What is rational 4-genus?

Tech Topology Conference Katherine Raoux - University of Arkansas 12.9.23

We start with a knot:

$$K \subset Y^{3}$$

$$P[K] = O \in H_{1}(Y_{j}Z)$$
for some $p \in ZZ$

$$K$$
 does not bound a Seifert surface.

$$K \text{ does not bound a Seifert surface for K.}$$

$$W[K]_{Y} := \inf_{X \in Y^{3}} - \frac{\chi(S)}{2P}$$

$$= -\frac{\chi(S \min_{x})}{2P} = \frac{1}{2}(A_{\max}(K) - A_{\min} - 1))$$

$$C = P[K] \longrightarrow O$$

$$W^{THE N}$$

$$W = \inf_{X \in Y^{3}} - \frac{\chi(S)}{2P} = \frac{1}{2}(A_{\max}(K) - A_{\min} - 1))$$

$$C = P[K] \longrightarrow O$$

$$W^{THE N}$$

$$W = \inf_{X \in Y^{3}} - \frac{\chi(S)}{2P} = \frac{1}{2}(A_{\max}(K) - A_{\min} - 1))$$

$$C = P[K] \longrightarrow O$$

$$W^{THE N}$$

K has a simultaneous tubular and collar neigh. What about rational 4-genus? $\mathcal{V}_{3}(\mathbf{K}) \times [1-\epsilon, 1]$ A rational slicing surface: x S' E $\mathcal{V}_{3}(\mathbf{K})_{p}$ Y×Lo,1] ĴК Near the knot, $\Sigma \cap \mathcal{Y}_3(K) \times \{1 - \varepsilon\} = P_a(K)$. Y×[0,1] 28 p-covers K $int(z) \longrightarrow Y \times [o,1] \setminus K$ Theorem (Hedden-R.) Rational 4-genus: $\frac{1}{2}\left(\mathcal{T}_{\max}(\mathcal{K}) - \mathcal{T}_{\min}(\mathcal{K}) - 1\right) \leq ||\mathcal{K}||_{Y \times [0,1]}$ $\|K\|_{Y \times [0,1]} \coloneqq \inf_{\mathcal{E}, p} \frac{-\chi(\mathcal{E})}{2p}$ max/min To(K) ac HF(Y) $= \inf_{\substack{P \ge 1}} \left(\inf_{\substack{\beta \in B_{P}}} \left(\inf_{\substack{\Sigma}} \left\{ \frac{-\chi(\Sigma)}{a_{P}} \middle| \begin{array}{c} \Sigma \hookrightarrow Y \times [o_{1}] \\ \partial \Sigma = P_{\beta}(K) \end{array} \right\} \right) \right)$

Anosov Reeb Flows, Dirichlet Optimization and Entropy

Surena Hozoori (shozoori@ur.rochester.edu)

University of Rochester

Tech Topology Conference 2024

イロト イヨト イヨト

- Suppose *M* is a closed oriented 3-manifold.
- Let α be a positive contact form on M and X_{α} the associated Reeb vector field.

< □ > < 同 >

- Suppose *M* is a closed oriented 3-manifold.
- Let α be a positive contact form on M and X_{α} the associated Reeb vector field.

Definition

If J is an almost complex structure defined on $\xi := \ker \alpha$, we define its *Dirichlet energy* as

$$\mathcal{E}(J) := \int_M ||\mathcal{L}_{X_\alpha} J||^2 \ lpha \wedge dlpha.$$

Surena Hozoori	(shozoori@ur.rochester.edu)	(Univer
----------------	-----------------------------	----------

• • • • • • • • • • •

- Suppose *M* is a closed oriented 3-manifold.
- Let α be a positive contact form on M and X_{α} the associated Reeb vector field.

Definition

If J is an almost complex structure defined on $\xi := \ker \alpha$, we define its *Dirichlet energy* as

$$\mathcal{E}(J) := \int_M \left|\left|\mathcal{L}_{X_{lpha}}J\right|\right|^2 \, lpha \wedge dlpha.$$

• i.e.

 $\mathcal{E}: \mathcal{J}(\alpha) = \{ \text{space of almost complex structures on } \xi =: \ker \alpha \} \to \mathbb{R}$

is an energy functional.

Surena Hozoori (shozoori@ur.rochester.edu) (Universi

(日) (同) (日) (日)

For which contact manifolds (M, α) does the Dirichlet energy functional

$$\mathcal{E}:\mathcal{J}(\alpha)\to\mathbb{R}$$

attains its minimum?

э

For which contact manifolds (M, α) does the Dirichlet energy functional

$$\mathcal{E}:\mathcal{J}(\alpha)\to\mathbb{R}$$

attains its minimum?

Theorem (H. 23)

It rarely does! We can classify all such (M, α) s.

э

Using variational techniques,

Theorem (Tanno 1989)

An almost complex structure J is critical for

$$\mathcal{E}: \mathcal{J}(\alpha) \to \mathbb{R},$$

if and only if,

$$\nabla_{X_{\alpha}}(\mathcal{L}_{X_{\alpha}}J)=2(\mathcal{L}_{X_{\alpha}}J)J.$$

Using variational techniques,

Theorem (Tanno 1989)

An almost complex structure J is critical for

$$\mathcal{E}: \mathcal{J}(\alpha) \to \mathbb{R},$$

if and only if,

$$\nabla_{X_{\alpha}}(\mathcal{L}_{X_{\alpha}}J)=2(\mathcal{L}_{X_{\alpha}}J)J.$$

Theorem (Deng 1991)

Any critical J is in fact the minimizer of $\mathcal{E} : \mathcal{J}(\alpha) \to \mathbb{R}$.

