# On Contact Invariants in Bordered Floer Homology

Konstantinos Varvarezos<sup>1</sup> (joint with Hyunki Min<sup>1</sup>)

<sup>1</sup>University of California, Los Angeles

Tech Topology Conference December 2024

Konstantinos Varvarezos (joint with Hyunki Min)

University of California, Los Angeles

< D > < A > < B >

Let Y be a 3-manifold, and let  $\xi$  be a contact structure on Y. • Y closed  $\rightsquigarrow c(\xi) \in \widehat{HF}(-Y)$  [OS05]



University of California. Los Angeles

Let Y be a 3-manifold, and let  $\xi$  be a contact structure on Y.

- Y closed  $\rightsquigarrow c(\xi) \in \widehat{HF}(-Y)$  [OS05]
- $\partial Y$  sutured  $\rightsquigarrow EH(\xi) \in SFH(-Y)$  [HKM09]

Konstantinos Varvarezos (joint with Hyunki Min)

University of California, Los Angeles

→ < Ξ →</p>

Let Y be a 3-manifold, and let  $\xi$  be a contact structure on Y.

- Y closed  $\rightsquigarrow c(\xi) \in \widehat{HF}(-Y)$  [OS05]
- $\partial Y$  sutured  $\rightsquigarrow EH(\xi) \in SFH(-Y)$  [HKM09]

• 
$$\partial Y$$
 parametrized  $\rightsquigarrow c_A(\xi) \in \widetilde{CFA}(-Y)$   
 $\rightsquigarrow c_D(\xi) \in \widetilde{CFD}(-Y)$  [AFH+23]

Konstantinos Varvarezos (joint with Hyunki Min)

University of California, Los Angeles

→ < Ξ →</p>

Let Y be a 3-manifold, and let  $\xi$  be a contact structure on Y.

- Y closed  $\rightsquigarrow c(\xi) \in \widehat{HF}(-Y)$  [OS05]
- $\partial Y$  sutured  $\rightsquigarrow EH(\xi) \in SFH(-Y)$  [HKM09]

• 
$$\partial Y$$
 parametrized  $\rightsquigarrow c_A(\xi) \in \widetilde{CFA}(-Y)$   
 $\rightsquigarrow c_D(\xi) \in \widetilde{CFD}(-Y)$  [AFH+23]

### $\xi$ overtwisted $\Rightarrow$ invariants vanish

Konstantinos Varvarezos (joint with Hyunki Min)

University of California, Los Angeles

/⊒ ► < ∃ ►

## Bordered Sutured Contact Invariants

### Theorem 1 (Min–V.)

Let  $(Y, \Gamma, \mathcal{F})$  be a bordered sutured manifold and  $\xi$  a contact structure on the sutured manifold  $(Y, \Gamma \cup \Gamma_I)$  where  $\Gamma_I$  is an elementary dividing set for  $\mathcal{F}$ . There exist contact invariants:  $c_A(\xi) \in \widehat{BSA}(-Y)$  and  $c_D(\xi) \in \widehat{BSD}(\mathcal{TW}^+ \cup -Y)$ 

(More generally, bimodule invariants:  $c_{AA}(\xi) \in \widehat{BSAA}(-Y)$ , etc.)

Konstantinos Varvarezos (joint with Hyunki Min)

University of California, Los Angeles

## Bordered Sutured Contact Invariants

### Theorem 1 (Min–V.)

Let  $(Y, \Gamma, \mathcal{F})$  be a bordered sutured manifold and  $\xi$  a contact structure on the sutured manifold  $(Y, \Gamma \cup \Gamma_I)$  where  $\Gamma_I$  is an elementary dividing set for  $\mathcal{F}$ . There exist contact invariants:  $c_A(\xi) \in \widehat{BSA}(-Y)$  and  $c_D(\xi) \in \widehat{BSD}(\mathcal{TW}^+ \cup -Y)$ 

(More generally, bimodule invariants:  $c_{AA}(\xi) \in \widehat{BSAA}(-Y)$ , etc.)



Konstantinos Varvarezos (joint with Hyunki Min)

University of California, Los Angeles

## Properties

## • Pairing: $[c_A(\xi_1) \boxtimes c_D(\xi_2)] = EH(\xi_1 \cup \xi_2)$

Konstantinos Varvarezos (joint with Hyunki Min)

University of California, Los Angeles

< ロ > < 回 > < 回 > < 回 > < 回 >

## Properties

- Pairing:  $[c_A(\xi_1) \boxtimes c_D(\xi_2)] = EH(\xi_1 \cup \xi_2)$
- Gluing a contact  $\Sigma_{\bullet} \times [0,1]$  corresponds to  $m_2$  in  $\widehat{BSA}$  $c_A(\xi \cup \xi_{a(\rho)}) = m_2(c_A(\xi), a(\rho))$

Konstantinos Varvarezos (joint with Hyunki Min)

University of California, Los Angeles

< 同 ▶ < 三 ▶

## Properties

- Pairing:  $[c_A(\xi_1) \boxtimes c_D(\xi_2)] = EH(\xi_1 \cup \xi_2)$
- Gluing a contact  $\Sigma_{\bullet} \times [0, 1]$  corresponds to  $m_2$  in  $\widehat{BSA}$  $c_A(\xi \cup \xi_{a(\rho)}) = m_2(c_A(\xi), a(\rho))$



