A Nielsen-Thurston classification of Legendrian Loops
James Hughes (Duke) @Tech Topology 2023

Legendrian Links + Lagrangian Fillings

Legendrian Loops
Def: A Legendrian Loop of \wedge is a Legendrian isotopy fixing \wedge pointwise at time 1 .

Legendrian loops act on the set of exact Lagrangian fillings by concatenation.

Contact geometry

- Legendrian Link 人 (braid positive)
- Exact Lagrangian \longrightarrow Doric chart $(\mathbb{C})^{x^{b}(L)} \leq M_{1}(\Lambda)$
filling L of Λ
- Legendrian loop \longrightarrow (cluster) automorphism of M, ($\Lambda)$

Nielsen Thurston Classification
Def: A Legendrian Loop φ of Λ is:

- periodic if $\tilde{\varphi}^{n}=i d$ for some $n \in \mathbb{N}$.
- reducible if $\tilde{\varphi}$ fixes some set of cluster coordinates in $\mu_{1}(\Lambda)$
- psendo-Anosor if $\tilde{\varphi}^{n}$ is neither periodic nor reducible.

Fixed Points
Thm (H. 23): The induced action of any periodic Legendrian loop has a fixed point in $M_{1}(\Lambda)>0$.

Ex: $\wedge\left((21)^{9}\right) \cong \wedge(3,6)$

$$
\begin{array}{ll}
a_{1}=\frac{a_{2}+a_{3}+a_{1} a_{4}}{a_{2}} & a_{7}=a_{1} a_{3} a_{5} a_{6} a_{8}+\left(a_{1} a_{3} a_{6}^{2}+\left(\left(a_{1} a_{4}+\left(a_{2}+a_{3}\right) a_{5}\right) a_{6}\right) a_{7}\right) a_{9} /\left(a_{1} a_{3} a_{5} a_{7} a_{8}\right) \\
a_{2}=a_{4} & a_{8}=a_{10} \\
a_{3}=\frac{a_{2}+a_{3}}{a_{1}} & a_{9}=\frac{a_{1} a_{3} a_{5} a_{8}+\left(a_{1} a_{6} a_{7} a_{6}+\left(a_{1} a_{4}+\left(a_{2}+a_{3}+\left(a_{2}+a_{5}\right) a_{3}\right) a_{5}^{2}\right) a_{1}\right) a_{9}}{a_{1} a_{3} a_{5} a_{7}} \\
a_{4}=\frac{a_{3} a_{6}+a_{4} a_{7}}{a_{5}} & a_{10}=a_{9} \\
a_{5}=\frac{a_{1} a_{3} a_{6}+\left(a_{1} a_{4}+\left(a_{2}+a_{3}\right) a_{5}\right) a_{7}}{a_{1} a_{3} a_{5}}
\end{array}
$$

Thank youl.

Fundamental Groups of nontrivial genus-2 Lefschetz Fibrations

Sierra Knave Tech Topology Conference 2023 Georgia Tech, Advised by John Etnyre

Lefschetz Fibrations: Why do we care?

- Lefschetz fibrations ${ }^{*} \longleftrightarrow$ symplectic $4-m f d s$

Lefschetz Fibrations: Why do we care?

- Lefschetz fibrations ${ }^{*} \longleftrightarrow$ symplectic $4-m f d s$

Question:
What are possible π_{1} 's of genus-g LF?

Lefschetz Fibrations: Why do we care?

- Lefschetz fibrations ${ }^{*} \longleftrightarrow$ symplectic $4-m f d s$

Question:
What are possible π_{1} 's of genus-g LF?
Question for today:
What are possible π_{1}^{\prime} 's of genus 2 Lis over S^{2} ?

Lefschetz Fibrations: definition

Lefschetz fibration:

Lefschetz Fibrations: definition

Lefschetz fibration: - suriection $f: X^{4} \rightarrow \Sigma_{h}^{2}$

Lefschetz Fibrations: definition

Lefschetz fibration:

- surjection $f: X^{4} \rightarrow \Sigma_{h}^{2}$
- singular points $f(z, w)=z w$

Lefschetz Fibrations: definition

Lefschetz fibration:

- suriection $f: X^{4} \longrightarrow \Sigma_{h}^{2}$
- singular points $f(z, w)=z w$ \longrightarrow finitely many

Lefschetz Fibrations: definition

Lefschetz fibration:

- surjection $f: X^{4} \longrightarrow \Sigma_{h}^{2}$
- singular points $f(z, w)=z w$ \longrightarrow finitely many -genus of $L F=$ genus of fiber