イロト イヨト イヨト

If J is a *critical* almost complex structure,

• the scalar torsion $||\mathcal{L}_{X_{\alpha}}J||$ is constant along the Reeb flow X_{α} , i.e.

$$X_{\alpha}\cdot ||\mathcal{L}_{X_{\alpha}}J||=0.$$

э

If J is a *critical* almost complex structure,

• the scalar torsion $||\mathcal{L}_{X_{\alpha}}J||$ is constant along the Reeb flow X_{α} , i.e.

$$X_{\alpha} \cdot ||\mathcal{L}_{X_{\alpha}}J|| = 0.$$

• Wherever $||\mathcal{L}_{X_{\alpha}}J|| \neq 0$, the Reeb flow X_{α} has hyperbolic behavior.

< □ > < 同 >

If J is a *critical* almost complex structure,

• the scalar torsion $||\mathcal{L}_{X_{\alpha}}J||$ is constant along the Reeb flow X_{α} , i.e.

$$X_{\alpha}\cdot ||\mathcal{L}_{X_{\alpha}}J||=0.$$

• Wherever $||\mathcal{L}_{X_{\alpha}}J|| \neq 0$, the Reeb flow X_{α} has hyperbolic behavior.

• \implies The pre-image of a regular value of the scalar torsion $\Sigma_{\lambda} = ||\mathcal{L}_{X_{\alpha}}J||^{-1}(\lambda)$ is an invariant closed surface.

A D > <
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +

If J is a *critical* almost complex structure,

• the scalar torsion $||\mathcal{L}_{X_{\alpha}}J||$ is constant along the Reeb flow X_{α} , i.e.

$$X_{\alpha}\cdot ||\mathcal{L}_{X_{\alpha}}J||=0.$$

• Wherever $||\mathcal{L}_{X_{\alpha}}J|| \neq 0$, the Reeb flow X_{α} has hyperbolic behavior.

- \implies The pre-image of a regular value of the scalar torsion $\Sigma_{\lambda} = ||\mathcal{L}_{X_{\alpha}}J||^{-1}(\lambda)$ is an invariant closed surface.
- (NOT possible in hyperbolic dynamics)

A D > <
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +
 A +

If J is a *critical* almost complex structure,

• the scalar torsion $||\mathcal{L}_{X_{\alpha}}J||$ is constant along the Reeb flow X_{α} , i.e.

$$X_{\alpha}\cdot ||\mathcal{L}_{X_{\alpha}}J||=0.$$

• Wherever $||\mathcal{L}_{X_{\alpha}}J|| \neq 0$, the Reeb flow X_{α} has hyperbolic behavior.

- \implies The pre-image of a regular value of the scalar torsion $\Sigma_{\lambda} = ||\mathcal{L}_{X_{\alpha}}J||^{-1}(\lambda)$ is an invariant closed surface.
- (NOT possible in hyperbolic dynamics)

Corollary

For critical J, we have $||\mathcal{L}_{X_{\alpha}}J||\equiv C\geq 0$ for some constant C.

Surena Hozoori (shozoori@ur.rochester.edu) (Universi

• That is when X_{α} is a Killing vector field.

<ロ> <四> <四> <四> <三</p>

- That is when X_{α} is a Killing vector field.
- Virtually, X_{α} traces a \mathbb{S}^1 -fibration over a surface (called *Boothby-Wang fibrations*).

Image: A matching of the second se

• We have hyperbolic behavior everywhere. Such Reeb flows are called Anosov.

 $^{-1}$ Image source: https://thatsmaths.com/2013/10/11/poincares-half-plane-model/ $\leftarrow \equiv \rightarrow \quad \equiv \quad \bigcirc$

- We have hyperbolic behavior everywhere. Such Reeb flows are called Anosov.
- $||\mathcal{L}_{X_{\alpha}}J||$ being constant corresponds to *entropy rigidity*.

 $^{-1}$ Image source: https://thatsmaths.com/2013/10/11/poincares-half-plane-model/ $\leftarrow \equiv \leftrightarrow \leftarrow \equiv \leftrightarrow \equiv \odot$

- We have hyperbolic behavior everywhere. Such Reeb flows are called Anosov.
- $||\mathcal{L}_{X_{\alpha}}J||$ being constant corresponds to *entropy rigidity*.
- (Foulon 01) \Rightarrow Virtually, X_{α} is the geodesic flow of a hyperbolic surface Σ on $UT\Sigma$.

 $^{^{-1}}$ lmage source: https://thatsmaths.com/2013/10/11/poincares-half-plane-model/ \leftarrow \equiv \leftarrow \equiv \leftarrow \equiv \leftarrow

Theorem (H. 23)

The Dirichlet energy functional $\mathcal{E} : \mathcal{J}(\alpha) \to \mathbb{R}$ admits a minimizer, if and only if,

(1) (M, α) is virtually equivalent to a Boothb-Wang fibration.

or

(2) X_{α} is virtually equivalent to the geodesic flow of a hyperbolic surface Σ on $UT\Sigma$.

(日) (四) (日) (日) (日)

Infimum Dirichlet energy

What about the infimum of the Dirichlet energy for a general (M, α) ?

