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Contact structures and Heegaard Floer homology

Let Y be a 3-manifold, and let ξ be a contact structure on Y .

Y closed  c(ξ) ∈ ĤF (−Y ) [OS05]

∂Y sutured  EH(ξ) ∈ SFH(−Y ) [HKM09]

∂Y parametrized  cA(ξ) ∈ C̃FA(−Y )

 cD(ξ) ∈ C̃FD(−Y ) [AFH+23]

ξ overtwisted ⇒ invariants vanish
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∂Y sutured  EH(ξ) ∈ SFH(−Y ) [HKM09]

∂Y parametrized  cA(ξ) ∈ C̃FA(−Y )

 cD(ξ) ∈ C̃FD(−Y ) [AFH+23]

ξ overtwisted ⇒ invariants vanish

Konstantinos Varvarezos (joint with Hyunki Min) University of California, Los Angeles

On Contact Invariants in Bordered Floer Homology



Bordered Sutured Contact Invariants

Theorem 1 (Min–V.)

Let (Y , Γ,F) be a bordered sutured manifold and ξ a contact
structure on the sutured manifold (Y , Γ ∪ ΓI ) where ΓI is an
elementary dividing set for F . There exist contact invariants:

cA(ξ) ∈ B̂SA(−Y ) and cD(ξ) ∈ B̂SD(T W+ ∪ − Y )

(More generally, bimodule invariants: cAA(ξ) ∈ B̂SAA(−Y ), etc.)
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Properties

Pairing: [cA(ξ1)� cD(ξ2)] = EH(ξ1 ∪ ξ2)

Gluing a contact Σ• × [0, 1] corresponds to m2 in B̂SA
cA(ξ ∪ ξa(ρ)) = m2(cA(ξ), a(ρ))

Konstantinos Varvarezos (joint with Hyunki Min) University of California, Los Angeles

On Contact Invariants in Bordered Floer Homology



Properties

Pairing: [cA(ξ1)� cD(ξ2)] = EH(ξ1 ∪ ξ2)

Gluing a contact Σ• × [0, 1] corresponds to m2 in B̂SA
cA(ξ ∪ ξa(ρ)) = m2(cA(ξ), a(ρ))

Konstantinos Varvarezos (joint with Hyunki Min) University of California, Los Angeles

On Contact Invariants in Bordered Floer Homology



Properties

Pairing: [cA(ξ1)� cD(ξ2)] = EH(ξ1 ∪ ξ2)

Gluing a contact Σ• × [0, 1] corresponds to m2 in B̂SA
cA(ξ ∪ ξa(ρ)) = m2(cA(ξ), a(ρ))

Konstantinos Varvarezos (joint with Hyunki Min) University of California, Los Angeles

On Contact Invariants in Bordered Floer Homology



Computations

cA and cD are derived from EH

For torus boundary, amenable to immersed curve
technique of [HRW24]

cA(ξ1)

cD(ξ2) c(ξ1∪ξ2)

cA(ξ'1)

cD(ξ'2)

c(ξ'1∪ξ'2)
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Applications

Positive contact surgery formula for knots in L-spaces

Classification of tight contact structures on torus knot
surgeries

Invariants of Legendrian satellite knots?
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Thank you!
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Overview

G ∼= H̃0,sl(L), −b(L)
Sk (L;G) H̃0,sl(L)

Kh (L;G)1 = ψSk(L)∈ ∋ ψKh(L)

G = Z,Z2

Here L is a closed braid representative of a transverse knot
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Lipshitz-Sarkar Khovanov Spectrum

L ⊂
S2,A

Cube Category
resolutions

Khovanov/Skein Chain Complex
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Khovanov skein homology

m ∆

∆
m

V ⊗W{(−1,0)}

V

V⊗3

V ⊗W{(1,0)}

Bo
L

C−1, j,k
Sk

C0, j,k
Sk

C1, j,k
Sk0

( j,k)(v±) = (±1,±1)

( j,k)(w±) = (±1,0)
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X j
Kh → X

j,kmin( j)
Sk

j =−3 :

−1

0

1

∂Kh = ∂ Kh,0 +∂ Kh,−2

(−3,−3)
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X j
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j,kmin( j)
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j = 1 :
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Result:

Theorem (with Adithyan Pandikkadan)

For an oriented closed braid diagram BL ⊂ A there is a map

Ψ
j(BL) : X j

Kh(BL)→ X
j, fmin(BL, j)

Sk (BL),

such that the induced map on the reduced cohomology

Ψ
j(BL)

∗ : H̃ i(X j, fmin(BL, j)
Sk (BL);G

)
→ H̃ i(X j

Kh(BL);G
)

is the same map as i∗ : H i, j, fmin(BL, j)
Sk (L;G)→ H i, j

Kh(L;G) for the embedding
L ⊂ A× I ⊂ S3, for G = Z2 or Z.
In particular, when j = sl(L), we get Ψsl(L) : X

sl(L)
Kh (BL)→ X

sl(L),−b(BL)
Sk (BL) = S

such that the induced map Ψsl(L)(BL)
∗ : G ∼= H0,sl(L),−b(BL)

Sk (L;G)→ H0,sl(L)
Kh (L;G)

satisfies Ψsl(L)(BL)
∗(ψSk(BL)) = ψKh(BL), for G = Z2 or Z.
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Transverse invariant
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Associated to a braid diagram K is a map

Ψ(K) : X
sl(K)

Kh (K)→ S,

Ψ(K)∗ : Z= H̃0(S)→ H̃0
(
X

sl(K)
Kh (K)

)
∼= H0,sl(K)

Kh (K)

sends a generator of Z to the graded Plamenevskaya invariant [ψKh(K)].

If K′ is another braid diagram representing the same transverse link type then
there is a commutative diagram

X
sl(K)

Kh (K)
Ψ(K)−−−→ S

Φ
y≃

y
X

sl(K)
Kh

(
K′) Ψ(K′)

−−−−→ S.

(Here, Φ is the homotopy equivalence induced by a sequence of transverse Markov
moves connecting K and K′, and the map S→ S is a self-homotopy equivalence of
the sphere spectrum.)
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If K′ is another braid diagram representing the same transverse link type then
there is a commutative diagram

X
sl(K)

Kh (K)
Ψ(K)−−−→ S

Φ
y≃

y
X

sl(K)
Kh

(
K′) Ψ(K′)

−−−−→ S.

(Here, Φ is the homotopy equivalence induced by a sequence of transverse Markov
moves connecting K and K′, and the map S→ S is a self-homotopy equivalence of
the sphere spectrum.)

Nilangshu Bhattacharyya, Adithyan Pandikkadan (LSU) Transverse Invariant in KSH December 7, 2024
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Example:Wo(X) = diam(X) if X is connected.

uw.()=== Furvature

Moral : higher positive
scalar curvature

= smaller wo for
2-sphere.

Conjecture (Gromov) : If
the scalar curvature

of a complete Riemannian manifold
th

is 7,500· Then UWn-2(M) <I
for some dimensional constantIn
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.
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constan?

Enemy Scenario : For any RTO ,
there is a

-

Riemannian Surface Mr. and a cour

Mr of Mr such that UWI
and

W ,>,R . (Alpert-Balitskiy-Guth)
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Question : net M." be a Riemannian n-manifold
.

and UW I (n) 11 . Does that imply
uw ,(M 1 In for some dimensional

constan?
-

Theorem (Alpert-B-Papasoglu) :
· The answer is yes for n

=2 . and C = 1

· If the answer is no for some
n

,
it is no

far n = 4 .

· What about n= 3 ??
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Liouville Sectors: definition and examples

Definition (Ganatra-Pardon-Shende)

Let X be a Liouville manifold with boundaries, we say X is a Liouville
sector iff there exists a function I : ∂X → R such that it satisfies the
following conditions:

I is linear at infinity, meaning ZI = I outside a compact set, where Z
denotes the Liouville vector field.

dI |char.fol. > 0, where the characteristic foliation C of ∂X is oriented
so that ω(N,C ) > 0 for any inward pointing vector N.

Example

Any T ∗Q for any compact manifold-with-boundary Q.