Lefschetz Fibrations: fibers
regular fiber

genus g

Lefschetz Fibrations: fibers

Lefschetz Fibrations: fibers

Lefschetz Fibrations: fibers

$$
\begin{aligned}
& \text { regular fiber } \\
& 0 \\
& 0 \\
& \text { genus } g \\
& 0
\end{aligned}
$$

Lefschetz Fibrations: monodromy

$$
\begin{aligned}
& \text { ? } 8 \\
& \downarrow f \\
& \text { - } D^{2}
\end{aligned}
$$

Lefschetz Fibrations: monodromy

Lefschetz Fibrations: monodromy

Lefschetz Fibrations: monodromy

- tracing disks in base space give F-bundle/s'
$\downarrow f$

Lefschetz Fibrations: monodromy

- tracing disks in base space give F-bundle $/ s^{\prime}$
- monodromy $\phi: F \longrightarrow F$ is a Dehn twist about v.c.

Lefschetz Fibrations: monodromy

- tracing disks in base space give F-bund eds s^{\prime}
- monodromy $\phi: F \longrightarrow F$ is a Dehn twist about v.c.
- going around all singular values gives factorization of $i d \in \operatorname{Mod}(F)$

Lefschetz Fibrations: vc's as 2-handles

Takeaway:

Lefschetz Fibrations: vc's as 2-handles

Takeaway:

- vanishing cycles on singular fibers $=$ important

$0=$ vanishing cycle

Lefschetz Fibrations: vc's as 2-handles

Takeaway:

- vanishing cycles on singular fibers $=$ important

Fundamental Group:

$$
0=\text { vanishing cycle }
$$

Lefschetz Fibrations: vc's as 2-handles

Takeaway:

- vanishing cycles on singular fibers $=$ important
9.iill
= Vanishing cycle

Fundamental Group:

$$
\begin{aligned}
& - \text { generators }=1 \text {-handles } \\
& - \text { relations }=2 \text {-handles }
\end{aligned}
$$

Lefschetz Fibrations: vc's as 2-handles

Takeaway:

- vanishing cycles on singular fibers $=$ important

O= Vanishing cycle

Fundamental Group:

- generators $=1$-hanales
- relations $=2$-handles
\therefore disks glued along v.e's give relations

Simply Connected Genus-2 Lefschetz Fibrations

Simply Connected Genus-2 Lefschetz Fibrations

Simply Connected Genus-2 Lefschetz Fibrations

Simply Connected Genus-2 Lefschetz Fibrations

Simply Connected Genus-2 Lefschetz Fibrations

Simply Connected Genus-2 Lefschetz Fibrations

Simply Connected Genus-2 Lefschetz Fibrations

Chakiris ' 83
Every holomorphic genus 2 CF with no separating vc's is a fiber sum of α

Simply Connected Genus-2 Lefschetz Fibrations

Chakiris ' 83
Every holomorphic genus 2 CF with no separating vc's is a fiber sum of α

$$
\alpha:\left(t_{1} t_{2} t_{3} t_{4} t_{5} t_{5} t_{4} t_{3} t_{2} t_{1}\right)^{2}
$$

Simply Connected Genus-2 Lefschetz Fibrations

Chakiris ' 83
Every holomorphic genus 2 CF with no separating vc's is a fiber sum of α, β

$$
\begin{aligned}
& \alpha:\left(t_{1} t_{2} t_{3} t_{4} t_{5} t_{5} t_{4} t_{3} t_{2} t_{1}\right)^{2} \\
& \beta:\left(t_{1} t_{2} t_{3} t_{4} t_{5}\right)^{6}
\end{aligned}
$$

Simply Connected Genus-2 Lefschetz Fibrations

Chakiris ' 83
Every holomorphic genus 2 CF with no separating vc's is a fiber sum of α, β, and γ

$$
\begin{aligned}
& \alpha:\left(t_{1} t_{2} t_{3} t_{4} t_{5} t_{5} t_{4} t_{3} t_{2} t_{1}\right)^{2} \\
& \beta:\left(t_{1} t_{2} t_{3} t_{4} t_{5}\right)^{6} \\
& \gamma:\left(t_{1} t_{2} t_{3} t_{4}\right)^{10}
\end{aligned}
$$

Simply Connected Genus-2 Lefschetz Fibrations

Chakiris '83
Every holomorphic genus 2 CF with no separating vc's is a fiber sum of α, β, and γ

$$
\begin{aligned}
& \alpha:\left(t_{1} t_{2} t_{3} t_{4} t_{5} t_{5} t_{4} t_{3} t_{2} t_{1}\right)^{2} \\
& \beta:\left(t_{1} t_{2} t_{3} t_{4} t_{5}\right)^{6} \\
& \gamma:\left(t_{1} t_{2} t_{3} t_{4}\right)^{10}
\end{aligned}
$$