(ロ) (四) (三) (三) (三) (300)

Konstantinos Varvarezos (joint with Hyunki Min)

University of California, Los Angeles

## Computations

•  $c_A$  and  $c_D$  are derived from EH



Konstantinos Varvarezos (joint with Hyunki Min)

On Contact Invariants in Bordered Floer Homology

University of California, Los Angeles

## Computations

- $c_A$  and  $c_D$  are derived from EH
- For torus boundary, amenable to immersed curve technique of [HRW24]



Konstantinos Varvarezos (joint with Hyunki Min)

University of California, Los Angeles

## Applications

• Positive contact surgery formula for knots in L-spaces

Konstantinos Varvarezos (joint with Hyunki Min)

University of California, Los Angeles

イロト イボト イヨト イヨト

# Applications

- Positive contact surgery formula for knots in L-spaces
- Classification of tight contact structures on torus knot surgeries

University of California Los Angeles

< E

Konstantinos Varvarezos (joint with Hyunki Min)

# Applications

- Positive contact surgery formula for knots in L-spaces
- Classification of tight contact structures on torus knot surgeries
- Invariants of Legendrian satellite knots?

# Thank you!

Konstantinos Varvarezos (joint with Hyunki Min)

University of California Los Angeles

æ

(a)

# Bibliography I

- Akram Alishahi, Viktória Földvári, Kristen Hendricks, Joan Licata, Ina Petkova, and Vera Vértesi. Bordered Floer homology and contact structures. Forum Math. Sigma, 11:Paper No. e30, 44, 2023.
- Ko Honda, William H. Kazez, and Gordana Matić. The contact invariant in sutured Floer homology. *Invent. Math.*, 176(3):637–676, 2009.

Konstantinos Varvarezos (joint with Hyunki Min)

University of California, Los Angeles

# Bibliography II

Jonathan Hanselman, Jacob Rasmussen, and Liam Watson.

Bordered Floer homology for manifolds with torus boundary via immersed curves.

J. Amer. Math. Soc., 37(2):391–498, 2024.

Peter Ozsváth and Zoltán Szabó. Heegaard Floer homology and contact structures. Duke Math. J., 129(1):39–61, 2005.

Konstantinos Varvarezos (joint with Hyunki Min)

University of California, Los Angeles

### Transverse invariant as Khovanov skein spectrum at its extreme Alexander grading

#### Nilangshu Bhattacharyya, Adithyan Pandikkadan

Louisiana State University

December 7, 2024

#### LSU | College of Science Department of Mathematics

3

< ロ > < 同 > < 回 > < 回 >

### Tech Topology Conference

< □ > < □ > < □ > < □ > < □ >

### Here $\boldsymbol{L}$ is a closed braid representative of a transverse knot

$$G = \mathbb{Z}, \mathbb{Z}_2$$
$$= \psi_{Sk}(L) \in G \cong \widetilde{H}_{Sk}^{0, sl(L), -b(L)}(L; G) \longrightarrow \widetilde{H}_{Kh}^{0, sl(L)}(L; G) \ni \psi_{Kh}(L)$$

э.

< □ > < □ > < □ > < □ > < □ >

$$\mathcal{X}_{Kh}^{sl(L)}(L)$$

$$\boxed{G = \mathbb{Z}, \mathbb{Z}_{2}}$$

$$1 = \psi_{Sk}(L) \in G \cong \widetilde{H}_{Sk}^{0,sl(L),-b(L)}(L;G)$$

$$\widetilde{H}_{Kh}^{0,sl(L)}(L;G) \xrightarrow{\widetilde{H}_{Kh}^{0,sl(L)}(L;G)} \xrightarrow{\widetilde{H}_{Kh}^{0,$$





∃ 990

イロト イヨト イヨト イヨト



э

< □ > < 同 > < 回 > < Ξ > < Ξ



A D > A B > A B > A









## Khovanov skein homology



$$\mathscr{X}^{j}_{Kh} \to \mathscr{X}^{j,k_{min}(j)}_{Sk}$$

$$\partial_{Kh} = \partial_{Kh,0} + \partial_{Kh,-2} \qquad \partial_{Sk} = \partial_{Kh,0}$$



$$\mathscr{X}^{j}_{Kh} \to \mathscr{X}^{j,k_{min}(j)}_{Sk}$$

$$\partial_{Kh} = \partial_{Kh,0} + \partial_{Kh,-2} \qquad \partial_{Sk} = \partial_{Kh,0}$$



### Result:

### Theorem (with Adithyan Pandikkadan)

For an oriented closed braid diagram  $B_L \subset A$  there is a map

$$\Psi^{j}(B_{L}):\mathscr{X}^{j}_{Kh}(B_{L})\to\mathscr{X}^{j,f_{min}(B_{L},j)}_{Sk}(B_{L}),$$

2

< □ > < □ > < □ > < □ > < □ >
#### Theorem (with Adithyan Pandikkadan)

