1) Let $g: \mathbb{R} \to \mathbb{R}$ be a uniformly continuous function. Define

$$G: C^0([a,b]) \to C^0([a,b]): f \mapsto g \circ f.$$

If $C^0([a, b])$ has the sup-norm show that G is uniformly continuous.

2) Show that if $f_n : [a, b] \to \mathbb{R}$ is a sequence of differentiable functions that converge uniformly to f and the sequence f'_n converges uniformly to g then f' = g.

3) Let \mathcal{F} be a family of equicontinuous functions from an interval [a, b] to \mathbb{R} that are bounded in the sup-norm. Define

$$F(x) = \sup\{f(x) : f \in \mathcal{F}\}$$

for all $x \in [a, b]$. Show that F is continuous.

4) a) Let $L : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map and $b \in \mathbb{R}^m$. Define f(x) = Lx + b. What is the derivative of f at $y \in \mathbb{R}^n$?

b) Using the definition prove that your answer from a) is the derivative of f.

c) Compute the derivative of $f(x, y, z) = (xy^2, x + y, xy, 5 + x)$.

5) For a fixed $c \in [a, b]$ define the function

$$\delta_c : C^0([a, b]) \to \mathbb{R} : f \mapsto f(c).$$

If we give $C^0([a, b])$ the usual sup-norm $\|\cdot\|_{\infty}$, then show that δ_c is continuous.

6) Show that for any function $f \in C^1([a, b])$ there is a sequence of polynomials p_n that converge to f in the $\|\cdot\|_{C^1}$ norm (that is the p_n converge uniformly to f and p'_n converge uniformly to f'). Hint: use the Weierstrass Theorem to approximate f' first.

7) a) Give and example of a sequence of functions $\{f_n\}$ on the interval [a, b] that are integrable and converge point-wise to a function f that is also integrable but where

$$\int_{a}^{b} f(x) \, dx \neq \lim_{n \to \infty} \int_{a}^{b} f_n(x) \, dx.$$

b) Show that if $f_n \to f$ uniformly on [a, b] then f must be integrable on [a, b]. (You only need to show f is integrable, but not anything about the integral.) 8) a) Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be defined by f(x) = g(x) + c where $c \in \mathbb{R}^m$ and $g : \mathbb{R}^n \to \mathbb{R}^m$ satisfies

$$||g(x)|| \le M ||x||^2$$

for some constant M. Use the definition of derivative to prove that Df(0) = 0. b) Compute the derivative of $f(x, y, z) = (x^2 z, 3x + 4z)$.

- 9) Are the following statements true or false (you don't have to justify your answer).
 - 1. Smooth functions are analytic.
 - 2. If a sequence of function $\{f_n\}$ that are integrable on [a, b] and converge to f points-wise then f is integrable.
 - 3. If the derivative of a function $f : \mathbb{R}^n \to \mathbb{R}^m$ exists then all the partial derivatives of the coordinate functions exist and are continuous.
 - 4. If the power series $\sum_{n=0}^{\infty} a_n x^n$ converges at x = c then it defines an differentiable function on the interval (-|c|, |c|).
 - 5. Given any continuous function $f : [5, 10] \to \mathbb{R}$ there is a sequence of polynomials that converge to f uniformly on [5, 10].
 - 6. If all the directional derivatives of a function $f : \mathbb{R}^n \to \mathbb{R}$ exist and are continuous then the derivative of f exists.
 - 7. A continuous function $f : \mathbb{R} \to \mathbb{R}$ must be differentiable somewhere.
 - 8. A Lipschitz map must be differentiable everywhere.
 - 9. Cauchy sequences must converge in a Banach space.