Parabolic Representations and Signature Jake Rasmussen
joint with N. Du afield
Ryley (70's):
Parabolic $\rho: \pi_{1}\left(s^{3}(K) \rightarrow S L_{2}(\mathbb{R})\right.$
m, l commute
$\rho(m), \rho(l)$ commute
\Rightarrow similtaniously "diagonalczable"

$$
\begin{gathered}
A \rho(m) A^{-1}=\left(\begin{array}{lll}
\mu & 0 \\
0 & \mu^{-1}
\end{array}\right) \text { or }\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
A \rho(l) A^{-1}=\left(\begin{array}{lll}
\lambda & 0 & \text { or }\left(\begin{array}{ll}
1 & 6 \\
0 & 1
\end{array}\right) \\
0 & \lambda^{-1}
\end{array}\right) \text { parabolic }
\end{gathered}
$$

$K=K_{p, 9}$ rational get Riley polynomial

$\rho_{\mathrm{Pl}_{g}}(\mathrm{a})$
$\rho_{\rho_{\rho_{q}}}(0) \leftrightarrow \exists \rho w^{\text {th }} \quad \rho(n)=\binom{1 a}{01}$

Consequences: 1) E_{4} admits a complete hyperbolic str
since $\left.p!\pi_{1}\left(\epsilon_{4_{1}}\right) \rightarrow S L_{2} C_{G}\right) \rightarrow P S L_{2}(d)$ $I_{\text {som }} \mathrm{H}^{3}$
2) Compute A-polynomial of 2-bridge knots
3) Riley's Conjecture: $\rho_{a_{b}}(a)$ has $\geq \frac{1}{2}(\sigma(k) \mid$

Gordon (2016) proved conjecture each root gives

$$
\rho: \pi_{l}\left(E_{K}\right) \rightarrow S L_{2}(\mathbb{R})
$$

(*) signed count (with multiplicity) of real perabolic reps $=-1 / 2 \sigma(K)$
Th m (Dunfield - R) * holds if K is small alternating $k n o t s$
small: no closed incompressible shes

$$
\text { in } E_{K}
$$

(*) Indus for $c(k) \leq 10$, small Monte singer knots
No for $T(p, q) \quad 1>\frac{1}{p}+\frac{1}{q}+\frac{1}{2}$
Character Varieties: $X_{G}(Y)=\left\{\rho^{\prime} \pi_{1}(Y) \rightarrow G\right\} / \sim$

$$
\begin{aligned}
& \rho_{1} \sim \rho_{2} \text { if } \text { tr } \rho_{1}=\operatorname{tr} \rho_{2} \\
& \text { if } \rho_{2}(x)=A \rho_{1}(x) A^{-1 \Rightarrow \rho_{1} \sim \rho_{2}}
\end{aligned}
$$

so \sim includes mod out by conjugation

Ex: $G=S U(Z), y=\tau^{2}$

$$
\pi_{1}\left(\tau^{2}\right)=\mathbb{Z}^{2}=\langle m, l\rangle
$$

$\rho(n), \rho(l)$ commute
can be simultancously decig.

$$
\begin{aligned}
& \rho(m)=\left(\begin{array}{cc}
e^{2 \pi \mu} & 0 \\
0 & e^{-2 \pi \mu}
\end{array}\right) \\
& \rho(\lambda)=\left(\begin{array}{cc}
e^{1 \pi \lambda} & 0 \\
0 & e^{-1 \pi \lambda}
\end{array}\right) \\
& X_{s u(z)}\left(\tau^{2}\right)=s^{\prime} \times s^{1} /(\mu, \lambda) \sim\left(\mu^{-1}, \lambda^{-1}\right) \\
& =\text { "pillow case" orbifold }
\end{aligned}
$$

