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Chern-Hamilton Question

@ Suppose M is a closed oriented 3-manifold.
@ Let o be a positive contact form on M and X, the associated Reeb vector field.
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Chern-Hamilton Question

@ Suppose M is a closed oriented 3-manifold.
@ Let « be a positive contact form on M and X, the associated Reeb vector field.

%%X*

Definition

If J is an almost complex structure defined on £ := ker a, we define its Dirichlet energy as

EJ) ::/ [|Lx, J||* @A da.
M
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Chern-Hamilton Question

@ Suppose M is a closed oriented 3-manifold.
@ Let « be a positive contact form on M and X, the associated Reeb vector field.

.

Definition

If J is an almost complex structure defined on £ := ker a, we define its Dirichlet energy as

EJ) ::/ [|Lx, J||* @A da.
M

€ : J(a) = {space of almost complex structures on £ =: kera} — R
is an energy functional.
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Chern-Hamilton Question

Chern-Hamilton Question 1984

For which contact manifolds (M, ) does the Dirichlet energy functional

E:J(a) >R

attains its minimum?
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Chern-Hamilton Question

Chern-Hamilton Question 1984

For which contact manifolds (M, ) does the Dirichlet energy functional

E:J(a) >R

attains its minimum?

Theorem (H. 23)

It rarely does! We can classify all such (M, ) s.
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Tanno’s Variational Formula

Using variational techniques,

Theorem (Tanno 1989)

An almost complex structure J is critical for
E:J(a) =R,

if and only if,
Vx,(Lx,J) =2(Lx,J)].
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Tanno’s Variational Formula

Using variational techniques,

Theorem (Tanno 1989)

An almost complex structure J is critical for
E:J(a) =R,

if and only if,
Vx,(Lx,J) =2(Lx,J)].

Theorem (Deng 1991)

Any critical J is in fact the minimizer of € : J(a) — R.
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Consequences of Tanno's Formula

If Jis a critical almost complex structure,
@ the scalar torsion ||Lx, J|| is constant along the Reeb flow Xy, i.e.

Xa - ||Lx,J]| = 0.
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Consequences of Tanno's Formula

If Jis a critical almost complex structure,
@ the scalar torsion ||Lx, J|| is constant along the Reeb flow Xy, i.e.

Xa - ||Lx,J]| = 0.

o Wherever ||Lx, J|| # 0, the Reeb flow X, has hyperbolic behavior.
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Consequences of Tanno's Formula

If Jis a critical almost complex structure,
@ the scalar torsion ||Lx, J|| is constant along the Reeb flow Xy, i.e.

Xa - ||Lx,J]| = 0.

o Wherever ||Lx, J|| # 0, the Reeb flow X, has hyperbolic behavior.

o = The pre-image of a regular value of the scalar torsion ¥y = ||Lx, J||7*(}\) is an
invariant closed surface.
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Consequences of Tanno's Formula

If Jis a critical almost complex structure,
@ the scalar torsion ||Lx, J|| is constant along the Reeb flow Xy, i.e.

Xa - ||Lx,J]| = 0.

o Wherever ||Lx, J|| # 0, the Reeb flow X, has hyperbolic behavior.

o = The pre-image of a regular value of the scalar torsion ¥y = ||Lx, J||7*(}\) is an
invariant closed surface.
o (NOT possible in hyperbolic dynamics)
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Consequences of Tanno's Formula

If Jis a critical almost complex structure,
@ the scalar torsion ||Lx, J|| is constant along the Reeb flow Xy, i.e.

Xa - ||Lx,J]| = 0.

o Wherever ||Lx, J|| # 0, the Reeb flow X, has hyperbolic behavior.

o = The pre-image of a regular value of the scalar torsion ¥y = ||Lx, J||7*(}\) is an
invariant closed surface.
o (NOT possible in hyperbolic dynamics)

For critical J, we have ||Lx,J|| = C > 0 for some constant C.
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Case 1: ||Lx, J|| =0

@ That is when X, is a Killing vector field.
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Case 1: ||Lx, J|| =0

@ That is when X, is a Killing vector field.
o Virtually, X, traces a S!-fibration over a surface (called Boothby-Wang fibrations).
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Case 2: ||Lx, J||=C>0

o We have hyperbolic behavior everywhere. Such Reeb flows are called Anosov.

!image source: https://thatsmaths.com/2013/10/11/poincares-half-plane-model/
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Case 2: ||Lx, J||=C>0

o We have hyperbolic behavior everywhere. Such Reeb flows are called Anosov.