- 2

イロト イヨト イヨト イヨト

What about the infimum of the Dirichlet energy for a general (M, α) ?

Theorem (H. 23) If (M, α) is an Anosov contact manifold. Then,

$$\inf_{\in \mathcal{J}(\alpha)} \mathcal{E}(J) = \frac{h_{\alpha \wedge d\alpha}^2(X_\alpha)}{Vol(\alpha \wedge d\alpha)},$$

where $h^2_{\alpha \wedge d\alpha}(X_{\alpha})$ is the measure entropy.

э

What about the infimum of the Dirichlet energy for a general (M, α) ?

Theorem (H. 23)

If (M, α) is an Anosov contact manifold. Then,

$$\inf_{\in \mathcal{J}(\alpha)} \mathcal{E}(J) = \frac{h_{\alpha \wedge d\alpha}^2(X_\alpha)}{Vol(\alpha \wedge d\alpha)},$$

where $h^2_{\alpha \wedge d\alpha}(X_{\alpha})$ is the measure entropy.

Conjecture

For an arbitrary contact manifold (M, α) , we have

$$\inf_{I\in\mathcal{J}(\alpha)}\mathcal{E}(J)=\frac{h_{\alpha\wedge d\alpha}^2(X_\alpha)}{Vol(\alpha\wedge d\alpha)}.$$

Thank you! :)

ъ

ヘロト ヘロト ヘヨト ヘヨト

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Infinite Order Knot Traces

Yikai Teng

Rutgers University-Newark

December, 2023

Cork Twists

Corks

A (loose) cork (W, f) is a contractible compact smooth 4-manifold W together with a boundary automorphism f such that f does not extend to a self-diffeomorphism of W.

Cork Twisting Theorem ([4], [8], [1])

Every pair of exotic simply-connected smooth 4-manifolds are related by a cork twist.

Examples

- E(1) and $E(1)_{2,3}$ are related by the positron cork [3].
- • E(2)# CP² and 3CP²#20 CP² are related by the Mazur cork [2].

Infinite order corks

Theorem 1 ([6], [5])

There exists a cork X together with a boundary automorphism ϕ on ∂X such that the iterated automorphism ϕ^k does not extend to a self-diffeomorphism on X for any k > 0.

- $\forall n, X \hookrightarrow E(n)$
- Twisting via \(\phi^k\) changes \(E(n)\) to the smooth manifold obtained by doing Fintushel-Stern knot surgery using the k-twist knots.
- We can upgrade X to a family of infinite order corks by repeatedly blowing up E(n) combined with orientation changes.

Infinite order knot traces

References

Realising the cork (r, s > 0 > m)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Twisting knot traces

Knot traces

A knot *n*-trace $X_n(K)$ is the smooth 4-manifold with a single 2-handle glued to a 0-handle along the knot K, with framing coefficient *n*. Its boundary turns out to be the *n*-surgery of the 3-sphere along the knot K, $S_n^3(K)$.

Applications combining with trace embedding lemma

- \bullet Knot traces can be used as plugs to generate exotic \mathbb{R}^4 's.
- With a little modifications, knot traces can possibly generate exotic S⁴'s or #ⁿCP²'s [7] [9].

Knot trace as infinite order plugs

Theorem 3

For any integer *n* with $|n| \ge 2$, there exists a knot trace $X_n(K_n)$ together with a boundary automorphism ϕ_n on $S_n^3(K_n)$ such that the iterated automorphism ϕ_n^k does not extend to a trace self-diffeomorphism for any k > 0.

- Base case: $X_{-2}(K_{-2}) \hookrightarrow E(n)$
- Twisting via \$\phi^k_{-2}\$ changes \$E(n)\$ to the smooth manifold obtained by doing Fintushel-Stern knot surgery using the k-twist knots.
- We can obtain infinite order knot traces of other framings by repeatedly blowing up E(n) combined with orientation changes.

Infinite order Corks 000

Realising the knot trace (a, b < 0)

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

- S. Akbulut and R. Matveyev, A convex decomposition theorem for 4-manifolds, Internat. Math. Res. Notices 7 (1998), 371–381. MR1623402
- [2] Selman Akbulut, A fake compact contractible 4-manifold, J. Differential Geom. 33 (1991), no. 2, 335–356. MR1094459
- [3] _____, The Dolgachev surface. Disproving the Harer-Kas-Kirby conjecture, Comment. Math. Helv. 87 (2012), no. 1, 187–241. MR2874900
- [4] C. L. Curtis, M. H. Freedman, W. C. Hsiang, and R. Stong, A decomposition theorem for h-cobordant smooth simply-connected compact 4-manifolds, Invent. Math. 123 (1996), no. 2, 343–348. MR1374205
- [5] Robert E. Gompf, Infinite order corks, Geom. Topol. 21 (2017), no. 4, 2475–2484. MR3654114
- [6] _____, Infinite order corks via handle diagrams, Algebr. Geom. Topol. 17 (2017), no. 5, 2863–2891. MR3704246
- [7] Ciprian Manolescu and Lisa Piccirillo, From zero surgeries to candidates for exotic definite four-manifolds, 2023.
- [8] R. Matveyev, A decomposition of smooth simply-connected h-cobordant 4-manifolds, J. Differential Geom. 44 (1996), no. 3, 571–582. MR1431006
- [9] Kai Nakamura, *Trace embeddings from zero surgery homeomorphisms*, 2022.