Siebert-Tian ${ }^{\prime} 03$:

- no separating
-transitive monodromy

Results with separating vanishing cycles
all non-separating:
$-\pi_{1}(x)=0$

- except for case of technical condition

Results with separating vanishing cycles
all non-separating:
$-\pi_{1}(x)=0$

- except for case of technical condition
at least 1 separating:
- $\pi_{1}(x)$ could be $0, \mathbb{Z}, \mathbb{Z}_{n}$ $\mathbb{Z} \oplus \mathbb{Z}, \mathbb{Z}_{n} \oplus \mathbb{Z}, \mathbb{Z}_{n} \oplus \mathbb{Z}_{m}$

Results with separating vanishing cycles
all non-separating:
$-\pi_{1}(x)=0$

- except for case of technical condition
at least 1 separating:
- $\pi_{1}(x)$ could be $0, \mathbb{Z}, \mathbb{Z}_{n}$

$$
\mathbb{Z} \oplus \mathbb{Z}, \quad \mathbb{Z}_{n} \oplus \mathbb{Z}, \mathbb{Z}_{n} \oplus \mathbb{Z}_{m}
$$

future directions:

- Always Abelian?
- At most 2 generators?
thanks for listening!

The Homotopy Cardinality of the the Representation Category

Justin Murray
Louisiana State University
Tech Topology
December 8, 2023

The Setup

For us, $\Lambda \subset\left(\mathbb{R}^{3}, \operatorname{ker}(d z-y d x)\right)$ is a connected Legendrian with $r(\Lambda)=0$.

Cooking up Invariants

Given Λ one can form a differential graded algebra (DGA), $\left(\mathcal{A}_{\Lambda}, \partial_{\Lambda}\right)$ such that $H_{*}\left(\left(\mathcal{A}_{\Lambda}, \partial_{\Lambda}\right)\right)$ is invariant under Legendrian isotopy.

Cooking up Invariants

Given Λ one can form a differential graded algebra (DGA), $\left(\mathcal{A}_{\Lambda}, \partial_{\Lambda}\right)$ such that $H_{*}\left(\left(\mathcal{A}_{\Lambda}, \partial_{\Lambda}\right)\right)$ is invariant under Legendrian isotopy. BUT $H_{*}\left(\left(\mathcal{A}_{\Lambda}, \partial_{\Lambda}\right)\right)$ is hard to compute in general!

Cooking up Invariants

Given Λ one can form a differential graded algebra (DGA), $\left(\mathcal{A}_{\Lambda}, \partial_{\Lambda}\right)$ such that $H_{*}\left(\left(\mathcal{A}_{\Lambda}, \partial_{\Lambda}\right)\right)$ is invariant under Legendrian isotopy. BUT $H_{*}\left(\left(\mathcal{A}_{\Lambda}, \partial_{\Lambda}\right)\right)$ is hard to compute in general! Instead we can look at DGA
maps

$$
\varepsilon:\left(\mathcal{A}_{\Lambda}, \partial_{\Lambda}\right) \rightarrow(\mathbb{F}, 0) \quad \text { called augmentations }
$$

or

$$
\rho:\left(\mathcal{A}_{\Lambda}, \partial_{\Lambda}\right) \rightarrow\left(\operatorname{Mat}_{n}(\mathbb{F}), 0\right) \quad \text { called representations }
$$

Counting

If $\mathbb{F}=\mathbb{F}_{q}$, then you can count these maps

Count all maps and renormalize	$\operatorname{Aug}\left(\Lambda, \mathbb{F}_{q}\right)$	$\operatorname{Rep}\left(\Lambda, \mathbb{F}_{q}\right)$
Count isomorphism classes of maps	$\# \pi_{\geq 0} \mathcal{A u g}\left(\Lambda, \mathbb{F}_{q}\right)^{*}$	$\# \pi \geq 0 \operatorname{Rep}_{n}^{+}\left(\Lambda, \mathbb{F}_{q}\right)^{*}$

Counting

If $\mathbb{F}=\mathbb{F}_{q}$, then you can count these maps

Count all maps and renormalize	$\operatorname{Aug}\left(\Lambda, \mathbb{F}_{q}\right)$	$\operatorname{Rep}_{n}\left(\Lambda, \mathbb{F}_{q}\right)$
Count isomorphism classes of maps	$\# \pi_{\geq 0} \mathcal{A u g}+\left(\Lambda, \mathbb{F}_{q}\right)^{*}$	$\# \pi_{\geq 0} \mathcal{R e p}_{n}^{+}\left(\Lambda, \mathbb{F}_{q}\right)^{*}$

