A Nielsen-Thurston classification of Legendrian Loops James Hughes (Duke) @Tech Topology 2023

Legendrian Links + Lagrangian Fillings Legendrian link $\Lambda \subseteq \partial(D^{4}, \omega_{st}) \cong (S^{s}, \mathcal{E}_{st})$ $T_x \land \subseteq S_{2t} := \operatorname{Ker}(dz - ydx)$ L=(D, w,) Exact Lagrangian filling L: $\lambda = \Lambda$ · w_{st} =0 Xst is exact

Legendrian Loops Ref: A Legendrian Loop of A is a Legendrian isotopy fixing A pointwise at time 1. Legendrian loops act on the set of exact Lagrangian fillings by concatenation.

Nielsen Thurston Classification Def: A Legendrian Loop p of A is: - periodic if $\tilde{\varphi}^n = id$ for some nell. - reducible if q fixes some set of cluster coordinates in M. (1) - pseudo-Anosor if \$\$ is neither periodic nor reducible.

$$\underline{Fixed Points}$$
Thum (H. Z3): The induced action of any periodic Legendrian loop has a fixed point in $\mathcal{M}_{1}(\Lambda)_{70}$.

Ex: $\Lambda((21)^{9}) \equiv \Lambda(3,6)$

$$a_{1} = \frac{a_{2}+a_{3}+a_{1}a_{4}}{a_{2}} \qquad a_{7} = a_{3}a_{5}a_{6}a_{6}a_{5} + ((a_{1}a_{4}+(a_{2}+a_{3})a_{3})a_{6})a_{7})a_{7} + (a_{1}a_{3}a_{6}a_{7}+((a_{1}a_{4}+(a_{2}+a_{3})a_{3})a_{5})a_{7})a_{10}) - ((a_{1}a_{3}a_{5}a_{7}a_{7})a_{10}) - ((a_{1}a_{3}a_{5}a_{7}a_{7})a_{10}) - ((a_{1}a_{3}a_{5}a_{5})a_{7})a_{10} - ((a_{1}a_{3}a_{5}a_{5})a_{7})a_{10}) - ((a_{1}a_{3}a_{5}a_{5})a_{7})a_{10} - (a_{1}a_{3}a_{5}a_{5})a_{7} - (a_{1}a_{3}a_{5}a_{5})a_{7})a_{10} - (a_{1}a_{3}a_{5}a_{5})a_{7} - (a_{1}a_{3}a_{5}a_{5})a_{7})a_{10} - (a_{1}a_{3}a_{5}a_{5})a_{7} - (a_{1}a_{3}a_{5}a_{5})a_{7})a_{10} - (a_{1}a_{3}a_{5}a_{5})a_{7} - (a_{1}a_{3}a_{5}a_{5})a_{7} - (a_{1}a_{3}a_{5}a_{5})a_{7})a_{10} - (a_{1}a_{3}a_{5}a_{5})a_{7} - (a_{1}a_{5}a_{5})a_{7} - (a_{1}a_{5}a_{5})a_{$$

Fundamental Groups of nontrivial genus-2 Lefschetz Fibrations

Sierra Knavel Tech Topology Conference 2023 (neorgia Tech, Advised by John Etnyre

Lefschetz Fibrations: Why do we care?

Lefschetz Fibrations: Why do we care?

- Lefschetz fibrations
$$\leftarrow$$
 symplectic 4-mfds

Question: What are possible π_i 's of genus-g LF?

Lefschetz Fibrations: Why do we care?

Question: What are possible πi's of genus-g LF? Question for today: What are possible πi's of genus 2 LFs over S²?

Lefschetz fibration:

Lefschetz fibration:
- surjection
$$f: X^4 \longrightarrow \Sigma_h^2$$

Lefschetz fibration:

- surjection
$$f: X^4 \longrightarrow \mathbb{Z}_h^2$$

- Singular points
$$f(z,w) = ZW$$

 D^2

$$\alpha: (t_1 t_2 t_3 t_4 t_5 t_5 t_4 t_3 t_2 t_1)^2$$

Chakiris '83
Every holomorphic genus 2 LF
with no separating vc's
is a fiber sum of
$$\alpha$$
, B

$$\alpha: (t_1 t_2 t_3 t_4 t_5 t_5 t_4 t_3 t_2 t_1)^2$$

$$\beta: (t_1 t_2 t_3 t_4 t_5)^6$$

Chakiris '83
Every holomorphic genus 2 LF
with no separating vc's
is a fiber sum of
$$\alpha$$
, β , and γ

