structure ξr (L) on the surgery manifold Yr (L).

Question: If K is a Legendrian non-simple knot, and we let L1 and
L2 be two Legendrian non isotopic representatives of K in (Y , ξ),
then what can we say about the contact manifolds (Yr (L1), ξ1),
and (Yr (L2), ξ2)?
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Specific example
We focus on the following two Legendrian non-isotopic
representatives L1 and L2 of the twist knot E5 in (S3, ξstd). Both
L1 and L2 have tb = 1 and rot = 0.

Theorem 1 (Etnyre, 2006)
(S3

+1(L1), ξ1), and (S3
+1(L2), ξ2) are contactomorphic.

Theorem 2 (Bourgeois-Ekholm-Eliashberg, 2009)
(S3

−1(L1), ξ1), and (S3
−1(L2), ξ2) are not contactomorphic.

Theorem 3 (W, Zhou)
(S3

r (L1), ξ1), and (S3
r (L2), ξ2) are not contact isotopic for all r < 0.
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Contact invariant and LOSS invariant

Ozsváth-Szabó and later Honda-Kazez-Matić showed that (Y , ξ)

determines a distinguished element c(ξ) ∈ ĤF (−Y ), called the
Heegaard Floer "contact invariant". Subsequently, for a Legendrian
knot L in (Y , ξ), Lisca-Ozsváth-Stipsicz-Szabó defined the “LOSS
invariant” L(L) ∈ HFK−(−Y , L).

Ozsváth and Stipsicz proved these two Legendrian representatives
of E5, L1 and L2 have different LOSS invariants.
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Relation between contact invariant and LOSS invariant

Lemma 4 (Lisca-Ozsváth-Stipsicz-Szabó)
For any 3-manifold Y and a knot K in Y there is a natural chain
map

g : CFK−(Y ,K , t) → ĈF(Y , t).

Moreover let L be a null-homologous Legendrian knot in a contact
3-manifold (Y , ξ), then the map on homology induced by g

G : HFK−(−Y , L, t) → ĤF (−Y , t) (1.1)

has the property that

G (L(L)) = c(ξ).



Contact −2 surgery on L1 and L2

Theorem 5 (Wan, Zhou)
Contact −2 surgery on L1 and L2 give different contact manifolds
with different contact invariants.

(Remark: Lisca and Stipsicz showed that contact −1 surgery on L1
and L2 give contact manifolds with same contact invariants.)

Proof.
1. Let Pi be the Legendrian push-offs of Li , P ′

i be the induced
Legendrian knots of Pi in S3

−2(Li ).
2. Li have different LOSS invariants will tell us P ′

i have different
LOSS invariants.

3. Calculate HFK−(−S3
−2(Li ),P

′
i ), and show the map G is

injective on the LOSS invariants. (Using Hedden-Levine
mapping cone formula for duel knot.)
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Thank You for Your Attention!
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Definition : The thickening dimension

of asimplicial complex K , denoted by
thkdim (K) , is the minimum

dimension

of amanifold (M ,2) that is homotopy
equivalent to K .
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X = 2:0x&:0

Im (Bestvina- Kapovich-Kleiner , 2002) :

thkdim S X 7 = 4
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Towards a count of holomorphic sections of 
Lefschetz fibrations over the disc

2023 Tech Topology Conference - Lightning Talk

Riccardo Pedrotti - UT Austin


( Work in progress w/ T. Perutz )




Lefschetz fibration

•  (smooth, proper)


• 


• Standard neighbourhood around critical 
points of 

π : E4 → B2

∂E = π−1(∂B)

π



• Donaldson and Gompf: 

• “Bijection” between positive factorization of 
the identity in  and Lefschetz 
fibrations over 

MCG(Σ)
S2
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Can we use this combinatorial description of  to 
compute its SW invariants?

X4

• We want to count pseudo-holomorphic sections of  by 
keeping track of their (relative) homology class


• We can get insights into SW invariants of the (capped-off) symplectic 
manifold 

π : X4 → D2

X4



Counting sections

⋯ HF*(ϕ) σi HF*(τV1
ϕ) HF−*(ϕVi, Vi) ⋯
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Counting sections keeping track of their homology class
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Counting sections keeping track of their homology class

⋯ HF*(ϕ; ℒi)
σi HF*(τV1

ϕ; ℒi) HF−*(ϕVi, Vi; ℒi) ⋯



• Using the mapping cone, we have a combinatorial formula for  in the 
Lagrangian and Fixed Point case (more complicate)


• (Lagrangian) it involves counting triangles and heart-shaped domains in 
the regular fiber, with appropriate weights. 


• By iterating the mapping cone, we have formula for composition of 
twists


• We want to compare it with SW invariants (GW=SW)


• Extend to multi-sections (via relative Hilbert schemes?)

σ̃tot

State of the project
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Geometric Structures and Foliations
Associated to PSL4R Hitchin

Representations

Alex Nolte
Rice University / Georgia Tech

This material is based upon work supported by the National Science Foundation under Grant No. 1842494.