For an oriented closed braid diagram  $B_L \subset A$  there is a map

$$\Psi^{j}(B_{L}): \mathscr{X}^{j}_{Kh}(B_{L}) \to \mathscr{X}^{j,f_{\min}(B_{L},j)}_{Sk}(B_{L}),$$

such that the induced map on the reduced cohomology

$$\Psi^{j}(B_{L})^{*}: \widetilde{H}^{i}\left(\mathscr{X}^{j,f_{\min}(B_{L},j)}_{Sk}(B_{L});G\right) \to \widetilde{H}^{i}\left(\mathscr{X}^{j}_{Kh}(B_{L});G\right)$$

æ

• • • • • • • • • • •

#### Theorem (with Adithyan Pandikkadan)

For an oriented closed braid diagram  $B_L \subset A$  there is a map

$$\Psi^{j}(B_{L}): \mathscr{X}^{j}_{Kh}(B_{L}) \to \mathscr{X}^{j,f_{\min}(B_{L},j)}_{Sk}(B_{L}),$$

such that the induced map on the reduced cohomology

$$\Psi^{j}(B_{L})^{*}: \widetilde{H}^{i}\left(\mathscr{X}^{j,f_{\min}(B_{L},j)}_{Sk}(B_{L});G\right) \to \widetilde{H}^{i}\left(\mathscr{X}^{j}_{Kh}(B_{L});G\right)$$

is the same map as  $i^*: H^{i,j,f_{min}(B_L,j)}_{Sk}(L;G) \to H^{i,j}_{Kh}(L;G)$  for the embedding  $L \subset A \times I \subset S^3$ , for  $G = \mathbb{Z}_2$  or  $\mathbb{Z}$ .

• • • • • • • • • • • •

#### Theorem (with Adithyan Pandikkadan)

For an oriented closed braid diagram  $B_L \subset A$  there is a map

$$\Psi^{j}(B_{L}): \mathscr{X}^{j}_{Kh}(B_{L}) \to \mathscr{X}^{j,f_{\min}(B_{L},j)}_{Sk}(B_{L}),$$

such that the induced map on the reduced cohomology

$$\Psi^{j}(B_{L})^{*}: \widetilde{H}^{i}\left(\mathscr{X}^{j,f_{\min}(B_{L},j)}_{Sk}(B_{L});G\right) \to \widetilde{H}^{i}\left(\mathscr{X}^{j}_{Kh}(B_{L});G\right)$$

is the same map as  $i^*: H^{i,j,f_{min}(B_L,j)}_{Sk}(L;G) \to H^{i,j}_{Kh}(L;G)$  for the embedding  $L \subset A \times I \subset S^3$ , for  $G = \mathbb{Z}_2$  or  $\mathbb{Z}$ . In particular, when j = sl(L), we get  $\Psi^{sl(L)}: \mathscr{X}^{sl(L)}_{Kh}(B_L) \to \mathscr{X}^{sl(L),-b(B_L)}_{Sk}(B_L) = \mathbb{S}$ 

Nilangshu Bhattacharyya, Adithyan Pandikkadan (LSU

= nar

イロト イポト イヨト イヨト

#### Theorem (with Adithyan Pandikkadan)

For an oriented closed braid diagram  $B_L \subset A$  there is a map

$$\Psi^{j}(B_{L}): \mathscr{X}^{j}_{Kh}(B_{L}) \to \mathscr{X}^{j,f_{\min}(B_{L},j)}_{Sk}(B_{L}),$$

such that the induced map on the reduced cohomology

$$\Psi^{j}(B_{L})^{*}:\widetilde{H}^{i}\left(\mathscr{X}^{j,f_{min}(B_{L},j)}_{Sk}(B_{L});G\right)\to\widetilde{H}^{i}\left(\mathscr{X}^{j}_{Kh}(B_{L});G\right)$$

is the same map as  $i^*: H^{i,j,f_{min}(B_L,j)}_{Sk}(L;G) \to H^{i,j}_{Kh}(L;G)$  for the embedding  $L \subset A \times I \subset S^3$ , for  $G = \mathbb{Z}_2$  or  $\mathbb{Z}$ . In particular, when j = sl(L), we get  $\Psi^{sl(L)}: \mathscr{X}^{sl(L)}_{Kh}(B_L) \to \mathscr{X}^{sl(L),-b(B_L)}_{Sk}(B_L) = \mathbb{S}$  such that the induced map  $\Psi^{sl(L)}(B_L)^*: G \cong H^{0,sl(L),-b(B_L)}_{Sk}(L;G) \to H^{0,sl(L)}_{Kh}(L;G)$  satisfies  $\Psi^{sl(L)}(B_L)^*(\Psi_{Sk}(B_L)) = \Psi_{Kh}(B_L)$ , for  $G = \mathbb{Z}_2$  or  $\mathbb{Z}$ .

= nar

< ロ > < 同 > < 回 > < 回 >

## Transverse invariant



• • • • • • • • • • • •

Associated to a braid diagram K is a map

$$\Psi(K):\mathscr{X}^{sl(K)}_{Kh}(K)\to\mathbb{S},$$

$$\Psi(K)^*:\mathbb{Z}=\widetilde{H}^0(\mathbb{S})\to\widetilde{H}^0\left(\mathscr{X}^{sl(K)}_{Kh}(K)\right)\cong H^{0,sl(K)}_{Kh}(K)$$

sends a generator of  $\mathbb{Z}$  to the graded Plamenevskaya invariant  $[\psi_{Kh}(K)]$ .