@ ||£Lx,J|| being constant corresponds to entropy rigidity.

!image source: https://thatsmaths.com/2013/10/11/poincares-half-plane-model/
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Case 2: ||Lx, J||=C>0

o We have hyperbolic behavior everywhere. Such Reeb flows are called Anosov.
@ ||£Lx,J|| being constant corresponds to entropy rigidity.

@ (Foulon 01) = Virtually, X, is the geodesic flow of a hyperbolic surface ¥ on UTX.

Image source: https://thatsmaths.com/2013/10/11/poincares-half-plane-model/
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Classification

Theorem (H. 23)

The Dirichlet energy functional £ : J(a) — R admits a minimizer, if and only if,

(1) (M, ) is virtually equivalent to a Boothb-Wang fibration.
or

(2) X is virtually equivalent to the geodesic flow of a hyperbolic surface ¥ on UTX.
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Infimum Dirichlet energy

What about the infimum of the Dirichlet energy for a general (M, «)?
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Infimum Dirichlet energy

What about the infimum of the Dirichlet energy for a general (M, «)?

Theorem (H. 23)

If (M, @) is an Anosov contact manifold. Then,

. _ hi/\da(Xa)
Jel.gt-a)g(J) "~ Vol(a A da)’

where h? , ;.(Xa) is the measure entropy.
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Infimum Dirichlet energy

What about the infimum of the Dirichlet energy for a general (M, «)?

Theorem (H. 23)

If (M, @) is an Anosov contact manifold. Then,

H _ hi/\da(Xa)
Jel.r}]:a)g(J) " Vol(a Ada)’

where h? , ;.(Xa) is the measure entropy.

V.

For an arbitrary contact manifold (M, &), we have

. _ hi/\da(Xa)
Jel.r}]:a)g(J) " Vol(aAda)’
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Thank you!
)
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Infinite order Corks
@00

Cork Twists

A (loose) cork (W, f) is a contractible compact smooth 4-manifold
W together with a boundary automorphism f such that f does not
extend to a self-diffeomorphism of W.

Cork Twisting Theorem ([4], [8], [1])

Every pair of exotic simply-connected smooth 4-manifolds are
related by a cork twist.

.

e E£(1) and E(1)3 are related by the positron cork [3].

° E(2)#@ and 3(CIP’2#20@ are related by the Mazur
cork [2].

\




Infinite order Corks
oeo

Infinite order corks

Theorem 1 ([6], [5])

There exists a cork X together with a boundary automorphism ¢
on 9X such that the iterated automorphism ¢¥ does not extend to
a self-diffeomorphism on X for any k > 0.

e Vn, X — E(n)
o Twisting via ¢* changes E(n) to the smooth manifold

obtained by doing Fintushel-Stern knot surgery using the
k-twist knots.

@ We can upgrade X to a family of infinite order corks by
repeatedly blowing up E(n) combined with orientation
changes.



Infinite order Corks
ooe

Realising the cork (r,s > 0 > m)

Ui iy




Infinite order knot traces
[ ele}

Twisting knot traces

A knot n-trace X,(K) is the smooth 4-manifold with a single
2-handle glued to a 0-handle along the knot K, with framing
coefficient n. Its boundary turns out to be the n-surgery of the
3-sphere along the knot K, S3(K).

.

Applications combining with trace embedding lemma

@ Knot traces can be used as plugs to generate exotic R*'s.

e With a little modifications, knot traces can possibly generate
exotic S*'s or #"CP?'s [7] [9].

.




Infinite order knot traces
(o] lo}

Knot trace as infinite order plugs

For any integer n with |n| > 2, there exists a knot trace X,(K})
together with a boundary automorphism ¢, on S3(K,) such that
the iterated automorphism ¢X does not extend to a trace
self-diffeomorphism for any k > 0.

@ Base case: X_»(K_2) — E(n)

e Twisting via ¢X, changes E(n) to the smooth manifold
obtained by doing Fintushel-Stern knot surgery using the
k-twist knots.

@ We can obtain infinite order knot traces of other framings by
repeatedly blowing up E(n) combined with orientation
changes.