$$\alpha: (t_1t_2t_3t_4t_5t_5t_4t_3t_2t_1)^2$$

$$\beta: (t_1t_2t_3t_4t_5)^6$$

$$\gamma: (t_1t_2t_3t_4)^{10}$$

Chakiris '83
Every holomorphic genus 2 LF
with no separating vc's
is a fiber sum of
$$\alpha$$
, β , and γ

$$\alpha: (t_1 t_2 t_3 t_4 t_5 t_5 t_4 t_3 t_2 t_1)^2$$

$$\beta: (t_1 t_2 t_3 t_4 t_5)^6$$

$$f: (t_1 t_2 t_3 t_4)^6$$

$$T: (t_1 t_2 t_3 t_4)^6$$

Siebert-Tian '03:
- no sepanating
- transitive monodromy

Results with separating vanishing cycles

- all non-separating:
- tt.(X) = 0
- except for case of technical condition

Results with separating vanishing cycles

at least 1 separating:

- π₁(X) could be 0, Æ, Æn ÆÐE, Æn ÆE, Æn ÆE

- all non-separating:
- tt.(X) = 0
- except for case of technical condition

Results with separating vanishing cycles

at least 1 separating:

- π₁(X) could be 0, Æ, Æn ÆÐE, Æn ÆE, Æn ÆE

future directions:

- all non-separating:
- tt.(X) = 0
- except for case of technical condition

The Homotopy Cardinality of the the Representation Category

Justin Murray

Louisiana State University

Tech Topology December 8, 2023

December 5, 2023

The Setup

For us, $\Lambda \subset (\mathbb{R}^3, \ker(dz - ydx))$ is a connected Legendrian with $r(\Lambda) = 0$.

э

Given Λ one can form a differential graded algebra (DGA), $(A_{\Lambda}, \partial_{\Lambda})$ such that $H_*((A_{\Lambda}, \partial_{\Lambda}))$ is invariant under Legendrian isotopy.

Given Λ one can form a differential graded algebra (DGA), $(\mathcal{A}_{\Lambda}, \partial_{\Lambda})$ such that $H_*((\mathcal{A}_{\Lambda}, \partial_{\Lambda}))$ is invariant under Legendrian isotopy. BUT $H_*((\mathcal{A}_{\Lambda}, \partial_{\Lambda}))$ is hard to compute in general!

Given Λ one can form a differential graded algebra (DGA), $(\mathcal{A}_{\Lambda}, \partial_{\Lambda})$ such that $H_*((\mathcal{A}_{\Lambda}, \partial_{\Lambda}))$ is invariant under Legendrian isotopy. BUT $H_*((\mathcal{A}_{\Lambda}, \partial_{\Lambda}))$ is hard to compute in general! Instead we can look at DGA

maps

$$\varepsilon: (\mathcal{A}_{\Lambda}, \partial_{\Lambda}) \to (\mathbb{F}, 0)$$
 called augmentations

or

$$\rho: (\mathcal{A}_{\Lambda}, \partial_{\Lambda}) \to (Mat_n(\mathbb{F}), 0)$$
 called representations

If $\mathbb{F}=\mathbb{F}_q$, then you can count these maps

Count all maps and	$Aug(\Lambda, \mathbb{F}_q)$	$Rep_n(\Lambda, \mathbb{F}_q)$
renormalize		
Count isomorphism	$\#\pi_{\geq 0}\mathcal{A}ug_{+}(\Lambda,\mathbb{F}_{q})^{*}$	$\#\pi_{\geq 0}\mathcal{R}ep_n^+(\Lambda,\mathbb{F}_q)^*$
classes of maps		

If $\mathbb{F}=\mathbb{F}_q$, then you can count these maps

Count all maps and	$Aug(\Lambda, \mathbb{F}_q)$	$Rep_n(\Lambda, \mathbb{F}_q)$
renormalize		
Count isomorphism	$\#\pi_{\geq 0}\mathcal{A}ug_{+}(\Lambda,\mathbb{F}_{q})^{*}$	$\#\pi_{\geq 0}\mathcal{R}ep_n^+(\Lambda,\mathbb{F}_q)^*$
classes of maps		

Theorem (Pan, Capovilla-Searle-Legout-Limouzineau-Murphy-Pan-Traynor)

If there is an exact Lagrangian cobordism from Λ_- to Λ_+ then

$$\#\pi_{\geq 0}\mathcal{A}ug_+(\Lambda_-,\mathbb{F}_q)^* \leq \#\pi_{\geq 0}\mathcal{A}ug_+(\Lambda_+,\mathbb{F}_q)^*$$

Theorem (M'23)

Two representations in the representation category are isomorphic \iff they are conjugate up to DGA homotopy.