∃ 990

イロト イヨト イヨト

Associated to a braid diagram K is a map

$$\Psi(K):\mathscr{X}^{sl(K)}_{Kh}(K)\to\mathbb{S},$$

$$\Psi(K)^*:\mathbb{Z}=\widetilde{H}^0(\mathbb{S})\to\widetilde{H}^0\left(\mathscr{X}^{sl(K)}_{Kh}(K)\right)\cong H^{0,sl(K)}_{Kh}(K)$$

sends a generator of  $\mathbb{Z}$  to the graded Plamenevskaya invariant  $[\psi_{Kh}(K)]$ . If K' is another braid diagram representing the same transverse link type then there is a commutative diagram

$$\begin{array}{l} \mathscr{X}_{Kh}^{sl(K)}(K) \xrightarrow{\Psi(K)} & \mathbb{S} \\ \Phi \big\downarrow \simeq & \downarrow \\ \mathscr{X}_{Kh}^{sl(K)}(K') \xrightarrow{\Psi(K')} & \mathbb{S}. \end{array}$$

(Here,  $\Phi$  is the homotopy equivalence induced by a sequence of transverse Markov moves connecting K and K', and the map  $\mathbb{S} \to \mathbb{S}$  is a self-homotopy equivalence of the sphere spectrum.)

< ロ > < 同 > < 回 > < 回 >

= nar

# Thank you!

= 990

< □ > < □ > < □ > < □ > < □ >

# Urysohn I-Width and Covers

Arka Banerjee Postdoc., Auburn U.

Joint work (in progress) with

- Hannah Albert (Auburn U.) - Panos Papasoglu (Oxford U.)

The metric space is 'close' to being a k-démensional simplicial complex.

A metric space has a ~ 'Small' Urysohn K-width ~

Informally,

A metric space has a  $\sim$  'Small' Unysohn k-width  $\sim$ The metric space Informally is 'close' to being a k-démensional simplicial complex. Formally, Urysohn k-width of a metric space X, denoted by UW\_K(X), is < E where Y is a if there exists a continuous ment f: X->Y, K-dimensional simplicial complex and diam (f'(y)) < E for all yEY.

A metric space has a 'Small' Urysohn k-width The metric space Informally  $\approx$ is 'close' to being a k-démensional simplicial complex. Formally, Urysohn k-width of a metric space X, denoted by UW\_K(X), is < E if there exists a continuous ment f: X->Y, where Y is a K-dimensional simplicial complex and deam (f'(y)) < E for all yEY.  $\bigcirc$ Bigger UW, Smaller UW,

A metric space has a 'Small' Urysohn k-width The metric space Informally  $\approx$ is 'close' to being a k-démensional Simplicial complex. Formally, Urysohn k-width of a metric space X, denoted by UW\_K(X), is < E if there exists a continuous ment f: X->Y, where Y is a K-dimensional simplicial complex and deam (f'(y)) < E for all YEY.  $\bigcirc \neg \bigcirc \lor (\bigcirc )$ Bigger UW1 Smaller UW,

# Example: UWO(X) = diam(X) if X is connected.



Example: UWO(X) = diam(X) if X is connected.

 $UW_0\left(\begin{array}{c} \hline r \\ \hline \end{array}\right) = TTY = \frac{T}{\sqrt{1}} = \frac{T}{\sqrt{Scalaz curvature}}$ 

Example: UWO(X) = diam(X) if X is connected.

 $UW_0\left(\begin{array}{c} \hline r \\ \hline \end{array}\right) = TTY = \frac{T}{\sqrt{\frac{1}{m^2}}} = \frac{T}{\sqrt{\frac{1}{Scalarzcurvature}}}$ 

Moral: higher positive Scalar curvature => smaller UWO for 2-sphere

Example: UWO(X) = diam(X) if X is connected.

 $UW_0\left(\begin{array}{c} \hline r \\ \hline \end{array}\right) = \pi r = \frac{\pi}{\sqrt{\frac{1}{r^2}}} = \frac{\pi}{\sqrt{\frac{1}{scalarzcurvaturr}}}$ 

Moral: higher positive Scalar curvature => smaller UWO for 2-sphere.

Conjecture (Gromov): If the sealar curvature of a complete Riemannian manifold  $M^n$ is 7T>0. Then  $UW_{n-2}(M^n) \leq \frac{Cn}{T}$ for some demensional constant Cn.

Question: Let M<sup>n</sup> be a Riemannian n-manifold. and  $UW_1(\tilde{M}^n) \leq 1$ . Does that imply  $UW_1(\tilde{M}^n) \leq c_n$  for some dimensional const  $c_n$ ?

Ouestion: Let M<sup>n</sup> be a Riemannian n-manifold. and  $UW_1(\tilde{M}^n) \leq 1$ . Does that imply  $UW_1(\tilde{M}^n) \leq c_n$  for some dimensional const  $c_n$ ? Enemy Scenario: For any R70, there is a Riemannian surface MR and a cour  $M_R$  of  $M_R$  such that  $VW_1(M_R) \leq 1$  and UWICMR)ZR. (Alport-Balitskiy-Guth).