Infinite order knot traces
[e]e] ]

Realising the knot trace (a, b < 0)

J==
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Constructing Annular Links from Thompson’s oroup 1’

Jones '14: Links in S° from Thompson’s group F (= PL functions | 0, 1] + some extra

conditions) 1 3
2 4
=
g E F !! :I W
oo
1 1
4 2

LL ’23: Links in A x I from Thompson’s group T' (= PL functions S — S! + some extra conditions)

m

m
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Known correspondence: graphs and links

Tait graphs: ' < R? ~ L(T)

Thm (Jones ’14):

g € F such that L(g)

Given any edge-signed planar graph I', 3
= L(T).

+ + T 3
O-BW-(0)|| 2 - (O -
~ ~ E K - s'fJ ]
+ + Pt t @
1 1
4 2
Extension to A: ' < A ~» L, (T Thm (LL ’23): Given any edge-signed graph I' — A, dg € T

— Lu(T).

@@

such that La(g)

P
-

Louisa Liles | Tech Topology Conference | Dec. 2023




Connections to Representation Theory

Thm (Aiello-Conti-Jones ’18): For certain values
of t, Jones polynomial defines a function of
positive type on F'.

g € F ~ L(g) ~ Jones polynomial V()

_ Thm (LL ’23): For certain values of ¢, Jones
h €T ~ La(h) ~ Jones polynomial V., (4)(?) polynomial of annular links defines a function of

positive type on 1.

Fact: given a group g, {functions of positive type from g — C} <— {unitary representations of g}.

Moral: The Jones polynomial of £(g) can arise as the coefficient of a unitary representation of F.
Similarly, the Jones polynomial of the annular link £, (g) can arise as a unitary representation of 7.
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Heegaard Floer symplectic homology and generalized Viterbo's

isomorphism theorem

Roman Krutowski
University of California, Los Angeles

based on joint work with Tianyu Yuan

Tech Topology conference
8-10 December, 2023
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Symplectic cohomology

@ Let (M?",)\) be a Liouville domain with X a primitive of a symplectic form w = d\
and Z be an outward-pointing Liouville vector field. Let

M = M Up [0; +00) x OM

be its completion,

Roman Krutowski (UCLA) Heegaard Floer symplectic homology



Symplectic cohomology

@ Let (M?",)\) be a Liouville domain with X a primitive of a symplectic form w = d\
and Z be an outward-pointing Liouville vector field. Let

M = M Up [0; +00) x OM

be its completion,

@ Symplectic cohomology SH.(M) of M is an invariant of M (up to a contact type
symplectomorphism), introduced by Viterbo, is a powerful and well-studied invariant
in symplectic topology.

Roman Krutowski (UCLA) Heegaard Floer symplectic homology



Symplectic cohomology

@ Let (M?",)\) be a Liouville domain with X a primitive of a symplectic form w = d\
and Z be an outward-pointing Liouville vector field. Let

M = M Up [0; +00) x OM

be its completion,

@ Symplectic cohomology SH.(M) of M is an invariant of M (up to a contact type
symplectomorphism), introduced by Viterbo, is a powerful and well-studied invariant
in symplectic topology.

@ Cochains are generated by closed orbits of a Hamiltonian motion of a particle in the
completion M.

Roman Krutowski (UCLA) Heegaard Floer symplectic homology



Symplectic cohomology

@ Let (M?",)\) be a Liouville domain with X a primitive of a symplectic form w = d\
and Z be an outward-pointing Liouville vector field. Let

M = M Up [0; +00) x OM

be its completion,

@ Symplectic cohomology SH.(M) of M is an invariant of M (up to a contact type
symplectomorphism), introduced by Viterbo, is a powerful and well-studied invariant
in symplectic topology.

@ Cochains are generated by closed orbits of a Hamiltonian motion of a particle in the
completion M.

o The differential dsy counts (with signs) pseudoholomorphic cylinders
u: R x S' — M connecting such orbits. i M

Roman Krutowski (UCLA) Heegaard Floer symplectic homology



Symplectic cohomology

@ Let (M?",)\) be a Liouville domain with X a primitive of a symplectic form w = d\
and Z be an outward-pointing Liouville vector field. Let

M = M Up [0; +00) x OM

be its completion,

@ Symplectic cohomology SH.(M) of M is an invariant of M (up to a contact type
symplectomorphism), introduced by Viterbo, is a powerful and well-studied invariant
in symplectic topology.

@ Cochains are generated by closed orbits of a Hamiltonian motion of a particle in the
completion M.

o The differential dsy counts (with signs) pseudoholomorphic cylinders
u: R x S' — M connecting such orbits.