Theorem (M'23)

The homotopy cardinality can be computed via colored ruling polynomials:

$$\#\pi_{\geq 0}\mathcal{R}ep_n^+(\Lambda,\mathbb{F}_q)^*=q^{n^2tb(\Lambda)/2}R_{n,\Lambda}(q)$$

Corollary

If there is an exact Lagrangian cobordism from Λ_- to Λ_+ then

$$\#\pi_{\geq 0}\mathcal{R}ep_n^+(\Lambda_-,\mathbb{F}_q)^* \leq \#\pi_{\geq 0}\mathcal{R}ep_n^+(\Lambda_+,\mathbb{F}_q)^*$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Conjecture A

There exists a Legendrian Λ_n that has no augmentations but a higher *n*-dimensional (0-graded) representation.

Conjecture B

The obstruction to reversing Lagrangian concordance using representations is strictly stronger than that for augmentations (would follow from Conjecture A).

Legendrian Knot Atlas:

(Where you might find Λ_n , still under construction)

Negative contact surgery on Legendrian non-simple knots (Joint with Hugo Zhou)

> Shunyu Wan University of Virginia

Tech Topology Conference Lightning Talk

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ のへで

Contact 3-manifolds and Legendrian knots

A contact 3-manifold (Y, ξ) is a smooth 3-manifold Y together with a 2-plane field distribution ξ such that for any one form α with ker(α) = ξ, α ∧ dα > 0.

A Legendrian knot L in (Y, ξ) is an embedded S¹ that is always tangent to ξ.

Contact 3-manifolds and Legendrian knots

- A contact 3-manifold (Y, ξ) is a smooth 3-manifold Y together with a 2-plane field distribution ξ such that for any one form α with ker(α) = ξ, α ∧ dα > 0.
- A Legendrian knot L in (Y, ξ) is an embedded S¹ that is always tangent to ξ.

Classical invariants associated to a Legendrian knot L

- tb(L) (Thurston-Bennequin number)
- rot(L) (rotation number)

A knot is called Legendrian non-simple if it has two Legendrian representatives with same *tb* and *rot* that are not Legendrian isotopic to each other.

An oriented Legendrian knot L in a contact 3-manifold (Y, ξ) admits a canonical contact framing, and we can perform r-surgery with respect to the contact framing. Moreover, we can put a contact structure $\xi_r(L)$ on the surgery manifold $Y_r(L)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An oriented Legendrian knot L in a contact 3-manifold (Y, ξ) admits a canonical contact framing, and we can perform r-surgery with respect to the contact framing. Moreover, we can put a contact structure $\xi_r(L)$ on the surgery manifold $Y_r(L)$.

Question: If K is a Legendrian non-simple knot, and we let L_1 and L_2 be two Legendrian non isotopic representatives of K in (Y, ξ) , then what can we say about the contact manifolds $(Y_r(L_1), \xi_1)$, and $(Y_r(L_2), \xi_2)$?

Specific example

We focus on the following two Legendrian non-isotopic representatives L_1 and L_2 of the twist knot E_5 in (S^3, ξ_{std}) . Both L_1 and L_2 have tb = 1 and rot = 0.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Specific example

We focus on the following two Legendrian non-isotopic representatives L_1 and L_2 of the twist knot E_5 in (S^3, ξ_{std}) . Both L_1 and L_2 have tb = 1 and rot = 0.

Theorem 1 (Etnyre, 2006) $(S_{+1}^3(L_1), \xi_1)$, and $(S_{+1}^3(L_2), \xi_2)$ are contactomorphic. Theorem 2 (Bourgeois-Ekholm-Eliashberg, 2009) $(S_{-1}^3(L_1), \xi_1)$, and $(S_{-1}^3(L_2), \xi_2)$ are not contactomorphic.

Specific example

We focus on the following two Legendrian non-isotopic representatives L_1 and L_2 of the twist knot E_5 in (S^3, ξ_{std}) . Both L_1 and L_2 have tb = 1 and rot = 0.

Theorem 1 (Etnyre, 2006) $(S_{+1}^3(L_1), \xi_1)$, and $(S_{+1}^3(L_2), \xi_2)$ are contactomorphic.