Theorem (Pan, Capovilla-Searle-Legout-Limouzineau-Murphy-Pan-Traynor)

 If there is an exact Lagrangian cobordism from Λ_{-}to Λ_{+}then$$
\# \pi_{\geq 0} \mathcal{A} u g_{+}\left(\Lambda_{-}, \mathbb{F}_{q}\right)^{*} \leq \# \pi_{\geq 0} \mathcal{A} u g_{+}\left(\Lambda_{+}, \mathbb{F}_{q}\right)^{*}
$$

Some Results

Theorem (M'23)

Two representations in the representation category are isomorphic \qquad they are conjugate up to DGA homotopy.

Theorem (M'23)

The homotopy cardinality can be computed via colored ruling polynomials:

$$
\# \pi_{\geq 0} \mathcal{R e}_{n}^{+}\left(\Lambda, \mathbb{F}_{q}\right)^{*}=q^{n^{2} t b(\Lambda) / 2} R_{n, \Lambda}(q)
$$

Corollary

If there is an exact Lagrangian cobordism from Λ_{-}to Λ_{+}then

$$
\# \pi \geq 0 \mathcal{R e p}_{n}^{+}\left(\Lambda_{-}, \mathbb{F}_{q}\right)^{*} \leq \# \pi_{\geq 0} \mathcal{R e} p_{n}^{+}\left(\Lambda_{+}, \mathbb{F}_{q}\right)^{*}
$$

Conjectures

Conjecture A

There exists a Legendrian Λ_{n} that has no augmentations but a higher n-dimensional (0 -graded) representation.

Conjecture B

The obstruction to reversing Lagrangian concordance using representations is strictly stronger than that for augmentations (would follow from Conjecture A).

Legendrian Knot Atlas:

(Where you might find Λ_{n}, still under construction)

Negative contact surgery on Legendrian non－simple knots （Joint with Hugo Zhou）

Shunyu Wan
University of Virginia

Tech Topology Conference Lightning Talk

Contact 3-manifolds and Legendrian knots

- A contact 3-manifold (Y, ξ) is a smooth 3-manifold Y together with a 2-plane field distribution ξ such that for any one form α with $\operatorname{ker}(\alpha)=\xi, \alpha \wedge d \alpha>0$.
- A Legendrian knot L in (Y, ξ) is an embedded S^{1} that is always tangent to ξ.

Contact 3-manifolds and Legendrian knots

- A contact 3-manifold (Y, ξ) is a smooth 3-manifold Y together with a 2-plane field distribution ξ such that for any one form α with $\operatorname{ker}(\alpha)=\xi, \alpha \wedge d \alpha>0$.
- A Legendrian knot L in (Y, ξ) is an embedded S^{1} that is always tangent to ξ.

Classical invariants associated to a Legendrian knot L

- $\mathrm{tb}(L)$ (Thurston-Bennequin number)
- $\operatorname{rot}(L)$ (rotation number)

A knot is called Legendrian non-simple if it has two Legendrian representatives with same $t b$ and rot that are not Legendrian isotopic to each other.

Contact surgery on non-simple knots

An oriented Legendrian knot L in a contact 3-manifold (Y, ξ) admits a canonical contact framing, and we can perform r-surgery with respect to the contact framing. Moreover, we can put a contact structure $\xi_{r}(L)$ on the surgery manifold $Y_{r}(L)$.

Contact surgery on non-simple knots

An oriented Legendrian knot L in a contact 3-manifold (Y, ξ) admits a canonical contact framing, and we can perform r-surgery with respect to the contact framing. Moreover, we can put a contact structure $\xi_{r}(L)$ on the surgery manifold $Y_{r}(L)$.

Question: If K is a Legendrian non-simple knot, and we let L_{1} and L_{2} be two Legendrian non isotopic representatives of K in (Y, ξ), then what can we say about the contact manifolds $\left(Y_{r}\left(L_{1}\right), \xi_{1}\right)$, and $\left(Y_{r}\left(L_{2}\right), \xi_{2}\right)$?

Specific example

We focus on the following two Legendrian non-isotopic representatives L_{1} and L_{2} of the twist knot E_{5} in $\left(S^{3}, \xi_{s t d}\right)$. Both L_{1} and L_{2} have $t b=1$ and rot $=0$.

Specific example

We focus on the following two Legendrian non-isotopic representatives L_{1} and L_{2} of the twist knot E_{5} in $\left(S^{3}, \xi_{s t d}\right)$. Both L_{1} and L_{2} have $t b=1$ and rot $=0$.

