
Math 4318 - Spring 2011
Homework 3

Work all these problems and talk to me if you have any questions on them, but carefully write

up and turn in only problems 1, 2, 4, 5, 7, 8, 9, 10. Due: In class on February 24

1. Let

f(x) =

{

x + 2x2 sin(1/x) x 6= 0

0 x = 0.

Show that f ′(0) = 1 and that f is not strictly increasing in any neighborhood of 0.
(Notice that this shows that a function have have positive derivative at a point without
being increasing there. What does this say about the continuity of f ′ near 0?).
Solution: To compute the derivative at 0 we look at the difference quotient:

f(0 + h) − f(0)

h
=

h + 2h2 sin(1/h)

h
= 1 + 2h sin(1/h).

We claim that the limit of this is 1 as h goes to zero. To see this consider

|(1 + 2h sin(1/h)) − 1| = |2h sin(1/h)| ≤ 2|h|.

Thus given any ǫ > 0 let δ = ǫ/2 and we see that if |h − 0| < δ then

∣

∣

∣

∣

f(0 + h) − f(0)

h
− 1

∣

∣

∣

∣

≤ 2|h| < 2δ = ǫ.

That is f ′(0) = limh→0
f(0+h)−f(0)

h
= 1.

Consider the points xn = 1
π/2+2nπ

and yn = 1
−π/2+2nπ

. Notice that xn < yn. We claim

that f(yn) < f(xn). This will show that f is not increasing between yn and xn, but
since yn → 0 and xn → 0 as n → ∞ we see that in any arbitrary neighborhood of 0 the
function is not increasing (since it will contain infinitely many of the xn and yn). We
now compute

f(xn) − f(yn) =

(

1

(π/2 + 2nπ)
+ 2

1

(π/2 + 2nπ)2

)

−

(

1

(−π/2 + 2nπ)
− 2

1

(−π/2 + 2nπ)2

)

=
1

(π/2 + 2nπ)
−

1

(−π/2 + 2nπ)
+ 2

(

1

(π/2 + 2nπ)2
+

1

(−π/2 + 2nπ)2

)

= −
π

((2nπ)2 − (π/2)2)
+ 4

(

(π/2)2 + (2nπ)2

(π/2 + 2nπ)2(−π/2 + 2nπ)2

)

=
4((π/2)2 + (2nπ)2) − π((2nπ)2 − (π/2)2)

((2nπ)2 − (π/2)2)2

=
(4 − π)(2nπ)2 + (4 + π)(π/2)2

(π/2)2 + (2nπ)2
> 0.

2. Let D = [a, b]×[c, d] ⊂ R
2 and f : D → R be a continuous function. Define the function

F : [c, d] → R by

F (t) =

∫ b

a

f(x, t) dx.

Show that F is a continuous function.
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Solution: Since f is continuous on a compact set it is uniformly continuous. Now given
any ǫ > 0 there is a δ > 0 such that |(x, t)− (y, s)| < δ implies that |f(x, t)− f(y, s)| <
ǫ/(b − a). Thus for |t − s| < δ we have

|F (t) − F (s)| =

∣

∣

∣

∣

∫ b

a

f(x, t) − f(x, s) dx

∣

∣

∣

∣

≤

∫ b

a

|f(x, t) − f(x, s)| dx

≤

∫ b

a

ǫ/(b − a) dx = (b − a)(ǫ/(b − a)) = ǫ.

Thus F is continuous (in fact uniformly continuous).
4. Use the ideas in the last problem to integrate

∫ 1

0

xt − 1

ln x
dx.

You can use that d
dt

at = (ln a)at. Hint: First notice that this is not an improper integral
(the integrand is continuous on [0, 1]. Think of the integral as a function f(t). Compute
the derivative and then try to recover f(t).
Solution: Let

F (t) =

∫ 1

0

xt − 1

ln x
dx.

Then from the previous homework problem we know that

F ′(t) =

∫ 1

0

xt ln x

lnx
dx =

∫ 1

0

xt dx =
1

t + 1
xt+1|10 =

1

t + 1
.

Thus the fundamental theorem of calculus gives us that

F (t) − F (0) =

∫ t

0

F ′(s) ds =

∫ t

0

1

s + 1
ds = ln(s + 1)|t0 = ln(t + 1).

Notice that F (0) =
∫ 1

0
0 dt = 0, so we see that F (t) = ln(t + 1). In other words

∫ 1

0

xt − 1

ln x
dx. = ln(t + 1).