Question: Let M<sup>n</sup> be a Riemannian n-manifold and  $UW_1(\tilde{M}^n) \leq 1$ . Does that imply  $UW_1(\tilde{M}^n) \leq c_n$  for some dimensional const  $c_n$ ?

| Question: Let $M^n$ be a Riemannian n-manifold.<br>and $UW_1(\widetilde{M}^n) \leq 1$ . Does that imply<br>$UW_1(M^n) \leq c_n$ for some dimensional const $c_n$ ? |      |                  |        |               |             |      |       |     |              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------|--------|---------------|-------------|------|-------|-----|--------------|--|
| Theor                                                                                                                                                              | em ( | Alport           | -B-G   | Papaso<br>yes | glu)<br>for | n=2  | and   | C2. |              |  |
|                                                                                                                                                                    | If   | the $o$<br>n = 4 | unswoz | is no         | o for       | Some | n, ît | โร  | ηο<br>ηο<br> |  |
|                                                                                                                                                                    |      |                  |        |               |             |      |       |     |              |  |
|                                                                                                                                                                    |      |                  |        |               |             |      |       |     |              |  |
|                                                                                                                                                                    |      |                  |        |               |             |      |       |     |              |  |
|                                                                                                                                                                    |      |                  |        |               |             |      |       |     |              |  |



Sectorial Decompositions of Symmetric Products of Surfaces and Homological Mirror Symmetry

> Xinle (Clair) Dai Harvard University

2024 Tech Topology Conference, Georgia Institute of Technology

December, 2024

Xinle (Clair) Dai (Harvard)

2

# Liouville Sectors: definition and examples

# Definition (Ganatra-Pardon-Shende)

Let X be a Liouville manifold with boundaries, we say X is a *Liouville* sector iff there exists a function  $I : \partial X \to \mathbb{R}$  such that it satisfies the following conditions:

- *I* is *linear at infinity*, meaning *ZI* = *I* outside a compact set, where *Z* denotes the Liouville vector field.
- *dI*|<sub>char.fol.</sub> > 0, where the characteristic foliation C of ∂X is oriented so that ω(N, C) > 0 for any inward pointing vector N.

→ 御 ▶ ★ 注 ▶ ★ 注 ▶ → 注 →

# Liouville Sectors: definition and examples

# Definition (Ganatra-Pardon-Shende)

Let X be a Liouville manifold with boundaries, we say X is a *Liouville* sector iff there exists a function  $I : \partial X \to \mathbb{R}$  such that it satisfies the following conditions:

- *I* is *linear at infinity*, meaning *ZI* = *I* outside a compact set, where *Z* denotes the Liouville vector field.
- dl|<sub>char.fol.</sub> > 0, where the characteristic foliation C of ∂X is oriented so that ω(N, C) > 0 for any inward pointing vector N.

#### Example

- Any  $T^*Q$  for any compact manifold-with-boundary Q.
- A punctured bordered Riemann surface S is a Liouville sector if and only if every component of ∂S is homeomorphic to ℝ (i.e., none is homeomorphic to S<sup>1</sup>).

э.

#### Definition (Quadratic Stein structure)

Let  $\Sigma$  be a Riemann surface and  $\varphi$  a proper plurisubharmonic function on  $\Sigma$  (i.e.,  $\varphi(z) \to \infty$  as  $z \to +\infty$ , and  $dd^c \varphi > 0$ ).

Let  $\{s_i\}_{i \in I}$  denote the set of saddles of  $\varphi$ , and let  $\mathcal{N}(\gamma_i)$  denote the tubular neighborhood of the stable manifold  $\gamma_i$  of the saddle  $s_i$ .

We say  $(\Sigma, \varphi)$  is a Riemann surface with a *quadratic Stein structure* if  $\varphi|_{\mathcal{N}(\gamma_i)}$  is quadratic.

(1日) (1日) (日) (日) (日)

#### Definition (Quadratic Stein structure)

Let  $\Sigma$  be a Riemann surface and  $\varphi$  a proper plurisubharmonic function on  $\Sigma$  (i.e.,  $\varphi(z) \to \infty$  as  $z \to +\infty$ , and  $dd^c \varphi > 0$ ).

Let  $\{s_i\}_{i \in I}$  denote the set of saddles of  $\varphi$ , and let  $\mathcal{N}(\gamma_i)$  denote the tubular neighborhood of the stable manifold  $\gamma_i$  of the saddle  $s_i$ .

We say  $(\Sigma, \varphi)$  is a Riemann surface with a *quadratic Stein structure* if  $\varphi|_{\mathcal{N}(\gamma_i)}$  is quadratic.

#### Proposition

For any topological surface  $\Sigma$  with disjoint proper embedded arcs  $\gamma_i i \in I$ , we can build a quadratic Stein structure with one saddle  $s_i$  along each  $\gamma_i$ and one minimum  $m_j$  on each component of  $\Sigma \setminus \bigcup i \in I\gamma_i$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

# Theorem (D., in progress)

In this setting, the quadratic Stein structure determines a sectorial decomposition for  $\operatorname{Sym}^2(\Sigma) = \bigcup_{H_{s_i,m_j}} U_{m_i,m_k}$ , where  $U_{m_i,m_k}$  (with  $i \leq k$ ) are Liouville sectors with corners, and  $H_{s_i,m_j}$  are smooth hypersurfaces separating these sectors.