Dissecting Symplectic 4-Manifolds Randy Van Why

Northwestern University

Symplectic 4-manifolds:

• (M⁴, w) where $(i) d\omega = 0$ $(ii) \quad \omega \land \omega \neq 0$

• If M is closed then $[W] \neq 0$ in $H^2_{aR}(M)$ (So S4 is not symplectic)
Q: How to study (M4, w) in preces? o Gluing two symplexic manifolds along a common boundary may not produce a symplectic manifold $S^{4} = B^{4} U_{s^{3}} B^{4}$ $(B^{\gamma}, \omega_{s+d})$ Why ! 0 Closed condition is hard to gavrantee even if we could extend symplectic forms ACTOSS $\cdots (M_{1}, \omega_{1})$ (M_2, ω_2) · · ·

on cality/convexity:

2M 0 0 Ø 0 5 0 Concare Convex Liouville vector fields: V: vector fields s.t. $2\sqrt{\omega} = \lambda$ has $d\lambda = \omega$, $\nabla m \partial M$.

Liouville fields induce contact structures • $\lambda := 2 \sqrt{\omega}$ has $X = \lambda |_{M}$ MGM V Ai Jutan · E = Ker (a) = TOM is a maximally Non-integrable 2-plane field (DM, E) contact.

It the gluing is done along a contactomorphism $\phi:(\partial M_{L}, \xi_{L}) \longrightarrow (M_{R}, \xi_{R}) \left[\phi_{x}\xi_{L} = \xi_{R}\right]$

the result is symplectic

 (M_R, ω_R)

Cutting open closed symplectic manifolds; (M⁴, W): Clored 0 L> X E M Symplectic + Convex o How do we find these?

Symplectic Surface configuro

• $D = (D D_i) \subseteq M$

Di MD; is w−orthogonal for i≠j

Dissecting OP?

 $D = CP' \subseteq CP^2$ at ∞

• $CP^2 - D \cong C^2 SO$

Or via moment polytope $\partial \Delta \sim D \cong CPU CPU CP'$ $\circ CP^2 - D \cong T^*T^2$ $O_{P}(D)$ open nbhd of T² fiber 7 $X \simeq T^{*}T^{2}$ Contact (T^3, ξ)

Heegaard diagrams for 5-manifolds

Geunyoung Kim University of Georgia

A (5-dimensional) Heegaard diagram is a
triple (I, d, B) such that
• I is a closed, orientable, smooth 4-manifold,
• d= d10...Udn CE is a 2-link with
$$V(d) \cong \coprod_{n} S^{2} \times B^{2}$$
,
• $\beta = \beta 1 \cup \dots \cup \beta_{m} CE$ is a 2-link with $V(d) \cong \coprod_{n} S^{2} \times B^{2}$.

Every 5-manifold admits a (5-dimensional) Heegaard diagram. Theorem Two (5-dimensional) Heegaard diagrams represent diffeomorphic 5-manifolds if and only if they are related by isotopies, handle slides, stabilizations, and diffeomorphisms.

Theorem Let Sk be the Gluck twist of Stabug a 2-knot K in St. Let $(\Sigma, \mathcal{A}, \mathcal{B}) = (\mathcal{S} \times \mathcal{S}, F, k \neq F)$ be a Heegaard dragran, where Fis a fiber of SXS. Then MaUIM, is a cohordism from $\Sigma(\alpha) = S^4$ to $\Sigma(\beta) = S^4_k$. turthermore, the following are equivalent:

• $S_{k}^{4} \stackrel{\underline{\wedge}}{=} S_{,}^{4}$

- $M_{\alpha} U_{\Sigma} M_{\beta} \cong twice punctured S^2 S^3$, drffeo
- $(\hat{\varsigma} \times \hat{\varsigma}^2, F, K \neq F)$ and $(\hat{\varsigma} \times \hat{\varsigma}^2, F, F)$ are related by isotopies, handle slides, stabilizations, and diffeomorphisms,
- $(\widehat{\varsigma} \times \widehat{\varsigma}, \underline{k} + F) \cong (\widehat{\varsigma} \times \widehat{\varsigma}, F)$. drffeo

Smoothing 3-balls in the 5-ball

Daniel Hartman

Tech Topology Conference 2023

Main Theorem [H] Let K be a smooth 2-knot bounding a locally flat top. 3-bull in sq. Than the 3-ball is isotopic to a smooth 3-ball in the 5-bull rel boundary iff the Rochlin inverient of K unishes.

Background Rmh: All isotopies are rel boundary The [Budney-Gabai] Those exist in finitly Many isotopy classes of property embedded 3-balls bounded by the Unknot in 59

The [Hughes-Kim-Miller] For every g >, 2, there exists pairs of Enbedded Undle bodies of Jerus g. which are not isotopic in St or B⁵.

Thm [H] TTo Enby (B', B') = {*} ,)P = Boundary Purallel.

Definitions Def Two manifolds Mo, Mi are h-cobordant if 3 Wⁿ⁺¹ such that DW=-MiUM, and i:Mi-DW is a homotopy equivalence. An S-cobordism is an h-cob where the inclusions are simple H.E.

$$\frac{F_{act}}{cnd} + cobordism is a S-cobordism is Wh(T_{i}) = 0,$$

and this is true for $T_{i} = Z_{i}$.