In $S L_{2}(\mathbb{R}) 3$ types of 1-param subgroups elliptic $\left(\begin{array}{cc}\cos \pi \mu & -\sin \pi \mu \\ \sin \pi \mu & \cos \pi \mu\end{array}\right)$ parabolic $\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$
hypabolic $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$

$$
\begin{aligned}
& i: Y \rightarrow Z \\
& i_{*}: \pi_{G}(Y) \rightarrow \pi_{1}(Z) \\
& 2^{*}: X_{G}(Z) \rightarrow X_{G}(Y) \\
& L^{*}[\rho]=\left[\rho \circ L_{*}\right] \\
& i!\partial E_{K} \rightarrow E_{K} \\
& \imath^{*}: X_{G}\left(E_{K}\right) \rightarrow X_{G}\left(\partial E_{K}\right)=X_{G}\left(\tau^{2}\right)
\end{aligned}
$$

example: $K=T(2,3)$

Lin: $\quad h_{s u(2)}^{R}(\mu)=L_{\mu} \cdot X_{s u(2)}^{i r r}(K)$

Th m (Dunfiè $(d-R)$: if K is a small kort \& Corstark

$$
\begin{aligned}
& h^{K}(\mu)+h^{K}(\mu i)+h^{K}(\mu) \equiv h(K)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{lsom}\left(S^{2}\right) \text { se } \operatorname{lsom}\left(E^{2}\right)^{\operatorname{lsom}\left(\mathbb{H}^{2}\right)}
\end{aligned}
$$

if something in $h_{S_{2}}^{K}(\mu)$ rescupe to ∞ " then get incompressible sfe.

Th I (Lii, Heseld, (Heusen-Ksoll)

$$
h_{\text {Sutr) }}^{K}(\mu)=-1 / 2 \sigma_{e^{2 \pi i^{\prime} \mu}}(K)
$$

$$
h_{50(2)}^{K}\left(c_{2}\right)=-1 / 20(K)
$$

observation: $\Delta_{K}^{\leftarrow}(-1) \neq 0$ Alezandes poly

$$
h_{\mathbb{E}}^{K}(1 / 2)=0
$$

so $\otimes \longleftrightarrow h_{S_{2}(\mathbb{R})}^{k}(1 / 2)$
if $X_{S L_{2}(\mathbb{R})}^{1 / 2(i n)}(K)=\varnothing$, than troe
L-space cojjecture (Boyen-Gordon - Watsen)
Y closed, oneited, privie 3-mfol $b_{1}(Y)=0$

1) $\pi_{c}(\varphi)$ leff ordenceble $\Leftrightarrow 2$) Ynot an L-space (LO) (NL, S) $\operatorname{dmi}\left|\widehat{H F}(y)>\left|H_{i}(Y)\right|\right.$

$$
\begin{aligned}
& \rho \in X_{S L_{2}(\mathbb{R})}^{\mu_{2} \dot{\sim}}(K) \longrightarrow \tilde{\rho}: \pi_{1}\left(\sum_{2}(K)\right) \rightarrow S L_{2}(\mathbb{R}) \\
& e(p)=0 \\
& \downarrow \\
& \hat{\rho}: \pi_{1}\left(\Sigma_{2}(K)\right) \rightarrow S \mathcal{C}_{2} \\
& \downarrow \text { Boyen-Rolfseu-Wiest } \\
& \Sigma_{2}(K) ;<0
\end{aligned}
$$

$\Sigma_{2}(K)$ is NLO if K is alternoting
\Rightarrow Iodds

More generally, expect $*$ to hold wherever $\Sigma_{2}(K)$ is L-space

Culler-Dunfiēld: T_{p-q}

$$
X_{S H_{2}}(K) \text { is }
$$

$$
\begin{aligned}
& \text { max height } \geq g(\tau(p q))-1=p q-q-p \\
& \text { is } \frac{p q-q-p}{p^{q}}>\frac{1}{2} \Leftrightarrow 1>\frac{1}{2}+\frac{1}{p}-\frac{1}{q}
\end{aligned}
$$

Prop: $h(k) \equiv-1 / 2 \sigma(k) \equiv \operatorname{deg} \operatorname{tr}_{\mu}:\left(X_{s_{c_{2}}(R)}(k) \rightarrow \mathbb{P}^{\prime}\right)$

$$
(-1)^{h(k)}=\operatorname{sign} \Delta_{k}(-1)
$$