Theorem 2 (Bourgeois-Ekholm-Eliashberg, 2009) $(S_{-1}^3(L_1), \xi_1)$, and $(S_{-1}^3(L_2), \xi_2)$ are not contactomorphic.

Theorem 3 (W, Zhou) $(S_r^3(L_1), \xi_1)$, and $(S_r^3(L_2), \xi_2)$ are not contact isotopic for all r < 0.

Ozsváth-Szabó and later Honda-Kazez-Matić showed that (Y, ξ) determines a distinguished element $c(\xi) \in \widehat{HF}(-Y)$, called the Heegaard Floer "contact invariant". Subsequently, for a Legendrian knot L in (Y, ξ) , Lisca-Ozsváth-Stipsicz-Szabó defined the "LOSS invariant" $\mathfrak{L}(L) \in HFK^{-}(-Y, L)$.

Ozsváth-Szabó and later Honda-Kazez-Matić showed that (Y, ξ) determines a distinguished element $c(\xi) \in \widehat{HF}(-Y)$, called the Heegaard Floer "contact invariant". Subsequently, for a Legendrian knot L in (Y, ξ) , Lisca-Ozsváth-Stipsicz-Szabó defined the "LOSS invariant" $\mathfrak{L}(L) \in HFK^{-}(-Y, L)$.

Ozsváth and Stipsicz proved these two Legendrian representatives of E_5 , L_1 and L_2 have different LOSS invariants.

Relation between contact invariant and LOSS invariant

Lemma 4 (Lisca-Ozsváth-Stipsicz-Szabó)

For any 3-manifold Y and a knot K in Y there is a natural chain map

$$g: \mathsf{CFK}^-(Y, K, \mathfrak{t}) \to \widehat{\mathsf{CF}}(Y, \mathfrak{t}).$$

Moreover let L be a null-homologous Legendrian knot in a contact 3-manifold (Y, ξ) , then the map on homology induced by g

$$G: \mathsf{HFK}^{-}(-Y, L, \mathfrak{t}) \to \widehat{HF}(-Y, \mathfrak{t})$$
 (1.1)

has the property that

 $G(\mathfrak{L}(L)) = c(\xi).$

Theorem 5 (Wan, Zhou)

Contact -2 surgery on L_1 and L_2 give different contact manifolds with different contact invariants.

Theorem 5 (Wan, Zhou)

Contact -2 surgery on L_1 and L_2 give different contact manifolds with different contact invariants.

(Remark: Lisca and Stipsicz showed that contact -1 surgery on L_1 and L_2 give contact manifolds with same contact invariants.)

Theorem 5 (Wan, Zhou)

Contact -2 surgery on L_1 and L_2 give different contact manifolds with different contact invariants.

(Remark: Lisca and Stipsicz showed that contact -1 surgery on L_1 and L_2 give contact manifolds with same contact invariants.)

Proof.

1. Let P_i be the Legendrian push-offs of L_i , P'_i be the induced Legendrian knots of P_i in $S^3_{-2}(L_i)$.

Theorem 5 (Wan, Zhou)

Contact -2 surgery on L_1 and L_2 give different contact manifolds with different contact invariants.

(Remark: Lisca and Stipsicz showed that contact -1 surgery on L_1 and L_2 give contact manifolds with same contact invariants.)

Proof.

- 1. Let P_i be the Legendrian push-offs of L_i , P'_i be the induced Legendrian knots of P_i in $S^3_{-2}(L_i)$.
- 2. L_i have different LOSS invariants will tell us P'_i have different LOSS invariants.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Theorem 5 (Wan, Zhou)

Contact -2 surgery on L_1 and L_2 give different contact manifolds with different contact invariants.

(Remark: Lisca and Stipsicz showed that contact -1 surgery on L_1 and L_2 give contact manifolds with same contact invariants.)

Proof.

- 1. Let P_i be the Legendrian push-offs of L_i , P'_i be the induced Legendrian knots of P_i in $S^3_{-2}(L_i)$.
- 2. L_i have different LOSS invariants will tell us P'_i have different LOSS invariants.

3. Calculate $HFK^{-}(-S^{3}_{-2}(L_{i}), P'_{i})$, and show the map G is injective on the LOSS invariants. (Using Hedden-Levine mapping cone formula for duel knot.)
Thank You for Your Attention!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Thickening finite complexes into manifolds

- Arka Banerjee

Tech Topology conference, 2023

Made	with	Good	notes

Definition: The Hickening dimension of a simplicial complex K, denoted by thkdim (K), is the minimum Limension of a manifold (M,2) that is homotopy equivalent to K.