Def: Let M³ be a snooth 3-mfld with spin structure s, and
let X⁴ be any spin 4-manifold with
$$\partial X^4 = M^3$$
 with
a competible spin structure. Thus the Rochlin invariant
of M³ is

Let K be a 2-mot with selfert surface M' and spin shuchen induced by S^{q} . Then Rochlin inv of K is $P(K) = \frac{P(M', s)}{q}$

use these two facts to build a L.F. 4-ball enhedded in the s-cobordism.

THANK YOU!

Constructing Annular Links from Thompson's group ${\cal T}$

LL '23: Links in $\mathbb{A} \times I$ from Thompson's group T (= PL functions $S^1 \to S^1 + \text{some extra conditions})$

Louisa Liles | Tech Topology Conference | Dec. 2023

Known correspondence: graphs and links

 \rightsquigarrow

 \bigcirc

 $\sim \rightarrow$

Tait graphs:
$$\Gamma \hookrightarrow \mathbb{R}^2 \rightsquigarrow L(\Gamma)$$
Thm (Jones '14): Given any edge-signed planar graph Γ , \exists $\stackrel{+}{\longleftarrow} \stackrel{+}{\longleftarrow} \stackrel{+}{\longleftarrow} \stackrel{+}{\longleftarrow} \stackrel{-}{\longleftarrow} \stackrel{-}{\longrightarrow} \stackrel{-}{$

Connections to Representation Theory

 $g \in F \rightsquigarrow \mathcal{L}(g) \rightsquigarrow$ Jones polynomial $V_{\mathcal{L}(g)}(t)$

Thm (Aiello-Conti-Jones '18): For certain values of t, Jones polynomial defines a function of positive type on F.

 $h \in T \rightsquigarrow \mathcal{L}_{\mathbb{A}}(h) \rightsquigarrow$ Jones polynomial $V_{\mathcal{L}_{\mathbb{A}}(g)}(t)$

Thm (LL '23): For certain values of t, Jones polynomial of annular links defines a function of positive type on T.

Fact: given a group g, {functions of positive type from $g \to \mathbb{C}$ } \longleftrightarrow {unitary representations of g}.

Moral: The Jones polynomial of $\mathcal{L}(g)$ can arise as the coefficient of a unitary representation of F. Similarly, the Jones polynomial of the annular link $\mathcal{L}_{\mathbb{A}}(g)$ can arise as a unitary representation of T.

Heegaard Floer symplectic homology and generalized Viterbo's isomorphism theorem

Roman Krutowski

University of California, Los Angeles

based on joint work with Tianyu Yuan

Tech Topology conference 8-10 December, 2023

イロト イヨト イヨト イヨト

Symplectic cohomology

 Let (M²ⁿ, λ) be a Liouville domain with λ a primitive of a symplectic form ω = dλ and Z be an outward-pointing Liouville vector field. Let

$$\hat{M} = M \cup_{\partial M} [0; +\infty) imes \partial M$$

be its completion,

イロト イ団ト イヨト イヨト

Symplectic cohomology

 Let (M²ⁿ, λ) be a Liouville domain with λ a primitive of a symplectic form ω = dλ and Z be an outward-pointing Liouville vector field. Let

$$\hat{M} = M \cup_{\partial M} [0; +\infty) imes \partial M$$

be its completion,

• Symplectic cohomology SH_{*}(M) of M is an invariant of M (up to a contact type symplectomorphism), introduced by Viterbo, is a powerful and well-studied invariant in symplectic topology.

イロト イワト イヨト イヨト

 Let (M²ⁿ, λ) be a Liouville domain with λ a primitive of a symplectic form ω = dλ and Z be an outward-pointing Liouville vector field. Let

$$\hat{M} = M \cup_{\partial M} [0; +\infty) imes \partial M$$

be its completion,

- Symplectic cohomology SH_{*}(M) of M is an invariant of M (up to a contact type symplectomorphism), introduced by Viterbo, is a powerful and well-studied invariant in symplectic topology.
- Cochains are generated by closed orbits of a Hamiltonian motion of a particle in the completion \hat{M} .

イロト イボト イヨト イヨト

 Let (M²ⁿ, λ) be a Liouville domain with λ a primitive of a symplectic form ω = dλ and Z be an outward-pointing Liouville vector field. Let

$$\hat{M} = M \cup_{\partial M} [0; +\infty) imes \partial M$$

be its completion,

- Symplectic cohomology SH_{*}(M) of M is an invariant of M (up to a contact type symplectomorphism), introduced by Viterbo, is a powerful and well-studied invariant in symplectic topology.
- Cochains are generated by closed orbits of a Hamiltonian motion of a particle in the completion \hat{M} .
- The differential d_{SH} counts (with signs) pseudoholomorphic cylinders $u: \mathbb{R} \times S^1 \to \hat{M}$ connecting such orbits.

 Let (M²ⁿ, λ) be a Liouville domain with λ a primitive of a symplectic form ω = dλ and Z be an outward-pointing Liouville vector field. Let

$$\hat{M} = M \cup_{\partial M} [0; +\infty) imes \partial M$$

be its completion,

- Symplectic cohomology SH_{*}(M) of M is an invariant of M (up to a contact type symplectomorphism), introduced by Viterbo, is a powerful and well-studied invariant in symplectic topology.
- Cochains are generated by closed orbits of a Hamiltonian motion of a particle in the completion \hat{M} .
- The differential d_{SH} counts (with signs) pseudoholomorphic cylinders $u \colon \mathbb{R} \times S^1 \to \hat{M}$ connecting such orbits.