→ ■ ▶ ★ ヨ ▶ ★ ヨ ▶ ● ヨ ● の Q @

## Theorem (D., in progress)

In this setting, the quadratic Stein structure determines a sectorial decomposition for  $\operatorname{Sym}^2(\Sigma) = \bigcup_{H_{s_i,m_j}} U_{m_i,m_k}$ , where  $U_{m_i,m_k}$  (with  $i \leq k$ ) are Liouville sectors with corners, and  $H_{s_i,m_j}$  are smooth hypersurfaces separating these sectors.

#### Corollary

For a 2-dimensional Liouville sector X,  $Sym^2(X)$  is deformation equivalent to a Liouville sector, which have corners if  $\partial X$  has more than one component.

(1日) (1日) (日) (日) (日)

# Theorem (D., in progress)

In this setting, the quadratic Stein structure determines a sectorial decomposition for  $\operatorname{Sym}^2(\Sigma) = \bigcup_{H_{s_i,m_j}} U_{m_i,m_k}$ , where  $U_{m_i,m_k}$  (with  $i \leq k$ ) are Liouville sectors with corners, and  $H_{s_i,m_j}$  are smooth hypersurfaces separating these sectors.

#### Corollary

For a 2-dimensional Liouville sector X,  $Sym^2(X)$  is deformation equivalent to a Liouville sector, which have corners if  $\partial X$  has more than one component.

This follows from the fact that every Weinstein sector of complex dimension 1 is deformationally equivalent to an open subset of a Stein Riemann surface.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シのへで

# Application to Homological Mirror Symmetry

For  $\Sigma := \mathbb{P}^1 - 4$  points, Sym<sup>2</sup>( $\Sigma$ ) is a two-dimensional pair of pants.



2

# Application to Homological Mirror Symmetry

For  $\Sigma := \mathbb{P}^1 - 4$ points, Sym<sup>2</sup>( $\Sigma$ ) is a two-dimensional pair of pants.



- The top square is commutative as a push-out diagram by Ganatra-Pardon-Shende.
- All the vertical arrows are isomorphisms except the last one by Homological Mirror Symmetry.
- The square on the side is commutative by Gammage-Shende.
- We can get the Mirror Symmetry of

Sym<sup>2</sup>( $\Sigma$ ) and {*xyz* = 0} as a corollary of the main theorem.

ъ

# Application to Homological Mirror Symmetry $\Sigma = \mathbb{P}^1 - 4 \mathsf{points}$



(日)

÷.

# Application to Homological Mirror Symmetry $\Sigma = \mathbb{P}^1 - 4 \mathsf{points}$



#### Remark

The HMS of Sym<sup>2</sup>( $\Sigma$ ) and {xyz = 0} was proved by Lekili-Polishchuk. However, the sectorial decomposition we get for Sym<sup>2</sup>( $\Sigma$ ) matches a geometric decomposition of its mirror, providing a geometric interpretation of the HMS.

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

3

# Thank you!

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)


## A Slice-Bennequin Inequality for $\mathbb{RP}^3$ *s*-invariant

Ivan So

Michigan State University



$$sl(K) \leq 2g_4(K) - 1$$

$$sl(K) \leq 2g_4(K) - 1$$

• Plamenevskaya (2004): In  $(S^3, \xi_{std})$ ,  $sl(K) \leq 2\tau(K) - 1$ .

$$sl(K) \leq 2g_4(K) - 1$$

- Plamenevskaya (2004): In  $(S^3, \xi_{std})$ ,  $sl(K) \leq 2\tau(K) 1$ .
- Plamenevskaya (2006), Shumakovitch (2007): In  $(S^3, \xi_{std})$ ,  $sl(K) \leq s(K) 1$ .

$$sl(K) \leq 2g_4(K) - 1$$

- Plamenevskaya (2004): In  $(S^3, \xi_{std})$ ,  $sl(K) \leq 2\tau(K) 1$ .
- Plamenevskaya (2006), Shumakovitch (2007): In  $(S^3, \xi_{std})$ ,  $sl(K) \leq s(K) 1$ .
- Hedden (2008):  $\forall$  oriented  $(M,\xi)$  with  $c_{\text{O-Sz}}(\xi) \neq 0$ ,  $sl(K) \leq 2\tau_{\xi}(K) 1$ .

$$sl(K) \leq 2g_4(K) - 1$$

- Plamenevskaya (2004): In  $(S^3, \xi_{std})$ ,  $sl(K) \leq 2\tau(K) 1$ .
- Plamenevskaya (2006), Shumakovitch (2007): In  $(S^3, \xi_{std})$ ,  $sl(K) \leq s(K) 1$ .
- Hedden (2008):  $\forall$  oriented  $(M, \xi)$  with  $c_{\text{O-Sz}}(\xi) \neq 0$ ,  $sl(K) \leq 2\tau_{\xi}(K) 1$ .
- And many more...





• Asaeda-Przytycki-Sikora (2004):  $\exists$  Khovanov homology  $Kh_{\mathbb{RP}^3}$  from  $\mathbb{RP}^2$  diagrams.



- Asaeda-Przytycki-Sikora (2004):  $\exists$  Khovanov homology  $Kh_{\mathbb{RP}^3}$  from  $\mathbb{RP}^2$  diagrams.
- Manolescu-Willis (2023):  $\exists Kh'_{\mathbb{RP}^3}$  s.t. rk  $Kh'_{\mathbb{RP}^3}(L) = 2^{|L|}$ .