PSLnR Hitchin components

Hitn(S):

Special component of Hom(π1S ,PSLnR)/PSLnR

Analogues of Teichmüller spaces

Question (Hitchin ’92)

What geometric content does ρ ∈ Hitn(S) have?



Guichard-Wienhard’s work (’08, ’11)

Analogues of hyperbolic structures exist. Non-qualitative.

Qualitative n = 4 theory:
▶ ρ ∈ Hit4(S) acts on Ωρ ⊂ RP3 ; projective structure on T 1S

▶ Ωρ has invariant foliations F ,G by convex sets in RP2,RP1

▶ “Decorates” projective structure on T 1S

▶ Characterizes Hitchin condition



Motivating Question
How rigid are the “decorations” of these projective structures?

Going the “other way” of Guichard-Wienhard’s ’08



Results (N)

Classification of similar “decorations”:
▶ There are 2. (1 new). Analogue for other connected component

Foliations of Ωρ by properly embedded properly convex domains:
▶ In RP1s: exactly 2 group-invariant foliations (central theorem)
▶ In RP2s: unique foliation

Detailed basic structure of Ωρ

Projective equivalences of Guichard-Wienhard’s structures
automatically preserve decorations

▶ Answers question in Guichard-Wienhard ’08



Fuchsian domain

Not like SL(3,R), where domain is convex!



Sample Basic Structure Theorem (N)
ρ ∈ Hit4(S). Frenét curve (ξ1, ξ2, ξ3). Projective planes in RP3 and
their qualitative intersections with ∂Ωρ have 4 forms:



Geometry in Pf. of Only 2 Foliations by Segments
Invariant foliation F . Arrange for a leaf to stare straight at cusp

Control these with qualitative geometry:

Conclude from ruling’s structure in what the staring leaf sees:



Crossing Number of Cable Knots (Joint with E. Kalfagianni)

Rob McConkey

Binghamton University

November 11th, 2023



Crossing Number

Knot Theory is the study of knots and links.
We study invariants of links to differentiate links, but also other topological objects which
arise.
One such invariant is the crossing number, which is the minimum number of crossing for
a knot across all diagrams.
We will refer to the crossing number of a knot K as c(K ).
Despite being easy to define, the crossing number is notoriously intractable.

Rob McConkey (Binghamton University) BUGCAT 2023 November 11th, 2023 2 / 8



Satellite Knots

To construct a satellite knot K start with a non-trivial knot K ′ inside of a torus T , then
given a non-trivial knot C in S3 we map T to a neighborhood of C .
We will refer to C as the companion knot for K .

Rob McConkey (Binghamton University) BUGCAT 2023 November 11th, 2023 3 / 8



Satellite Knots

Crossing number is not well understood for satellite and connect sums of knots.
Remains an open conjecture whether or not c(K ) ≥ c(C) where C is the companion knot
for a satellite knot K .

Rob McConkey (Binghamton University) BUGCAT 2023 November 11th, 2023 4 / 8



History

Theorem (Kalfagianni and Lee)
Let W (K ) be the untwisted whitehead double of a knot K . If K is adequate with writhe
number zero, then c(W (K )) = 4c(K ) + 2.

Rob McConkey (Binghamton University) BUGCAT 2023 November 11th, 2023 5 / 8



Satellite Knots

We consider the satellite knots Kp,q which is the (p, q)-cabling operation on a knot K .

Rob McConkey (Binghamton University) BUGCAT 2023 November 11th, 2023 6 / 8



Results

Theorem (Kalfagianni and M.)
For any adequate knot K with crossing number c(K ), and any coprime integers p, q, we have
c(Kp,q) ≥ q2 · c(K ) + 1.

Corollary (Kalfagianni and M.)
Let K be an adequate knot with crossing number c(K ) and writhe number w(K ). If
p = 2w(K ) ± 1, the Kp,2 is non-adequate and c(Kp,2) = 4c(K ) + 1.

Rob McConkey (Binghamton University) BUGCAT 2023 November 11th, 2023 7 / 8



Thank You!



1 On the Hofer Zehnder Conjecture for Semipositive symplectic manifolds
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Main Result (Atallah L
.) (m .

w> closed semipositive symplectic manifold
for definitions of Hamiltonian Floer homology and Gromov-Witten invariants.

Her (M , Q) & No, univ is semisimple
ZaiTM

.
GEQ . XiFIR generated by idempotents

Hamiltonian diffeomorphism & has finitely many contractible 1-periodic orbits.
#(1 where P(x)= X p= 4

# contractible 1-periodic orbits3 >dimpH(m . Q)

> P has infinitely many contractible periodic orbits.

key : The coefficient field of Hamiltonian Floer homology has characteristic p.
There is an upper bound of Usher's boundary depth that is independent of p for sufficiently

C .large Basis of chain complex [Eg , -,K , 4....., 7B .
51
, :... SB3 such that digi =0 , difi)=H2

digil : 1-00 . (ii)]

d1Si) = 42 : [t(i) , elSi)] "longest finite bar length"
2%) : filtration .

↑fortening
=
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