A punctured bordered Riemann surface S is a Liouville sector if and
only if every component of ∂S is homeomorphic to R (i.e., none is
homeomorphic to S1).
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Main Theorem

Definition (Quadratic Stein structure)

Let Σ be a Riemann surface and φ a proper plurisubharmonic function on
Σ (i.e., φ(z) → ∞ as z → +∞, and ddcφ > 0).

Let {si}i∈I denote the set of saddles of φ, and let N (γi ) denote the
tubular neighborhood of the stable manifold γi of the saddle si .

We say (Σ, φ) is a Riemann surface with a quadratic Stein structure if
φ|N (γi ) is quadratic.

Proposition

For any topological surface Σ with disjoint proper embedded arcs γi i ∈ I ,
we can build a quadratic Stein structure with one saddle si along each γi
and one minimum mj on each component of Σ \

⋃
i ∈ Iγi .
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Main Theorem

Theorem (D.,in progress)

In this setting, the quadratic Stein structure determines a sectorial
decomposition for Sym2(Σ) =

⋃
Hsi ,mj

Umi ,mk
, where Umi ,mk

(with i ≤ k)

are Liouville sectors with corners, and Hsi ,mj are smooth hypersurfaces
separating these sectors.

Corollary

For a 2-dimensional Liouville sector X , Sym2(X ) is deformation equivalent
to a Liouville sector, which have corners if ∂X has more than one
component.

This follows from the fact that every Weinstein sector of complex
dimension 1 is deformationally equivalent to an open subset of a Stein
Riemann surface.
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Application to Homological Mirror Symmetry

For Σ := P1 − 4points, Sym2(Σ) is a two-dimensional pair of pants.

The top square is commutative as a push-out diagram by
Ganatra-Pardon-Shende.

All the vertical arrows are isomorphisms except the last one by
Homological Mirror Symmetry.

The square on the side is commutative by Gammage-Shende.

We can get the Mirror Symmetry of
Sym2(Σ) and {xyz = 0} as a corollary of the main theorem.

Xinle (Clair) Dai (Harvard) Sectorial Decompositions 5 / 7
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Application to Homological Mirror Symmetry

Σ = P1 − 4points

Remark

The HMS of Sym2(Σ) and {xyz = 0} was proved by Lekili-Polishchuk.
However, the sectorial decomposition we get for Sym2(Σ) matches a
geometric decomposition of its mirror, providing a geometric interpretation
of the HMS.
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Thank you!
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A Slice-Bennequin Inequality for RP3 s-invariant

Ivan So

Michigan State University



Slice-Bennequin Inequality and Friends

Rudolph: For a transverse knot in (S3, ξstd),

sl(K ) ≤ 2g4(K ) − 1

Plamenevskaya (2004): In (S3, ξstd), sl(K ) ≤ 2τ(K ) − 1.
Plamenevskaya (2006), Shumakovitch (2007): In (S3, ξstd), sl(K ) ≤ s(K ) − 1.
Hedden (2008): ∀ oriented (M, ξ) with cO-Sz(ξ) ̸= 0, sl(K ) ≤ 2τξ(K ) − 1.
And many more...
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sRP3 by Manolescu-Willis

Links in RP3 can be presented as tangles over RP2, e.g.

Asaeda-Przytycki-Sikora (2004): ∃ Khovanov homology KhRP3 from RP2 diagrams.
Manolescu-Willis (2023): ∃ Kh′

RP3 s.t. rk Kh′
RP3(L) = 2|L|.

⇒ Max and min filtration levels of a knot K ⊂ RP3 defines sRP3(K ).
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Inequality for RP3

Theorem (S.)
Suppose K ⊂ RP3 is a transverse knot in (RP3, ξstd) with [K ] = 0, then

slRP3(K ) ≤ sRP3(K ) − 1.

Proof idea: Imitate that of Shumakovitch
sRP3(K ) − 1 ≥ w(K ) − r(K ), r(K ) = #{Seifert circles}.
RP2 diagram → Kirby diagram.
Durst-Kegel’s (2016): computation of slRP3 .
Combine the computations.
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Some Corollaries

Corollary 1 (Milnor conjecture for transverse fibered knot)
Let K be a null-homologous, fibered transverse knot in (RP3, ξstd), min. genus Σ with
∂Σ = K . If ξstd is supported by (K , Σ), then

gDTS2(K ) = g3(K ) = gRP3×I(K ).