Theorem 1 (Etnyre, 2006)
$\left(S_{+1}^{3}\left(L_{1}\right), \xi_{1}\right)$, and $\left(S_{+1}^{3}\left(L_{2}\right), \xi_{2}\right)$ are contactomorphic.
Theorem 2 (Bourgeois-Ekholm-Eliashberg, 2009)
$\left(S_{-1}^{3}\left(L_{1}\right), \xi_{1}\right)$, and $\left(S_{-1}^{3}\left(L_{2}\right), \xi_{2}\right)$ are not contactomorphic.

Specific example

We focus on the following two Legendrian non-isotopic representatives L_{1} and L_{2} of the twist knot E_{5} in $\left(S^{3}, \xi_{s t d}\right)$. Both L_{1} and L_{2} have $\mathrm{tb}=1$ and rot $=0$.

Theorem 1 (Etnyre, 2006)
$\left(S_{+1}^{3}\left(L_{1}\right), \xi_{1}\right)$, and $\left(S_{+1}^{3}\left(L_{2}\right), \xi_{2}\right)$ are contactomorphic.
Theorem 2 (Bourgeois-Ekholm-Eliashberg, 2009)
$\left(S_{-1}^{3}\left(L_{1}\right), \xi_{1}\right)$, and $\left(S_{-1}^{3}\left(L_{2}\right), \xi_{2}\right)$ are not contactomorphic.
Theorem 3 (W, Zhou)
$\left(S_{r}^{3}\left(L_{1}\right), \xi_{1}\right)$, and $\left(S_{r}^{3}\left(L_{2}\right), \xi_{2}\right)$ are not contact isotopic for all $r<0$.

Contact invariant and LOSS invariant

Ozsváth-Szabó and later Honda-Kazez-Matić showed that (Y, ξ) determines a distinguished element $c(\xi) \in \widehat{H F}(-Y)$, called the Heegaard Floer "contact invariant". Subsequently, for a Legendrian knot L in (Y, ξ), Lisca-Ozsváth-Stipsicz-Szabó defined the "LOSS invariant" $\mathfrak{L}(L) \in \operatorname{HFK}^{-}(-Y, L)$.

Contact invariant and LOSS invariant

Ozsváth-Szabó and later Honda-Kazez-Matić showed that (Y, ξ) determines a distinguished element $c(\xi) \in \widehat{H F}(-Y)$, called the Heegaard Floer "contact invariant". Subsequently, for a Legendrian knot L in (Y, ξ), Lisca-Ozsváth-Stipsicz-Szabó defined the "LOSS invariant" $\mathfrak{L}(L) \in \operatorname{HFK}^{-}(-Y, L)$.

Ozsváth and Stipsicz proved these two Legendrian representatives of E_{5}, L_{1} and L_{2} have different LOSS invariants.

Relation between contact invariant and LOSS invariant

Lemma 4 (Lisca-Ozsváth-Stipsicz-Szabó)
For any 3-manifold Y and a knot K in Y there is a natural chain map

$$
g: \operatorname{CFK}^{-}(Y, K, \mathfrak{t}) \rightarrow \widehat{\mathrm{CF}}(Y, \mathfrak{t})
$$

Moreover let L be a null-homologous Legendrian knot in a contact 3-manifold (Y, ξ), then the map on homology induced by g

$$
\begin{equation*}
G: \operatorname{HFK}^{-}(-Y, L, \mathfrak{t}) \rightarrow \widehat{H F}(-Y, \mathfrak{t}) \tag{1.1}
\end{equation*}
$$

has the property that

$$
G(\mathfrak{L}(L))=c(\xi) .
$$

Contact -2 surgery on L_{1} and L_{2}

Theorem 5 (Wan, Zhou)
Contact -2 surgery on L_{1} and L_{2} give different contact manifolds with different contact invariants.

Contact -2 surgery on L_{1} and L_{2}

Theorem 5 (Wan, Zhou)
Contact -2 surgery on L_{1} and L_{2} give different contact manifolds with different contact invariants.
(Remark: Lisca and Stipsicz showed that contact -1 surgery on L_{1} and L_{2} give contact manifolds with same contact invariants.)

Contact -2 surgery on L_{1} and L_{2}

Theorem 5 (Wan, Zhou)
Contact -2 surgery on L_{1} and L_{2} give different contact manifolds with different contact invariants.
(Remark: Lisca and Stipsicz showed that contact -1 surgery on L_{1} and L_{2} give contact manifolds with same contact invariants.)
Proof.

1. Let P_{i} be the Legendrian push-offs of L_{i}, P_{i}^{\prime} be the induced Legendrian knots of P_{i} in $S_{-2}^{3}\left(L_{i}\right)$.

