
Math 4318 - Spring 2011
Homework 2

Work all these problems and talk to me if you have any questions on them, but carefully write

up and turn in only problems 1, 2, 3, 5, 6, 7, 8, 14. Due: In class on February 10

1. Compute
∫ 3

1
x2 dx using the definition of integral. Hint: you can use either the Riemann

or Darboux integral (since we know they are the same for bounded continuous functions
on closed intervals). But one of them will probably be easier to compute.
Solution: We will used the Darboux integral. Notice that the function x2 is increasing
on [1, 3] so the maximum of x2 on any subinterval of [1, 3] will be its value at the right
hand end point and similarly its minimum will be its value at the left hand end point.
Let P be the partition of [1, 3] with n equal intervals. That is x0 = 1, x1 = 1 + 2

n
, x2 =

1 + 4
n
, . . . , xn = 3. Now we have

U(x2,P) =

n
∑

i=1

(

1 +
2i

n

)2
2

n

=

n
∑

i=1

n−3(2n2 + 8ni+ 8i2)

= n−3

(

2n2n+ 8n
n(n+ 1)

2
+ 8

n(n + 1)(2n+ 1)

6

)

.

So for any n the upper Darboux integral is less than or equal to the last expression in
the equation above. Thus it is also less than or equal to the limit of this expression as
n→ ∞. That is

∫ 3

1

x2 dx ≤ 26

3
.

Similarly

L(x2,P) =

n
∑

i=1

(

1 +
2(i− 1)

n

)2
2

n

=
n

∑

i=1

n−3(2n2 + 8ni− 8n+ 8i2 − 16i+ 8)

= n−3

(

(2n2 − 8n+ 8)n+ (8n− 16)
n(n+ 1)

2
+ 8

n(n+ 1)(2n+ 1)

6

)

.

So for any n the lower Darboux integral is greater than or equal to the last expression
in the equation above. Thus it is also greater than or equal to its limit as n→ ∞. That
is

∫ 3

1

x2 dx ≥ 26

3
.

Thus
26

3
≤

∫ 3

1

x2 dx ≤
∫ 3

1

x2 dx ≤ 26

3
.

So the upper and lower integrals are the same. Thus x2 is integrable with integral
∫ 3

1

x2 dx =
26

3
.
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2. Suppose f : [a, b] → R is continuous and suppose that for every Riemann integrable

function g : [a, b] → R we have
∫ b

a
f(x)g(x) dx = 0. Show that f(x) = 0 for all x ∈ [a, b].

Solution: Suppose f(x) 6= 0 for some x ∈ [a, b], say x = c. Since f is continuous there
is an open interval (u, v) containing a such that f(x) 6= 0 for all x ∈ (u, v). (Hopefully
this is clear but if not notice that we can find an δ > 0 such that |f(x)−f(a)| < |f(a)|/2
for all |x−c| < δ with x ∈ [a, b]. Now take u = a−δ and v = a+δ.) Now take g(x) = 1

f(x)

for x ∈ (u, v) and 0 for other x. Since g is piecewise continuous it is integrable on [a, b].
Notice that

∫ b

a

g(x)f(x) dx =

∫ v

u

1 dx = v − u 6= 0.

So if f(x) is not equal to 0 for all x ∈ [a, b] there is some integrable g such that
∫ b

a
f(x)g(x) dx 6= 0, which is the contrapositive of what was to be proved.

3. Let f : [0, 1] → R be given by

f(x) =

{

1
n

if x = m
n

is in lowest terms

0 if x is irrational

and h : [0, 1] → R be 1 for x rational and 0 for x irrational. Find a Riemann integrable
function g : [0, 1] → R so that g ◦ f = h. Notice that this shows that the composition
of two integrable functions need not be integrable.
Solution: Let g(x) = 1 for x 6= 0 and 0 for x = 0. Notice that g has one discontinuity
at x = 0 and hence g is integrable. Now g ◦ f(x) = h(x).

4. Prove the mean value theorem for integrals: If f is continuous on [a, b] there there is a
c ∈ (a, b) such that

∫ b

a

f(x) dx = f(c)(b− a).

Solution: Let F (x) =
∫ x

a
f(t) dt. Recall F ′(x) = f(x) since f is continuous at all

x ∈ [a, b]. The mean value theorem for derivatives says that

∫ b

a

f(x) dx = F (b) − F (a) = F ′(c)(b− a) = f(c)(b− a)

for some c ∈ (a, b).

5. Let f and g be continuous on [a, b]. If
∫ b

a
f(x) dx =

∫ b

a
g(x) dx then show there is some

c ∈ [a, b] such that f(c) = g(c).
Solution: From the last problem there is some c ∈ (a, b) such that

0 =

∫ b

a

f(x) − g(x) dx = (f(c) − g(c))(b− a).

Thus f(c) = g(c).
6. Compute the first derivatives of the following functions (and carefully justify your com-

putations).

(a) F (x) =
∫ sin x

0
cos t2 dt

(b) G(x) =
∫ x2

x

√
1 − t2 dt

(c) H(x) =
∫ x

0
xet2 dt (Hint: be careful on this one!)
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Solution: Let φ(x) =
∫ x

0
cos t2 dt and f(x) = sin x. Clearly F (x) = φ ◦ f(x). So by the

chain rule F ′(x) = φ′(f(x))f ′(x) Since cos t2 is continuous we have F ′(x) = cos t2 and
we also know f ′(x) = cos x. THus

F ′(x) =
(

cos(sin2 x)
)

cosx.