5. Let fn = xn

1+xn
on the interval [0, 2]. Determine what function the fn converge to. Is

the convergence uniform?
Solution: If x ∈ [0, 1) then the limit of the numerator is 0 and the limit of the
denominator is 1. Thus the limit is 0. If x = 1 then each term is 1/2 so the limit is 1/2.
If x ∈ (1, 2] then one may easily check that the limit is 1. Thus the limit function is

f(x) =











0 x ∈ [0, 1)

1/2 x = 1

1 x ∈ (1, 2].

Since the fn are continuous and f is not, the convergence cannot be uniform.
7. Suppose that {fn} is a sequence of bounded functions on a set A ⊂ R that converge

uniformly on A to f . Show that if each of the fn are bounded then f is bounded.
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Solution: By the definition of uniform convergence there is some N such that for all
n ≥ N we know that

|f(x) − fn(x)| ≤ 1

for all x ∈ A. Also since fN is bounded there is some M such that |fN(x)| ≤ M for all
x ∈ A. Thus

|f(x)| = |f(x) − fN(x) + fN(x)| ≤ |f(x) − fN (x)| + |fN(x)| ≤ 1 + M.

Thus M + 1 is a bound on f .
8. Consider fn = nx

1+nx2 for x ∈ [0,∞). Show that the fn are bound. Let f be the point
wise limit of the {fn}. Show that f is not bounded. (Form this and the last problem
we see that the fn do not converge uniformly to f .)
Solution: Notice that for a fixed n we have fn(x) → 0 as x → ∞. Thus there is some
B such that x ≥ B implies that |fn(x)| < 1. Now on [−B, B], being a compact set, the
continuous function fn is bounded, say by M . Thus if M ′ is the maximum of M and 1
we see that fn is bounded by M ′. Thus all the fn are bounded.
If x 6= 0 then fn(x) clearly limits to 1/x as n → ∞. and fn(0) = 0 so for x = 0, fn(x)
limits to 0. Given any M there is some x > 0 such that 1/x > M . Thus f(x) > M ,
that is f is not bounded by any M on [0,∞).
Let {fn} be a sequence of functions on a set S ⊂ R. We say the sequence is equicon-

tinuous on S if for every ǫ > 0 there is some δ > 0 such that |fn(x)− fn(y)| < ǫ for all
|x − y| < δ with x and y in S and for all n.

9. Show that if {fn} is an equicontinuous sequence of functions converges point wise to f ,
then f is uniformly continuous.
Solution: Given ǫ > 0 we know there is a δ > 0 such that |fn(x)− fn(y)| < ǫ/3 for all
|x − y| < δ. Also given any x and y there is an N such that |fn(x) − f(x)| < ǫ/3 and
|fn(y) − f(y)| < ǫ/3 for all n ≥ N . Thus for any |x − y| < δ we can find an n we have

|f(x) − f(y)| ≤ |f(x) − fn(x)| + |fn(x) − fn(y)|+ |fn(y) − f(y)| < ǫ/3 + ǫ/3 + ǫ/3 = ǫ.

That is f is uniformly continuous.
10. Show that if {fn} is a sequence of continuous functions that converge uniformly on a

compact set, then the sequence is equicontinuous on that set.
Solution: Let f be the function to which the fn converge and D be the compact
set on which the functions are defined and converge uniformly. Since the convergence
is uniform we know that f is continuous. Moreover since we are considering f on a
compact set we know f is uniformly continuous. Thus given any ǫ there is some δ′ > 0
such that for all |x− y| ≤ δ′ we know |f(x)− f(y)| < ǫ/3. There is also an N such that
for all n ≥ N we know |fn(x)− f(x)| ≤ ǫ/3 for all n ≥ N and x ∈ D. Now we see that
for any |x − y| < δ′ and n ≥ N we have

|fn(x) − fn(y)| ≤ |fn(x) − f(x)|+ |f(x) − f(y)|+ |f(y)− fn(y)| < ǫ/3 + ǫ/3 + ǫ/3 = ǫ.

Now for each n < N there is some δn such that when |x − y| < δn we have |fn(x) −
fn(y)| ≤ ǫ (since each fn is uniformly continuous as it is a continuous function on a
compact set). Now let δ = min{δ1, δ2, . . . , δN−1, δ

′}. Then for any n we see that if
|x − y| < δ we have |fn(x) − fn(y)| ≤ ǫ. That is the fn are equicontinuous.
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