- Asaeda-Przytycki-Sikora (2004):  $\exists$  Khovanov homology  $Kh_{\mathbb{RP}^3}$  from  $\mathbb{RP}^2$  diagrams.
- Manolescu-Willis (2023):  $\exists \ Kh'_{\mathbb{RP}^3}$  s.t. rk  $Kh'_{\mathbb{RP}^3}(L) = 2^{|L|}$ .
  - $\Rightarrow$  Max and min filtration levels of a knot  $\mathcal{K} \subset \mathbb{RP}^3$  defines  $s_{\mathbb{RP}^3}(\mathcal{K})$ .

### Theorem (S.)

Suppose  $K\subset\mathbb{RP}^3$  is a transverse knot in  $(\mathbb{RP}^3,\xi_{\mathsf{std}})$  with [K]=0, then

### Theorem (S.)

Suppose  $K \subset \mathbb{RP}^3$  is a transverse knot in  $(\mathbb{RP}^3, \xi_{std})$  with [K] = 0, then

 $sl_{\mathbb{RP}^3}(K) \leq s_{\mathbb{RP}^3}(K) - 1.$ 

### Theorem (S.)

Suppose  $K\subset \mathbb{RP}^3$  is a transverse knot in  $(\mathbb{RP}^3,\xi_{\mathsf{std}})$  with [K]=0, then

 $sl_{\mathbb{RP}^3}(K) \leq s_{\mathbb{RP}^3}(K) - 1.$ 

#### Theorem (S.)

Suppose  $K\subset \mathbb{RP}^3$  is a transverse knot in  $(\mathbb{RP}^3,\xi_{\mathsf{std}})$  with [K]=0, then

 $\mathit{sl}_{\mathbb{RP}^3}({\mathcal K}) \leq {\color{black}{s}_{\mathbb{RP}^3}({\mathcal K})} - 1.$ 

Proof idea: Imitate that of Shumakovitch

•  $s_{\mathbb{RP}^3}(K) - 1 \ge w(K) - r(K)$ ,  $r(K) = #{Seifert circles}.$ 

#### Theorem (S.)

Suppose  $K\subset \mathbb{RP}^3$  is a transverse knot in  $(\mathbb{RP}^3,\xi_{\mathsf{std}})$  with [K]=0, then

 $\mathit{sl}_{\mathbb{RP}^3}({\mathcal K}) \leq {\color{black}{s}_{\mathbb{RP}^3}({\mathcal K})} - 1.$ 

- $s_{\mathbb{RP}^3}(K) 1 \ge w(K) r(K)$ ,  $r(K) = \#{\text{Seifert circles}}$ .
- $\mathbb{RP}^2$  diagram  $\rightarrow$  Kirby diagram.

### Theorem (S.)

Suppose  $K\subset \mathbb{RP}^3$  is a transverse knot in  $(\mathbb{RP}^3,\xi_{\mathsf{std}})$  with [K]=0, then

 $\mathit{sl}_{\mathbb{RP}^3}(K) \leq \mathit{s}_{\mathbb{RP}^3}(K) - 1.$ 

- $s_{\mathbb{RP}^3}(K) 1 \ge w(K) r(K)$ ,  $r(K) = #{Seifert circles}$ .
- $\mathbb{RP}^2$  diagram  $\rightarrow$  Kirby diagram.
- Durst-Kegel's (2016): computation of  $sI_{\mathbb{RP}^3}$ .

### Theorem (S.)

Suppose  $K\subset \mathbb{RP}^3$  is a transverse knot in  $(\mathbb{RP}^3,\xi_{\mathsf{std}})$  with [K]=0, then

 $\mathit{sl}_{\mathbb{RP}^3}(K) \leq \mathit{s}_{\mathbb{RP}^3}(K) - 1.$ 

- $s_{\mathbb{RP}^3}(K) 1 \ge w(K) r(K)$ ,  $r(K) = #{Seifert circles}$ .
- $\mathbb{RP}^2$  diagram  $\rightarrow$  Kirby diagram.
- Durst-Kegel's (2016): computation of  $sI_{\mathbb{RP}^3}$ .
- Combine the computations.

#### Corollary 1 (Milnor conjecture for transverse fibered knot)

Let K be a null-homologous, fibered transverse knot in  $(\mathbb{RP}^3, \xi_{std})$ , min. genus  $\Sigma$  with  $\partial \Sigma = K$ . If  $\xi_{std}$  is supported by  $(K, \Sigma)$ , then

$$g_{DTS^2}(K) = g_3(K) = g_{\mathbb{RP}^3 \times I}(K).$$

#### Corollary 2 (Symplectic surface detection)

Suppose  $K \subset \mathbb{RP}^3$  is a transverse, fibered, [K] = 0 that support  $(\mathbb{RP}^3, \xi_{std})$  and  $\Sigma' \subset DTS^2$  a smoothly embedded surface with  $\partial \Sigma' = K$  but  $s_{\mathbb{RP}^3}(K) - 1 \neq -\chi(\Sigma')$ , then  $\Sigma'$  is not symplectic.