Contact -2 surgery on L_{1} and L_{2}

Theorem 5 (Wan, Zhou)
Contact -2 surgery on L_{1} and L_{2} give different contact manifolds with different contact invariants.
(Remark: Lisca and Stipsicz showed that contact -1 surgery on L_{1} and L_{2} give contact manifolds with same contact invariants.)
Proof.

1. Let P_{i} be the Legendrian push-offs of L_{i}, P_{i}^{\prime} be the induced Legendrian knots of P_{i} in $S_{-2}^{3}\left(L_{i}\right)$.
2. L_{i} have different LOSS invariants will tell us P_{i}^{\prime} have different LOSS invariants.

Contact -2 surgery on L_{1} and L_{2}

Theorem 5 (Wan, Zhou)

Contact -2 surgery on L_{1} and L_{2} give different contact manifolds with different contact invariants.
(Remark: Lisca and Stipsicz showed that contact -1 surgery on L_{1} and L_{2} give contact manifolds with same contact invariants.)
Proof.

1. Let P_{i} be the Legendrian push-offs of L_{i}, P_{i}^{\prime} be the induced Legendrian knots of P_{i} in $S_{-2}^{3}\left(L_{i}\right)$.
2. L_{i} have different LOSS invariants will tell us P_{i}^{\prime} have different LOSS invariants.
3. Calculate $H_{F K}{ }^{-}\left(-S_{-2}^{3}\left(L_{i}\right), P_{i}^{\prime}\right)$, and show the map G is injective on the LOSS invariants. (Using Hedden-Levine mapping cone formula for duel knot.)

Thank You for Your Attention!

Thickening finite complexes into manifolds

- Arka Banerjee

Tech Topology conference, 2023

Definition: The thickening dimension of a simplicial complex K, denoted by thkdim (K), is the minimum dimension of a manifold $(m, 2)$ that is homotopy equivalent to K.

Definition: The thickening dimension of a simplicial complex K, denoted by thkdim (K), is the minimum dimension of a manifold $(m, 2)$ that is homotopy equivalent to K.

- thkdim $(\bigcirc)=2$

$$
00 \times 00 \simeq 00 \times 00
$$

Thm (Bestvina-Kapovich-Klieiner, 2002): thkdim $(\bigcirc)=4$

- thkdim $(k) \leqslant 2 \operatorname{dim}(k)$
(Stallings)
\Downarrow
thkdim $\left(K_{m, n}\right) \leq 4$

- thkdim $(k) \leqslant 2 \operatorname{dim}(k)$
(stallings)
thkdim $\left(K_{m, n}\right) \leq 4$
- thkdim $\left(k_{m, n}\right)=4$ if $\begin{array}{r}m \geqslant 3 \\ \text { or } n \geqslant 3\end{array}$
(Hruska-Stask-Tran, $)$
217

- thkdim $(k) \leqslant 2 \operatorname{dim}(k)$
(Stallings)
thkdim $\left(K_{m, n}\right) \leq 4$
- thkdim $\left(K_{m, n}\right)=4$ if $\begin{array}{r}m \geqslant 3 \\ \text { or } n \geqslant 3\end{array}$
$($ Hruska-Stask-Tran, $)$
217
thkdim $\left(K_{m, n} \times K_{m, n}\right)$

- thkdim $(k) \leqslant 2 \operatorname{dim}(k)$
(Stallings)
thkdim $\left(K_{m, n}\right) \leq 4$
- thkdim $\left(k_{m, n}\right)=4$ if $\begin{aligned} & m \geqslant 3 \\ & \text { or } n \geqslant 3\end{aligned}$
(Hruska-Stask-Tran,)
217
thkdem $\left(K_{m, n} \times K_{m, n}\right) \leqslant 8$

- thkdim $(k) \leqslant 2 \operatorname{dim}(k)$
(Stallings)
thkdim $\left(K_{m, n}\right) \leq 4$
- thkdim $\left(K_{m}, n\right)=4$ if $m \geqslant 3$
(Hruska-Stark-Tran,
, 17 ${ }^{2} 17$
- $7 \leq$ thk $\operatorname{dim}\left(K_{m, n} \times K_{m, n}\right) \leq 8$ if $m / 4$
(Schreve, ' 19)

- thkdim $(k) \leqslant 2 \operatorname{dim}(k)$
(stallings)
thkdim $\left(K_{m, n}\right) \leq 4$
- thkdim $\left(K_{m, n}\right)=4$ if $m \geqslant 3$ or $n \geqslant 3 \quad$ (Hruska-Stark-Tran,)
- $7 \leq \operatorname{th} k \operatorname{dim}\left(K_{m, n} \times K_{m, n}\right) \leq 8$ if $m / 4$
(Schreve,' 19)
- $7 \leq \operatorname{thk} \operatorname{dem}\left(K_{m, n} \times K_{m, n}\right) \leq 8$
if $m \geqslant 3$
(B., in progress) or $n \geqslant 3$