Theorem (Viterbo, '99; Abbondandolo-Schwarz '06, Abouzaid '10)

For an oriented, closed smooth manifold Q there is an isomorphism

$$SH_b^*(T^*Q)\cong H_{n-*}(\Lambda Q).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

• Let us instead consider a Hamiltonian motion of $\kappa \ge 1$ identical particles in \hat{M} . Is there a Floer-theoretic invariant of M associated with closed orbits of such motion?

イロト イワト イヨト イヨト

- Let us instead consider a Hamiltonian motion of $\kappa \ge 1$ identical particles in \hat{M} . Is there a Floer-theoretic invariant of M associated with closed orbits of such motion?
- Alternatively, is there a reasonable notion of symplectic cohomology of the κ-th symmetric product Sym^κ(M̂) (which is not even a smooth manifold, in general)?

イロト 不得 トイヨト イヨト

- Let us instead consider a Hamiltonian motion of $\kappa \ge 1$ identical particles in \hat{M} . Is there a Floer-theoretic invariant of M associated with closed orbits of such motion?
- Alternatively, is there a reasonable notion of symplectic cohomology of the κ-th symmetric product Sym^κ(M̂) (which is not even a smooth manifold, in general)?
- Adapting the approach of Colin-Honda-Tian, based on Lipshitz's cylindrical reformulation, we introduced such an invariant. We call it Heegaard Floer symplectic cohomology (HFSH).

イロト 不得 トイヨト イヨト
- Let us instead consider a Hamiltonian motion of $\kappa \ge 1$ identical particles in \hat{M} . Is there a Floer-theoretic invariant of M associated with closed orbits of such motion?
- Alternatively, is there a reasonable notion of symplectic cohomology of the κ -th symmetric product Sym^{κ}(\hat{M}) (which is not even a smooth manifold, in general)?
- Adapting the approach of Colin-Honda-Tian, based on Lipshitz's cylindrical reformulation, we introduced such an invariant. We call it Heegaard Floer symplectic cohomology (HFSH).
- The cochains correspond to tuples of closed Hamiltonian orbits of cumulative time κ .

$$X = (x_1, x_2, x_3)$$

 $G(X) = (12) \in S_3$

イロト 不得 トイヨト イヨト

The Heegaard Floer symplectic cohomology groups $SH^*_{\kappa}(M)$ are well defined and are invariants of the Liouville domain M, independent of all intrinsic choices of the Floer data required for its setup.

イロト イワト イヨト イヨト

C

Theorem (K.-Yuan)

The Heegaard Floer symplectic cohomology groups $SH_{\kappa}^{*}(M)$ are well defined and are invariants of the Liouville domain M, independent of all intrinsic choices of the Floer data required for its setup.

The differential d_{SH_κ} is given by counting curves u = (π, ν): S → ℝ × S¹ × M̂ connecting two orbit tuples x and x' with (S, π) ∈ H^{σ,σ'}_{κ,χ}, where σ and σ' are permutations in 𝔅_κ associated with x and x'.

$$\overline{\sigma}(\mathbf{X}^{4}) = (13)(24)$$

$$\overline{\sigma}_{1}^{a_{1}} \qquad \overline{\sigma}_{2}^{a_{2}} \qquad \overline{$$

イロト 不同 ト イヨト イヨト

The Heegaard Floer symplectic cohomology groups $SH_{\kappa}^{*}(M)$ are well defined and are invariants of the Liouville domain M, independent of all intrinsic choices of the Floer data required for its setup.

- The differential d_{SH_κ} is given by counting curves u = (π, ν): S → ℝ × S¹ × M̂ connecting two orbit tuples x and x' with (S, π) ∈ H^{σ,σ'}_{κ,χ}, where σ and σ' are permutations in 𝔅_κ associated with x and x'.
- Key features:

イロト イボト イヨト イヨト

The Heegaard Floer symplectic cohomology groups $SH_{\kappa}^{*}(M)$ are well defined and are invariants of the Liouville domain M, independent of all intrinsic choices of the Floer data required for its setup.

- The differential d_{SH_κ} is given by counting curves u = (π, ν): S → ℝ × S¹ × M̂ connecting two orbit tuples x and x' with (S, π) ∈ H^{σ,σ'}_{κ,χ}, where σ and σ' are permutations in 𝔅_κ associated with x and x'.
- Key features:
- using different Hamiltonians for different ends to achieve somewhere injectivity;

イロト イヨト イヨト

The Heegaard Floer symplectic cohomology groups $SH^*_{\kappa}(M)$ are well defined and are invariants of the Liouville domain M, independent of all intrinsic choices of the Floer data required for its setup.

- The differential $d_{SH_{\kappa}}$ is given by counting curves $u = (\pi, v)$: $S \to \mathbb{R} \times S^1 \times \hat{M}$ connecting two orbit tuples x and x' with $(S, \pi) \in \mathcal{H}^{\sigma, \sigma'}_{\kappa, \chi}$, where σ and σ' are permutations in \mathfrak{S}_{κ} associated with x and x'.
- Key features:
- using different Hamiltonians for different ends to achieve somewhere injectivity;
- Floer data on branched manifolds associated with Hurwitz spaces.

 To compute SH^κ_κ(T^{*}Q) we provide a Morse-theoretic model, the so-called free multiloop complex.