Definition: The Hickening dimension of a simplicial complex K, denoted by thkdim (K), is the minimum dimension of a manifold (M,2) that is homotopy equivalent to K. \sim • thkdem () = 2

X Made with Goodnotes

 \simeq 0.0 x 0.0 Х Made with Goodnotes

 $\mathbf{x} = \mathbf{x} = \mathbf{x} = \mathbf{x}$ Thm (Bestvina-Kapovich-Kleiner, 2002): thkdem $() \times () = 4$

7 xn R ×m Kmn

Made with Goodnotes

thkdim $(K) \leq 2 \dim(K)$ (Stallings) $\text{thkdim}(K_{m,n}) \leq 4$

Made with Goodnotes

		3 m ⁵												•	+1	b d	in in	n(St St			die ng . L	m s t)
	the	dè	m	(K	m	, N ,)=	- <u>L</u>	, , , ,	if	ď	ر مر	n_7		3		tri	18	Ko J	(- -	84 F	lar,	2k		Tr	Dvy	۰ ٦ ₁))
Made with C	oodnotes																											

×m ¹ Km,n	• th	$kdim(K) \leq 2$ (Stallin V $kdim(Km,n) \leq$	dim(K) ngs) .4
• thkdiem (Km,n) = 4	if m73 orn73	(Hruska-Stark 217	- Trom,)
Hukdem (Km, n × Km, r			
,			
Made with Goodnotes			

×m ⁵		$\overline{\gamma}$ \times n	thkdim (K) (V thkdim (Kn	$\leq 2 \operatorname{dim}(K)$ Stallings) $(n) \leq 4$	
· thkde	m (Km,n) = L	$\frac{1}{1} \frac{1}{1} \frac{1}$	3 (Hruska- 3 ⁷ 1-	Stark-Tran,) F	
thkc	lem (Km,n × K	$m,n) \leq 8$			
Made with Goodnotes					

thkdim(K) ≤ 2 dim(K) (Stallings) ↓ (\bigcirc) $\left(\begin{array}{c} \\ \end{array} \right)$ ×m' 0 / xn $\text{thkdim}(K_{m,n}) \leq 4$ Kmn • thkdim (Km,n) = 4 if m73 (truska-Stark-Tran,) or n73 ?17 • 7≤ thkdim (Km, n× Km, n) ≤ 8 if m/4 or n/4 (Schreve, '19)

Question:

thkdim (Km,n × Km,n)

xm

Mad			Inoto																			
Made	e with (3000		5																		

7 xn

				1	T											•										
						L	1						/) 	V	Dn		1	Ì						
						J	L	U	Ľ	5	L	ſ				ſ	Ľ	ン	V	L						
																y										
)										
																7 										

Towards a count of holomorphic sections of Lefschetz fibrations over the disc

2023 Tech Topology Conference - Lightning Talk

Riccardo Pedrotti - UT Austin

(Work in progress w/T. Perutz)

Lefschetz fibration

• $\pi: E^4 \to B^2$ (smooth, proper)

•
$$\partial E = \pi^{-1}(\partial B)$$

• Standard neighbourhood around critical points of π

Symplectic 4-mflols () [Lefschetz Pencils] BCow up Lefschetz fibrations] $X \rightarrow S^2$

Donaldson and Gompf:

 "Bijection" between positive factorization of the identity in $MCG(\Sigma)$ and Lefschetz fibrations over S^2

Symplectic 4-mflols () [Lefschetz Pencils] BCow up Lefschetz fibrations

Donaldson and Gompf:

 "Bijection" between positive factorization of the identity in $MCG(\Sigma)$ and Lefschetz fibrations over S^2

Can we use this combinatorial description of X^4 to compute its SW invariants?

- We want to count pseudo-holomorphic sections of $\pi: X^4 \to D^2$ by keeping track of their (relative) homology class
- We can get insights into SW invariants of the (capped-off) symplectic manifold X^4

 $\cdots \to HF_*(\phi) \xrightarrow{\sigma_i} HF_*(\tau_{V_1}\phi) \to HF^{-*}(\phi V_i, V_i) \to \cdots$

 $\cdots \to HF_*(\phi; \mathcal{L}_i) \xrightarrow{\overline{\sigma_i}} HF_*(\tau_{V_1}\phi; \mathcal{L}_i) \to HF^{-*}(\phi V_i, V_i; \mathcal{L}_i) \to \cdots$

State of the project

- Using the mapping cone, we have a combinatorial formula for $\widetilde{\sigma_{tot}}$ in the Lagrangian and Fixed Point case (more complicate)
 - (Lagrangian) it involves counting triangles and heart-shaped domains in the regular fiber, with appropriate weights.
 - By iterating the mapping cone, we have formula for composition of twists
- We want to compare it with SW invariants (GW=SW)
- Extend to multi-sections (via relative Hilbert schemes?)