Question:
$\operatorname{thkdim}\left(K_{m, n} \times K_{m, n}\right)$

$$
=?
$$

Thank you

Towards a count of holomorphic sections of Lefschetz fibrations over the disc

2023 Tech Topology Conference - Lightning Talk
Riccardo Pedrotti - UT Austin
(Work in progress w/ T. Perutz)

Lefschetz fibration

- $\pi: E^{4} \rightarrow B^{2}$ (smooth, proper)
- $\partial E=\pi^{-1}(\partial B)$
- Standard neighbourhood around critical points of π

Can we use this combinatorial description of X^{4} to compute its SW invariants?

- We want to count pseudo-holomorphic sections of $\pi: X^{4} \rightarrow D^{2}$ by keeping track of their (relative) homology class
- We can get insights into SW invariants of the (capped-off) symplectic manifold X^{4}

Counting sections

$$
\cdots \rightarrow H F_{*}(\phi) \xrightarrow{\sigma_{i}} H F_{*}\left(\tau_{V_{1}} \phi\right) \rightarrow H F^{-*}\left(\phi V_{i}, V_{i}\right) \rightarrow \cdots
$$

Counting sections

$$
\cdots \rightarrow H F_{*}(\phi) \xrightarrow{\sigma_{i}} H F_{*}\left(\tau_{V_{1}} \phi\right) \rightarrow H F^{-*}\left(\phi V_{i}, V_{i}\right) \rightarrow \cdots
$$

Counting sections keeping track of their homology class

$$
\cdots \rightarrow H F_{*}\left(\phi ; \mathscr{L}_{i}\right) \xrightarrow{\bar{\sigma}_{i}} H F_{*}\left(\tau_{V_{1}} \phi ; \mathscr{L}_{i}\right) \rightarrow H F^{-*}\left(\phi V_{i}, V_{i} ; \mathscr{L}_{i}\right) \rightarrow \cdots
$$

Counting sections keeping track of their homology class

$$
\cdots \rightarrow H F_{*}\left(\phi ; \mathscr{L}_{i}\right) \xrightarrow{\bar{\sigma}_{i}} H F_{*}\left(\tau_{V_{1}} \phi ; \mathscr{L}_{i}\right) \rightarrow H F^{-*}\left(\phi V_{i}, V_{i} ; \mathscr{L}_{i}\right) \rightarrow \cdots
$$

State of the project

- Using the mapping cone, we have a combinatorial formula for $\widetilde{\sigma_{t o t}}$ in the Lagrangian and Fixed Point case (more complicate)
- (Lagrangian) it involves counting triangles and heart-shaped domains in the regular fiber, with appropriate weights.
- By iterating the mapping cone, we have formula for composition of twists
- We want to compare it with SW invariants (GW=SW)
- Extend to multi-sections (via relative Hilbert schemes?)

THANKS

Geometric Structures and Foliations Associated to $\mathrm{PSL}_{4} \mathbb{R}$ Hitchin Representations

Alex Nolte
Rice University / Georgia Tech

$\mathrm{PSL}_{n} \mathbb{R}$ Hitchin components

$\operatorname{Hit}_{n}(S):$

- Special component of $\operatorname{Hom}\left(\pi_{1} S, \mathrm{PSL}_{n} \mathbb{R}\right) / \mathrm{PSL}_{n} \mathbb{R}$
- Analogues of Teichmüller spaces

Question (Hitchin '92)

What geometric content does $\rho \in \operatorname{Hit}_{n}(S)$ have?

Guichard-Wienhard's work ('08, '11)

- Analogues of hyperbolic structures exist. Non-qualitative.
- Qualitative $n=4$ theory:
- $\rho \in \operatorname{Hit}_{4}(S)$ acts on $\Omega_{\rho} \subset \mathbb{R} \mathbb{P}^{3} \leadsto$ projective structure on $T^{1} S$
- Ω_{ρ} has invariant foliations \mathcal{F}, \mathcal{G} by convex sets in $\mathbb{R P}^{2}, \mathbb{R P}^{1}$
- "Decorates" projective structure on $T^{1} S$
- Characterizes Hitchin condition

Motivating Question

How rigid are the "decorations" of these projective structures?