Theorem (Viterbo, '99; Abbondandolo-Schwarz '06, Abouzaid '10)

For an oriented, closed smooth manifold Q there is an isomorphism

SHE(T* Q) 2 Ho_ o (AQ).
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Multiple particles

@ Let us instead consider a Hamiltonian motion of k > 1 identical particles in M. 1s
there a Floer-theoretic invariant of M associated with closed orbits of such motion?
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@ Let us instead consider a Hamiltonian motion of k > 1 identical particles in M. 1s
there a Floer-theoretic invariant of M associated with closed orbits of such motion?

o Alternatively, is there a reasonable notion of symplectic cohomology of the k-th
symmetric product Sym”(M) (which is not even a smooth manifold, in general)?
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Multiple particles

@ Let us instead consider a Hamiltonian motion of k > 1 identical particles in M. 1s
there a Floer-theoretic invariant of M associated with closed orbits of such motion?

o Alternatively, is there a reasonable notion of symplectic cohomology of the k-th
symmetric product Sym”(M) (which is not even a smooth manifold, in general)?

@ Adapting the approach of Colin-Honda-Tian, based on Lipshitz's cylindrical
reformulation, we introduced such an invariant. We call it Heegaard Floer
symplectic cohomology (HFSH).
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Multiple particles

@ Let us instead consider a Hamiltonian motion of k > 1 identical particles in M. 1s
there a Floer-theoretic invariant of M associated with closed orbits of such motion?

o Alternatively, is there a reasonable notion of symplectic cohomology of the k-th
symmetric product Sym”(M) (which is not even a smooth manifold, in general)?

@ Adapting the approach of Colin-Honda-Tian, based on Lipshitz's cylindrical
reformulation, we introduced such an invariant. We call it Heegaard Floer
symplectic cohomology (HFSH).

@ The cochains correspond to tuples of closed Hamiltonian orbits of cumulative time «.
K:g 5(7_“’> X = (\(”KI)KS)
¥~ (1) € S,

%) %0
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Heegaard Floer symplectic cohomology

Theorem (K.-Yuan)

The Heegaard Floer symplectic cohomology groups SH;;(M) are well defined and are
invariants of the Liouville domain M, independent of all intrinsic choices of the Floer
data required for its setup.
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Heegaard Floer symplectic cohomology

Theorem (K.-Yuan)

The Heegaard Floer symplectic cohomology groups SH;;(M) are well defined and are
invariants of the Liouville domain M, independent of all intrinsic choices of the Floer
data required for its setup.

o The differential dsy, is given by counting curves u = (m,v): S — R x §* x M
connecting two orbit tuples x and x” with (S,7) € ’HZ;;(’,, where o and ¢’ are
permutations in &, associated with x and x’.

&(X)= [13)(24)

a2
o q1
qa

*qs

& (x|~ (1+2)
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Heegaard Floer symplectic cohomology

Theorem (K.-Yuan)

The Heegaard Floer symplectic cohomology groups SH;;(M) are well defined and are

invariants of the Liouville domain M, independent of all intrinsic choices of the Floer
data required for its setup.

o The differential dsy, is given by counting curves u = (m,v): S — R x §* x M

connecting two orbit tuples x and x” with (S,7) € ’HZ;;(’,, where o and ¢’ are
permutations in &, associated with x and x’.

o Key features:

o q1
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Heegaard Floer symplectic cohomology

Theorem (K.-Yuan)

The Heegaard Floer symplectic cohomology groups SH;;(M) are well defined and are
invariants of the Liouville domain M, independent of all intrinsic choices of the Floer
data required for its setup.

o The differential dsy, is given by counting curves u = (m,v): S — R x §* x M

connecting two orbit tuples x and x” with (S,7) € ’HZ;;(’,, where o and ¢’ are
permutations in &, associated with x and x’.

cmTesl F0
o Key features: L
@ using different Hamiltonians for . e
different ends to achieve somewhere - ‘0
injectivity; o
~-- —00
t=0
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Heegaard Floer symplectic cohomology

Theorem (K.-Yuan)

The Heegaard Floer symplectic cohomology groups SH;;(M) are well defined and are
invariants of the Liouville domain M, independent of all intrinsic choices of the Floer
data required for its setup.

o The differential dsy, is given by counting curves u = (m,v): S — R x §* x M

connecting two orbit tuples x and x” with (S,7) € ’HZ;;(’,, where o and ¢’ are
permutations in &, associated with x and x’.

o Key features:

@ using different Hamiltonians for
different ends to achieve somewhere
injectivity;

o q1

o Floer data on branched manifolds
associated with Hurwitz spaces.
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Morse multiloop complex

@ To compute SH(T*Q) we provide a Morse-theoretic model, the so-called free
multiloop complex.
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Morse multiloop complex

@ To compute SH(T*Q) we provide a Morse-theoretic model, the so-called free
multiloop complex.

o We denote via AL(Q) the space of free x-multiloops of class W=,
The chain complex CM..(AL(Q)) has generators associated with geodesic
rk-multiloops.