THANKS

Geometric Structures and Foliations Associated to $PSL_4\mathbb{R}$ Hitchin Representations

Alex Nolte Rice University / Georgia Tech

This material is based upon work supported by the National Science Foundation under Grant No. 1842494.

$\mathsf{PSL}_n\mathbb{R}$ Hitchin components

 $Hit_n(S)$:

- Special component of $\operatorname{Hom}(\pi_1 S, \operatorname{PSL}_n \mathbb{R})/\operatorname{PSL}_n \mathbb{R}$
- Analogues of Teichmüller spaces

Question (Hitchin '92)

What geometric content does $\rho \in Hit_n(S)$ have?

Guichard-Wienhard's work ('08, '11)

• Analogues of hyperbolic structures exist. Non-qualitative.

- Qualitative n = 4 theory:
 - $ρ ∈ Hit_4(S)$ acts on $Ω_ρ ⊂ ℝ P^3 →$ projective structure on T^1S
 - Ω_{ρ} has invariant foliations \mathcal{F}, \mathcal{G} by convex sets in $\mathbb{RP}^2, \mathbb{RP}^1$
 - "Decorates" projective structure on T^1S
 - Characterizes Hitchin condition

Motivating Question

How rigid are the "decorations" of these projective structures?

• Going the "other way" of Guichard-Wienhard's '08

Results (N)

- Classification of similar "decorations":
 - ▶ There are 2. (1 new). Analogue for other connected component
- $\bullet\,$ Foliations of Ω_{ρ} by properly embedded properly convex domains:
 - In \mathbb{RP}^1 s: exactly 2 group-invariant foliations (central theorem)
 - In \mathbb{RP}^2 s: unique foliation
- Detailed basic structure of $\Omega_{
 ho}$
- Projective equivalences of Guichard-Wienhard's structures automatically preserve decorations
 - Answers question in Guichard-Wienhard '08

Fuchsian domain

Not like $SL(3, \mathbb{R})$, where domain is convex!

Sample Basic Structure Theorem (N) $\rho \in \text{Hit}_4(S)$. Frenét curve (ξ^1, ξ^2, ξ^3) . Projective planes in \mathbb{RP}^3 and their qualitative intersections with $\partial \Omega_{\rho}$ have 4 forms:

Geometry in Pf. of Only 2 Foliations by Segments

- Invariant foliation \mathcal{F} . Arrange for a leaf to stare straight at cusp
- Control these with qualitative geometry:

• Conclude from ruling's structure in what the staring leaf sees:

Crossing Number of Cable Knots (Joint with E. Kalfagianni)

Rob McConkey

Binghamton University

November 11th, 2023

- Knot Theory is the study of knots and links.
- We study invariants of links to differentiate links, but also other topological objects which arise.
- One such invariant is the **crossing number**, which is the minimum number of crossing for a knot across all diagrams.
- We will refer to the crossing number of a knot K as c(K).
- Despite being easy to define, the crossing number is notoriously intractable.

Satellite Knots

- To construct a satellite knot K start with a non-trivial knot K' inside of a torus T, then given a non-trivial knot C in S^3 we map T to a neighborhood of C.
- We will refer to C as the *companion knot* for K.

Satellite Knots

- Crossing number is not well understood for satellite and connect sums of knots.
- Remains an open conjecture whether or not c(K) ≥ c(C) where C is the companion knot for a satellite knot K.

Theorem (Kalfagianni and Lee)

Let W(K) be the untwisted whitehead double of a knot K. If K is adequate with writhe number zero, then c(W(K)) = 4c(K) + 2.

Satellite Knots

• We consider the satellite knots $K_{p,q}$ which is the (p,q)-cabling operation on a knot K.

Theorem (Kalfagianni and M.)

For any adequate knot K with crossing number c(K), and any coprime integers p, q, we have $c(K_{p,q}) \ge q^2 \cdot c(K) + 1$.

Corollary (Kalfagianni and M.)

Let K be an adequate knot with crossing number c(K) and writhe number w(K). If $p = 2w(K) \pm 1$, the $K_{p,2}$ is non-adequate and $c(K_{p,2}) = 4c(K) + 1$.

Thank You!