Ivan So (Michigan State University) Bennequin Inequality for sRP3 5 / 8



Some Corollaries

Corollary 2 (Symplectic surface detection)
Suppose K ⊂ RP3 is a transverse, fibered, [K ] = 0 that support (RP3, ξstd) and Σ′ ⊂ DTS2 a
smoothly embedded surface with ∂Σ′ = K but sRP3(K ) − 1 ̸= −χ(Σ′), then Σ′ is not
symplectic.

Ivan So (Michigan State University) Bennequin Inequality for sRP3 6 / 8



Some Corollaries

Corollary 3? (Combinatorial proof of Lisca-Matić inequality)

Let Σ̃ ↪→ DTS2 be a smoothly embedded oriented surface transversal to RP3 = ∂(DTS2) with
null-homologous Legendrian boundary K = ∂Σ ⊂ RP3. Then,

| rot(K , Σ̃)| + tb(K , Σ̃) ≤ sRP3(K ) − 1 ≤ 2g(Σ̃) − 1.

Ivan So (Michigan State University) Bennequin Inequality for sRP3 7 / 8
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Stein Fillings of Triangle Singularities

Ethan (Yang) Zhou
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For a triple of interger (p , 9 , 2)
satisfying +

+
+

+ +<
pap

· They are singularities on

~ triangle singularity w/
4- manifolds .

minimal resolution :

· Most of them aret

*
..

complete intersection

singularities
-p19



Goal : to study stein fillings of the

link (of xeX.
13-dime contact mfld

Seifert fibered space

Sources of examples of stein fillings from algebraic geometry :

① Milnor fibers = = 0

& minimal resolution



Im (Ethyre
,
Golla) If W is a strefilling

of triangle singularity given by X*+ y3 + z=

then either

Hx(W) = Hx)Milnor Fiber)

of

Hx(w) = Hy (minimal resolution



Minorfibers
For p + 9 + -2 < 20 , the triangle singularity

⑧

can always be smoothed to a Milnor fiber M

· The Milnov Fiber M can always be compactified

to a K3 surface by adding Ptqtr-2 CP's ata

- p- 7

Tpqr : ----



Expectation&Goals

If W is a stein filling of [S .
t

. ((W)=o
,

then W Milnor fibers.

under some equivalence



strategy
Cap W off my the plumbing of Tpar

:= WUzar> W is symplectic
Calabi-Yau

cy cap
#

,
(w)= 0 Hu

# homeo3
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Constructing Immersions

W

Specified Self Intersection
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An Excision Construction in 3-Manifolds
Heegaard Floer Homology

Excision Formula in Heegaard Floer Theory
Applications

Let Y be a closed oriented 3-manifold.

Let Λ be the Universal Novikov ring and [ω] ∈ H2(Y ;R).
Λω: use ω to equip Λ with an F[H1(Y )]-module structure
where F = Z/2.
Y → HF+(Y ; Λω).

HF+(Y ; Λω) is a Λ[U]-module.
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Theorem (B.)

Let Y2 be obtained from Y1 by excision along Σ1 ∪ Σ2, where
g(Σi ) = 1. For a generic choice of [ωi ] ∈ H2(Yi ;R), we have

HF+(Y1; Λω1)
∼= HF+(Y2; Λω2)
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0

2n − 1-crossings

Yn :

Proposition (B.)

HF+(Yn; Λω) ∼= Λ|n|.

Corollary (B.)

If |n| ≠ |m|, Yn is not related to Ym by excision along a genus one
surface.
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0

0

n-full twists −n-full twists

Corollary (B.)

HF+(Y ; Λω) ∼= Λn2 .

Neda Bagherifard An Excision Theorem in Heegaard Floer Theory



An Excision Construction in 3-Manifolds
Heegaard Floer Homology

Excision Formula in Heegaard Floer Theory
Applications

0

2

n + 1-full twists −n-full twists

Corollary (B.)

0 → Λ|n(n+1)| → HF+(Y ; Λω) → Λ[U−1] → 0.

Neda Bagherifard An Excision Theorem in Heegaard Floer Theory