### Corollary 3? (Combinatorial proof of Lisca-Matić inequality)

Let  $\widetilde{\Sigma} \hookrightarrow DTS^2$  be a smoothly embedded oriented surface transversal to  $\mathbb{RP}^3 = \partial(DTS^2)$  with null-homologous Legendrian boundary  $\mathcal{K} = \partial \Sigma \subset \mathbb{RP}^3$ . Then,

$$\operatorname{rot}(\mathcal{K},\widetilde{\Sigma})|+\operatorname{tb}(\mathcal{K},\widetilde{\Sigma})\leq {\it s_{\mathbb{RP}^3}(\mathcal{K})}-1\leq 2g(\widetilde{\Sigma})-1.$$



# Thank You! Any Questions?





For a triple of interger (p, q, r)

Satisfying + + + + + <

~ ) friangle singularity w/ minimal resolution:

· They are singularities on

4 - manifolds.

Most of them one not

complete intersection

singulanties





Milnor fibers

lpgr

For p+q+r-2<20, the triangle singularity

(an always be smoothed to a Milnor fiber M







Expectation & Gocels



then W ~ Milnor Fiberr.

under some equivalence





Constructing Immersions W/ Specified Self-Intersection







Given  $Imm(M^n, \mathbb{R}^N) \neq \emptyset$  & an immersed submanifold  $Y^{2n-N} \subset \mathbb{R}^N$ , is there a stable fe  $Imm(M, \mathbb{R}^N)$  w/

D(f) = Y



$$\frac{\text{Thm}:}{\text{Finally}} \quad \begin{array}{c} \text{Finally} \quad f: M^{n} \hookrightarrow \mathbb{R}^{n+1} & \text{for } \text{for } f(M) \\ \text{Finally} \quad f \in \mathbb{R}^{n+1} \\ \text{Fi$$

Pockets: teR, 0=q=n-1















Q3: Can we obtain representatives for all regular homotopy classes this way?

Thank You!
# An Excision Theorem in Heegaard Floer Theory

# Neda Bagherifard

University of Oregon

December 7, 2024

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

### An Excision Construction in 3-Manifolds

Heegaard Floer Homology Excision Formula in Heegaard Floer Theory Applications



・ロト ・四ト ・ヨト ・ヨト

#### An Excision Construction in 3-Manifolds

Heegaard Floer Homology Excision Formula in Heegaard Floer Theory Applications



#### An Excision Construction in 3-Manifolds

Heegaard Floer Homology Excision Formula in Heegaard Floer Theory Applications



・ロト ・四ト ・ヨト ・ヨト

### Let Y be a closed oriented 3-manifold.

イロト イボト イヨト イヨト

### Let Y be a closed oriented 3-manifold.

• Let  $\Lambda$  be the Universal Novikov ring and  $[\omega] \in H^2(Y; \mathbb{R})$ .

イロト イヨト イヨト

Let Y be a closed oriented 3-manifold.

- Let  $\Lambda$  be the Universal Novikov ring and  $[\omega] \in H^2(Y; \mathbb{R})$ .
- Λ<sub>ω</sub>: use ω to equip Λ with an 𝔽[H<sup>1</sup>(Y)]-module structure where 𝔅 = ℤ/2.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Let Y be a closed oriented 3-manifold.

- Let  $\Lambda$  be the Universal Novikov ring and  $[\omega] \in H^2(Y; \mathbb{R})$ .
- Λ<sub>ω</sub>: use ω to equip Λ with an 𝔽[H<sup>1</sup>(Y)]-module structure where 𝔅 = ℤ/2.
- $Y \to \underline{HF}^+(Y; \Lambda_\omega).$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Let Y be a closed oriented 3-manifold.

- Let  $\Lambda$  be the Universal Novikov ring and  $[\omega] \in H^2(Y; \mathbb{R})$ .
- Λ<sub>ω</sub>: use ω to equip Λ with an 𝔽[H<sup>1</sup>(Y)]-module structure where 𝔅 = ℤ/2.
- $Y \to \underline{HF}^+(Y; \Lambda_\omega).$
- <u>*HF*</u><sup>+</sup>(*Y*;  $\Lambda_{\omega}$ ) is a  $\Lambda[U]$ -module.

## Theorem (B.)

Let  $Y_2$  be obtained from  $Y_1$  by excision along  $\Sigma_1 \cup \Sigma_2$ , where  $g(\Sigma_i) = 1$ . For a generic choice of  $[\omega_i] \in H^2(Y_i; \mathbb{R})$ , we have

$$\underline{HF}^+(Y_1;\Lambda_{\omega_1})\cong\underline{HF}^+(Y_2;\Lambda_{\omega_2})$$

- 4 同 6 4 日 6 4 日 6

э





# Proposition (B.)

 $\underline{HF}^+(Y_n;\Lambda_{\omega})\cong \Lambda^{|n|}.$ 



# Proposition (B.)

 $\underline{HF}^+(Y_n;\Lambda_{\omega})\cong \Lambda^{|n|}.$ 

# Corollary (B.)

If  $|n| \neq |m|$ ,  $Y_n$  is not related to  $Y_m$  by excision along a genus one surface.



Corollary (B.)

$$\underline{HF}^+(Y;\Lambda_{\omega})\cong \Lambda^{n^2}.$$

・ロト ・四ト ・ヨト ・ヨト



Corollary (B.)  

$$0 \to \Lambda^{|n(n+1)|} \to \underline{HF}^+(Y; \Lambda_{\omega}) \to \Lambda[U^{-1}] \to 0.$$