- Going the "other way" of Guichard-Wienhard's '08

Results (N)

- Classification of similar "decorations":
- There are 2. (1 new). Analogue for other connected component
- Foliations of Ω_{ρ} by properly embedded properly convex domains:
- In $\mathbb{R P}^{1}$ s: exactly 2 group-invariant foliations (central theorem)
- In $\mathbb{R P}^{2}$ s: unique foliation
- Detailed basic structure of Ω_{ρ}
- Projective equivalences of Guichard-Wienhard's structures automatically preserve decorations
- Answers question in Guichard-Wienhard '08

Fuchsian domain

Not like $S L(3, \mathbb{R})$, where domain is convex!

Sample Basic Structure Theorem (N)

 $\rho \in \operatorname{Hit}_{4}(S)$. Frenét curve $\left(\xi^{1}, \xi^{2}, \xi^{3}\right)$. Projective planes in $\mathbb{R} \mathbb{P}^{3}$ and their qualitative intersections with $\partial \Omega_{\rho}$ have 4 forms:

Geometry in Pf. of Only 2 Foliations by Segments

- Invariant foliation \mathcal{F}. Arrange for a leaf to stare straight at cusp
- Control these with qualitative geometry:

- Conclude from ruling's structure in what the staring leaf sees:

Crossing Number of Cable Knots (Joint with E. Kalfagianni)

Rob McConkey
Binghamton University

November 11th, 2023

MICHIGAN STATE

Crossing Number

- Knot Theory is the study of knots and links.
- We study invariants of links to differentiate links, but also other topological objects which arise.
- One such invariant is the crossing number, which is the minimum number of crossing for a knot across all diagrams.
- We will refer to the crossing number of a knot K as $c(K)$.
- Despite being easy to define, the crossing number is notoriously intractable.

Satellite Knots

- To construct a satellite knot K start with a non-trivial knot K^{\prime} inside of a torus T, then given a non-trivial knot C in S^{3} we map T to a neighborhood of C.
- We will refer to C as the companion knot for K.

Satellite Knots

- Crossing number is not well understood for satellite and connect sums of knots.
- Remains an open conjecture whether or not $c(K) \geq c(C)$ where C is the companion knot for a satellite knot K.

History

Theorem (Kalfagianni and Lee)

Let $W(K)$ be the untwisted whitehead double of a knot K. If K is adequate with writhe number zero, then $c(W(K))=4 c(K)+2$.

Satellite Knots

- We consider the satellite knots $K_{p, q}$ which is the (p, q)-cabling operation on a knot K.

Results

Theorem (Kalfagianni and M.)

For any adequate knot K with crossing number $c(K)$, and any coprime integers p, q, we have $c\left(K_{p, q}\right) \geq q^{2} \cdot c(K)+1$.

Corollary (Kalfagianni and M.)
Let K be an adequate knot with crossing number $c(K)$ and writhe number $w(K)$. If $p=2 w(K) \pm 1$, the $K_{p, 2}$ is non-adequate and $c\left(K_{p, 2}\right)=4 c(K)+1$.

Thank You!
$\frac{\text { MICHIGAN STATE }}{\text { U N I VER S I T Y }}$

Main Result (Atallah-L.) (M, ω) closed semipositive symplettic manifold
for definitions of Hamiltonian Hoer homology and Gromov-Witten invariants.
$\operatorname{Hev}(M, \mathbb{Q}) \otimes$ QQ. univ is semisimple
$\Sigma a_{i} T_{i}, a_{i} \in \mathbb{R}, \lambda_{i} \in \mathbb{R}$ generated by idempotents
Hamiltonian diffeomorphism ϕ has finitely many contractible 1-periodic orbits
$\phi^{t}|x|$ where $\phi(x)=x \quad \phi^{1}=\phi$
\# $\{$ contractible 1 -periodic orbits $\}>\operatorname{dim}_{Q 又} H(M, Q)$
$\Longrightarrow \Phi$ has infinitely many contractible periodic orbits.
key: The coefficient field of Hamiltonian Floes homology has characteristic p. There is an upper bound of Usher's boundary depth that is independent of p for sufficiently large p.

Basis of chain complex $\left\{\xi_{1}, \cdots, \xi_{k}, \eta_{1}, \cdots, \eta_{B}, \xi_{1}, \cdots, \xi_{B}\right\}$ such that $d\left(\xi_{i j}\right)=0, d\left(s_{i}\right)=\eta_{i}$ $\left.d\left(\xi_{i}\right): 1-\infty, l\left(\xi_{i}\right)\right]$
$d\left(s_{i}\right)=\eta_{i}:\left[l\left(\eta_{i}\right), l\left(s_{i}\right)\right] \quad$ "longest finite bar length"
$l(\cdot)$: filtration
Thank you for Tistering !