= 0
PN M}A
Ozs.w QM
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Morse multiloop complex

o Differential du counts piecewise (pseudo)-gradient trajectories connecting two
geodesic multiloops v,v" € AL(Q).

Q% R,
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Morse multiloop complex

o Differential du counts piecewise (pseudo)-gradient trajectories connecting two
geodesic multiloops v,v" € AL(Q).

QxR

Theorem (K.-Yuan)

(CM.(AL(Q)),dm) is a chain complex and its homology groups HM.(Ay(Q)) are
independent of all auxiliary choices.
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Generalized Viterbo's isomorphism theorem

Theorem (K.-Yuan)

For Q an orientable manifold with vanishing second Stiefel-Whitney class
wo(TQ) € H*(T*Q;Z/2) there is a chain map

]:: SC:,unsym(T*Q) — CMN"**(AIN(Q))a

and it induces an isomorphism on the homology

SH/:,unsym( T* Q) = HMH"—*(Ai(Q))
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Generalized Viterbo's isomorphism

@ The chain map F is given by counting elements of mixed moduli spaces as in the
figure and it coincides with Abouzaid's map for k = 1.

S0

52
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Thank you for your attention!
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MOTIVATION

EXOTIC MFLDS EXOTIC DIFFEOS
Thm: ( freedman, Donaldson go0s) Thm : (Ruloernoun )
3 Xo, X, : SMootih Simply (onnecied 3 X smooth simply connected Ymfids
HmfldS Sudnthat and @: XX dyftos suth that
Xo £ o < d |
homeo X‘ A dﬁeox‘ ~.P‘w\? ‘ \Pﬁfn ‘d
Q-
95 X smooth closed simply (onnected tmfid
Thim | (Maiveyev; Lukis Freedivan, Hisiang, Stonq) ond @:X-X diffeo whidnis op 1o
Xo, Xy Smoath closed, Simply Lonnected xo \d.
Hmflds whidh e homeoMorphiC gy 2 3 compact,contvachible Ymfld C< X
3 (ompadt contractible dYmfld Ci< X Suoh thact Pz = idye
Suchthat  Xo\Co = XNC, oA
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 PSEUDQTSOTOPY

| (Smooth)
h- Cobordism Pseudaisotopy
Xo, X, SiMply connected Smoaoth X Smooth Simply connected Y mf ld
Hwmfid S P: XX diffeo ccrréc‘&on'- -
e [
C wall, Freedman] [Kreck, Perron, Quinn’ Po
XoZ X, & KXoV K| y2id & ¢ Vid
hameo b top PL.
3 Covies for mfids proved using IDEA: use pseudoisotopies 1o

- CObordisims prove 3 corks for diffeos
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PSEUDOLSOTOPY

DLt
Adiffeo @:X=X is Smoothly pSeudoisotopic to tha \d If
Jdiffeo @ XxI = XxT Such that

@lexI =id ) &l)(xi(ﬁzid) all\d il)@cm:“?

¥
xx§13 > xx {13
—_— _ |
may not be contained
k{3 %— D) N0 T ot
level preserving
Xx{0% — Xx{0%
\-j

id
RME if § is level preserving then @ is o Smooth isotopy

Q‘xﬂﬁwt: A= X
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SOME RESULTS

X :Smooth compact Simply connected U mfld
¢ diffeomorphismn 0ofy X
d - Psuudoisotopy between ¢ wnd i

Thm: [ krushkod, Mukher jee, Powell, W. ]
I @ hag “one eye”, thun I compact contractible CXICXxI
and a  smooth isotopy oy § @' Sudntiat
/ :
il)ﬂl\(éxlfm“)«l\(c‘ixl)
Cor:
If @ is a diffeo that becomes smoothly 1Sotopic to the identtiy

after a Singie Stabivzationn then I compact,contractive CeX
oand a Smooth (sotopy Y =4’ S 4.

@lye =1dlye
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