Similarly notice thatG(x) =
∫ 0

x

√
1 − t2 dt+

∫ x2

0

√
1 − t2 dt. Thus if ψ(x) =

∫ x

0

√
1 − t2 dt

and g(x) = x2 we see that G(x) = φ ◦ g(x) − φ(x). We know
√

1 − t2 is continuous
so the fundamental theorem of calculus says φ′(x) =

√
1 − x2. (Notice that for the

integral to make sense we need x, x2 ∈ [−1, 1], but in that range we have continuity of
the integrand.) We also know that g′(x) = 2x. Thus the chain rule gives

G′(x) = 2x
√

1 − x4 −
√

1 − x2.

Finally let η(x) =
∫ x

0
et2 dt. Notice that H(x) = xη(x). Since et2 is continuous we know

that η′(x) = ex2

. Now the product rule gives

H ′(x) = xex2

+

∫ x

0

et2 dt.

7. If f is continuous on [a, b] and
∫ x

a
f(t) dt =

∫ b

x
f(t) dt for all x ∈ [a, b] then show that

f(x) = 0 for all x ∈ [a, b].
Solution: Suppose that f(c) 6= 0 for some c ∈ [a, b]. With out loss of generality we
assume that f(c) > 0. Then as we argued in Problem 2, continuity implies there is
some interval (d, e) that contains c for which f(x) > ǫ in (d, e) for some ǫ. We know
that

∫ e

d
f(t) dt ≥ ǫ(e− d). Using the hypothesis twice we see

∫ d

a

f(t) dt =

∫ b

d

f(t) dt =

∫ e

d

f(t) dt+

∫ b

e

f(t) dt

=

∫ e

d

f(t) dt+

∫ e

a

f(t) dt =

∫ e

d

f(t) dt+

∫ d

a

f(t) dt+

∫ e

d

f(t) dt.

Thus we see that
∫ e

d
f(t) dt = 0. This contradicts that the integral is greater than

ǫ(e− d). Thus f(x) cannot be non-zero for any x ∈ [a, b].
8. Prove the integral version of the Taylor remainder: Suppose that f and its first n + 1

derivatives are continuous on [a, b] and c ∈ (a, b). For each x ∈ [a, b] we have that

f(x) = f(c) + f ′(c)(x− c) + f ′′(c)/2(x− c)2 + . . .+
fn(c)

n!
(x− c)n +Rn

where

Rn =
1

n!

∫ x

c

(x− t)nf (n+1)(t) dt.

Hint: Use integration by parts and induction.
Solution: Assuming x > c (the other case being similar). Notice that for n = 1,
integrating by parts we have

R1 =

∫ x

c

(x− t)f (2)(t) dt = (x− t)f ′(t)|xc +

∫ x

c

f ′(t) dt

= −(x− c)f ′(c) − f(t)|xc = −f ′(c)(x− c) + f(x) − f(c).
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Rearraging the terms gives the formula for n = 1. Now inductively assume the formula
is true for n− 1. We now establish the formula for n. Integrating by parts we see that

Rn =
1

n!

∫ x

c

(x− t)nf (n+1)(t) dt

=
1

n!

(

(x− t)nf (n)(t)|xc +

∫ x

c

n(x− t)n−1f (n)(t) dt

)

= −f
(n)(c)

n!
(x− c)n +

1

(n− 1)!

∫ x

c

(x− t)n−1f (n)(t) dt

= −f
(n)(c)

n!
(x− c)n +Rn−1.

By induction we know

Rn−1 = f(x) −
(

f(c) + f ′(c)(x− c) + f ′′(c)/2(x− c)2 + . . .+
fn−1(c)

(n− 1)!
(x− c)n−1

)

.

Substituting this into the last equation and rearranging terms yields the desired formula
for n.

14. Prove or disprove the following statements:

(a) f ∈ R([a, b]) =⇒ |f | ∈ R([a, b])

(b) |f | ∈ R([a, b]) =⇒ f ∈ R([a, b])

(c) f ∈ R([a, b]) =⇒ f 2 ∈ R([a, b])

(d) f 2 ∈ R([a, b]) =⇒ f ∈ R([a, b])

(e) f 3 ∈ R([a, b]) =⇒ f ∈ R([a, b])

(f) f 2 ∈ R([a, b]) and f(x) ≥ 0 for all x ∈ [a, b] =⇒ f ∈ R([a, b])

Soultion: (a) is TURE. It is a theorem from class. In more detail we know since
g(x) = |x| is a continuous function the discontinuities of |f | = g ◦ f are a subset of
those of f . Thus if f is integrable its discontinuities form a set of measure zero and
thus so do the set of discontinuities of |f |. We are now done by the Riemann-Lebesgue
theorem.
(b) is FALSE. Indeed let f(x) be a function on [0, 1] that is 1 for rational numbers
and −1 for irrational numbers. Then |f | is a constant function and hence integrable.
But since f is discontinuous everywhere the Reimann-Lebesgue theorem says it is not
integrable.
(c) is TRUE. The product of integrable functions is integrable by a theorem from class.
(d) is FALSE. Use the same counter example as in part (b).
(e) is TRUE. Since g(x) = x1/3 is continuous on R we know that g ◦ h is integrable if h
is. Thus since f 3 is integrable we know that g ◦ f 3 = f is integrable.
(f) is TRUE. We know that g(x) = x1/2 is continuous on [0,∞). So (since f 2 has
image in the domain of g) as above g ◦ f 2 will be integrable since f 2 is. But notice
that g ◦ f 2 = |f | and since f(x) ≥ 0 for all x ∈ [a, b] we see that |f(x)| = f(x). Thus
f = g ◦ f 2 is integrable.
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