イロト イワト イヨト イヨト

э

- To compute SH^{*}_κ(T^{*}Q) we provide a Morse-theoretic model, the so-called free multiloop complex.
- We denote via $\Lambda^1_{\kappa}(Q)$ the space of free κ -multiloops of class $W^{1,2}$. The chain complex $CM_*(\Lambda^1_{\kappa}(Q))$ has generators associated with geodesic κ -multiloops.

イロト イヨト イヨト

Morse multiloop complex

 Differential ∂_M counts piecewise (pseudo)-gradient trajectories connecting two geodesic multiloops γ, γ' ∈ Λ¹_κ(Q).

イロト イヨト イヨト イヨト

3

Morse multiloop complex

 Differential ∂_M counts piecewise (pseudo)-gradient trajectories connecting two geodesic multiloops γ, γ' ∈ Λ¹_κ(Q).

Theorem (K.-Yuan)

 $(CM_*(\Lambda^1_{\kappa}(Q)), \partial_M)$ is a chain complex and its homology groups $HM_*(\Lambda^1_{\kappa}(Q))$ are independent of all auxiliary choices.

Roman Krutowski (UCLA)

For Q an orientable manifold with vanishing second Stiefel-Whitney class $w_2(TQ) \in H^2(T^*Q; \mathbb{Z}/2)$ there is a chain map

$$\mathcal{F}\colon SC^*_{\kappa,\textit{unsym}}(T^*Q)\to CM_{\kappa n-*}(\Lambda^1_{\kappa}(Q)),$$

and it induces an isomorphism on the homology

$$SH^*_{\kappa,unsym}(T^*Q) \cong HM_{\kappa n-*}(\Lambda^1_{\kappa}(Q)).$$

イロト イワト イヨト イヨト

Generalized Viterbo's isomorphism

• The chain map \mathcal{F} is given by counting elements of mixed moduli spaces as in the figure and it coincides with Abouzaid's map for $\kappa = 1$.

イロト イボト イヨト イヨト

Thank you for your attention!

<ロト <回ト < 三ト < 三ト = 三 の < ()

CORKS FOR DIFFEOMORPHISMS TERRIN WARREN (UGA) TECH TOPOLOGY 2023

joint work with Slava Krushkal, Anubhav Mukherjee, and Mark Powell

EXOTIC MFLDS

Thm: (Freedman, Donaldson 805) 3 Xo, X, : Smooth Simply connected 4mflds such that

.

 $X_{o} \cong X_{i}$ $X_{o} \not= X_{i}$

EXOTIC MFLDS

EXOTIC DIFFEOS

Thm: (Freedman, Donaldson gos) Thm: (Ruberman '98) 3 Xo, X, : Smooth simply connected <//> 4mflds such that Xo

$$\cong X, \qquad X_0 \neq X, diffeo diffeo diffeo di ffeo di ffe$$

3 X smooth simply connected 4 mflds and $\Psi: X \rightarrow X$ diffeos such that ysid y≠id

EXOTIC MFLDS

homeo

X° ≂ X' X° ÷ X'

Thm: (Freedman, Donaldson SOS) 3 Xo, X, : Smooth Simply connected 4mflds such that

∽95 <u>Thm</u>: (Matveyev; Curtis, Freedman, Hsiang, Stong) Xo, X, smooth, closed, simply connected 4 mflds which are homeo morphic ∃ compact contractible 4mfld CicXi

Such that $X_0 \setminus C_0 \cong X_1 \setminus C_1$ diffeo

EXOTIC DIFFEOS

Thm: (Ruberman '98) $\exists X \text{ smooth simply connected 4 mflds}$ and $\Psi: X \rightarrow X \text{ difficos such that}$ $\Psi \cong \text{id}$ $\Psi \cong \text{id}$ $\Psi \cong \text{id}$

EXOTIC MFLDS

Thm: (Freedman, Donaldson 805) 3 Xo, X, : Smooth simply connected 4mflds such that

 $X_{o} \cong X_{i} \qquad X_{o} \neq X_{i}$

«~~~~»

Q:

EXOTIC DIFFEOS

Thm: (Ruberman '98) $\exists X \text{ smooth simply connected 4 mflds}$ and $\Psi: X \rightarrow X$ differs such that $\Psi \cong \text{id} \qquad \Psi \neq \text{id}_{\text{sm}}$

Thm: (Matveyev; Curtis, Freedman, Hsiang, Stong) Xo, X, smooth, closed, simply connected 4 mflds which are homeo morphic (3 compact contractible 4 mfld Ci \subset Xi Such that $X_0 \setminus C_0 \cong X_1 \setminus C_1$ diffeo

X smooth closed simply connected 4mfld and $\varphi: X \rightarrow X$ diffed which is top iso to id.

? 3 compact, contractible 4mfld C< X Such that $\varphi|_{X\setminus c} \cong id|_{X\setminus c}$

Q:

EXOTIC MFLDS

Thm: (Freedman, Donaldson 805) 3 Xo, X, : Smooth Simply connected 4mflds such that

 $X_{o} \cong X_{i} \qquad X_{o} \neq X_{i}$

EXOTIC DIFFEOS

Thm: (Ruberman '98) $\exists X \text{ smooth simply connected 4 mflds}$ and $\Psi: X \rightarrow X$ diffices such that $\Psi \cong id \qquad \varphi \neq id$ sm

Thm: (Matveyev; Curtis, Freedman, Hsiang, Stong) X_o, X, smooth, closed, simply connected 4 mflds which are homeomorphic (3 compact contractible 4 mfld C_i \subset X_i Such that X_o \setminus C_o \cong X_i \setminus C_i diffeo

X smooth closed simply connected 4mfld and $\varphi: X \rightarrow X$ diffeo which is top iso to id.

? 3 compact, contractible 4mfld C< X Such that $\varphi|_{X\setminus \hat{c}} \cong id|_{X\setminus \hat{c}}$

A: [FMPW] sometimes

- Xo, X, simply connected smooth 4 mflds
- [Wall, Freedman]

 $\langle \cdots \rangle$

h-cobordism

Xo, X, simply connected smooth 4 mflds

[Wall, Freedman]

 $X_{o} \cong X_{i} \iff X_{o} \sim X_{i}$

Pseudoisotopy

X smooth simply connected 4 mfld $\varphi: X \rightarrow X$ diffeo

[Kreck, Perron, Quinn]

$$\varphi \simeq id \Leftrightarrow \varphi \simeq id$$

top $\varphi \simeq id$

Xo, X, simply connected smooth 4 mflds

 $\langle \cdots \rangle$

[Wall, Freedman]

 $X_{o} \cong X_{i} \iff X_{o} \sim X_{i}$

Pseudoisotopy

X Smooth simply connected 4 mfld $\varphi: X \to X$ diffeo correction: Gabai, Gay, Hartman, Krushkal, $\varphi \simeq id \iff \varphi \simeq id$ $prid \mapsto prid$

Xo, X, simply connected smooth 4 mflds

 $\langle \cdots \rangle$

[Wall, Freedman]

 $\chi_{o} \cong \chi_{i} \iff \chi_{o} \sim \chi_{i}$

= corks for mflds proved using h-cobordisms

Pseudoisotopy

X Smooth simply connected 4 mf ld $\varphi: X \to X$ diffeo correction: Gabai, Gay, Hartman, Krushkal, $\varphi \simeq id \iff \varphi \simeq id$ $price id \iff \varphi = id$

Xo, X, simply connected smooth 4 mflds

 $\langle \cdots \rangle$

[Wall, Freedman]

 $X_{o} \stackrel{\simeq}{=} X_{i} \iff X_{o} \stackrel{\sim}{\sim} X_{i}$

= corks for mflds proved using h-cobordisms

Pseudoisotopy

X Smooth simply connected 4 mfld $\varphi: X \to X$ diffeo correction: Gabai, Gay, Hartman, Krushkal, $\varphi \simeq id \iff \varphi \simeq id$ pri.

IDEA: Use pseudoisotopies to prove 3 corks for diffeos

DEF:

A diffeo $\varphi: X \to X$ is smoothly pseudoisotopic to the id if $\exists diffeo \quad \Phi: X \times I \to X \times I$ such that

DEF:

A diffeo $\varphi: X \to X$ is smoothly pseudoisotopic to the id if $\exists diffeo \quad \overline{\Phi}: X \times I \to X \times I$ such that

DEF:

A diffeo $\varphi: X \to X$ is smoothly pseudoisotopic to the id if $\exists diffeo \quad \overline{\Phi}: X \times I \to X \times I$ such that

DEF:

A diffeo $\varphi: X \rightarrow X$ is smoothly pseudoisotopic to the id if $\exists diffeo \quad \overline{\Phi}: X \times I \rightarrow X \times I$ such that

DEF:

A diffeo $\varphi: X \to X$ is smoothly pseudoisotopic to the id if $\exists diffeo \quad \overline{\Phi}: X \times I \to X \times I$ such that

 $\Phi|_{\partial X \times I} = id$, $\Phi|_{X \times \{0\}} = id$, and $\Phi|_{X \times \{1\}} = \varphi$

RMK: if Φ is level preserving then Φ is a smooth isotopy

$$\overline{\Phi}|_{X \times \{t\}} = \varphi_t : X \to X$$

SOME RESULTS

X: Smooth compact simply connected 4 mfld q: diffeomorphism 06 X $\overline{\Phi}$: Pseudoisotopy between φ and id

X: Smooth compact simply connected 4 mfld q: diffeomorphism 06 X $\overline{\Phi}$: Pseudoisotopy between φ and id

Thm: [Krush kal, Mukherjee, Powell, W.] If Φ has "one eye", then \exists compact contractible $C \times I \subset X \times I$ and a smooth isotopy of $\Phi \simeq \Phi'$ such that $\Phi'|_{X \times I \setminus (\hat{C} \times I)} = id|_{X \times I \setminus (\hat{C} \times I)}$

X: Smooth compact simply connected 4 mfld φ: diffeomorphism 06 X Φ: Pseudoisotopy between φ and id

Thm: [krush kal, Mukherjee, Powell, W.]
If
$$\Phi$$
 has "one eye", then \exists compact contractible $C \times I \subset X \times I$
and a smooth isotopy of $\Phi \simeq \Phi'$ such that
 $\Phi'|_{X \times I \setminus (\mathring{C} \times I)} = id|_{X \times I \setminus (\mathring{C} \times I)}$

Cor:

If φ is a diffeo that becomes smoothly isotopic to the identity after a single Stabilization then \exists compact, contractible CCX and a smooth isotopy $\varphi \cong \varphi'$ s.t.

$$\varphi'|_{X\setminus C} = id|_{X\setminus C}$$

THANKS FOR LISTENING!