
Math 4318 - Spring 2011
Homework 4

Work all these problems and talk to me if you have any questions on them, but carefully write

up and turn in only problems 2, 4, 6, 11, 12, 13, 14, 15. Due: In class on March 10

2. Let
fn(x) =

x

1 + nx2

be a sequence of functions. Show that {fn} converge uniformly to some function f and
that

f ′(x) = lim
n→∞

f ′

n(x)

for all x 6= 0, but that the equality is not true for x = 0.
Solution: Let f(x) = 0. We claim that fn → f uniformly. To see this assume any
ǫ > 0 is given. Notice that

|f(x) − fn(x)| =

∣

∣

∣

∣

x

1 + nx2

∣

∣

∣

∣

≤ |x| < ǫ

if |x| < ǫ. If |x| ≥ ǫ notice that

|f(x) − fn(x)| =

∣

∣

∣

∣

x

1 + nx2

∣

∣

∣

∣

≤
∣

∣

∣

x

x2n

∣

∣

∣
=

1

n|x| ≤
1

nǫ

We know that 1/(nǫ) → 0 as n → ∞. Thus there is some N such that n ≥ N implies
that 1/(nǫ) < ǫ. Thus we see that if n ≥ N we have

|f(x) − fn(x)| < ǫ

for all x ∈ R. That is fn → f uniformly.
Notice that

f ′

n(x) =
(1 + nx2) − 2x2n

(1 + nx2)2
=

1 − nx2

(1 + nx2)2
.

For x 6= 0 we see the numerator is quadratic in n and the denominator is quartic in n,
thus f ′

n(x) → 0 as n → ∞. Since f ′(x) = 0 we see that

f ′(x) = lim
n→∞

f ′

n(x)

if x 6= 0. If x = 0 notice that f ′

n(x) = 1. So f ′

n(0) → 1 as n → ∞ which is not f ′(0) = 0.
4. Let f ∈ C0([0, 1]). Show that if

∫ 1

0

xnf(x) dx = 0

for all non-negative integers n then f(x) = 0.

Hint: Think about the Weierstrass theorem and try to show that
∫ 1

0
f 2(x) dx = 0.

Solution: By the Weierstrass theorem there is a sequence of polynomials pn such that
pn → f uniformly on [0, 1]. Since f is continuous on a compact set it is bounded and
since the pn converge uniformly to f we know the pn are uniformly bounded as well.
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Thus the sequence fpn converges uniformly to f 2 on [0, 1] and from a theorem from
class we know

∫ 1

0

f 2(x) dx = lim
n→∞

∫ 1

0

f(x)pn(x) dx.

But notice that for any polynomial p(x) = a0 + a1x + . . . + anx
n we have

∫ 1

0

p(x)f(x) dx =

n
∑

k=0

ak

∫ 1

0

xkf(x) dx = 0.

Thus
∫ 1

0
f(x)pn(x) dx = 0 for all n and we see that

∫ 1

0
f 2(x) dx = 0. Since f 2 is

continuous and non-negative we know from an earlier homework that f 2(x) = 0 for all
x ∈ [0, 1]. Thus f(x) = 0 for all x ∈ [0, 1].

6. Given two functions f, g ∈ R([a, b]) define the L2-inner product to be

〈f, g〉 =

∫ b

a

f(x)g(x) dx.

Why is this not an inner product on R([a, b])? Show that this does give an inner
product on the set of continuous functions C0([a, b]). (Notice that this also gives a
norm on C0([a, b]) by ‖f‖2 =

√

〈f, f〉.)
Solution: Consider the function f : [a, b] → R that is zero for all x except f(a) = 1.
This function is integrable (since it is continuous almost everywhere and bounded) and
it is not the zero function but

〈f, f〉 = 0.

Thus the L2-inner product is not an inner product on R([a, b]).
Notice that for any f, g, h ∈ R([a, b]) (in particular functions in C0([a, b])) we have

〈f, g〉 =

∫ b

a

f(x)g(x) dx =

∫ b

a

g(x)f(x) dx = 〈g, f〉

and

〈f, g+h〉 =

∫ b

a

f(x)(g(x)+h(x)) dx =

∫ b

a

f(x)g(x) dx+

∫ b

a

f(x)h(x) dx = 〈f, g〉+〈f, h〉.

If c ∈ R then

〈f, cg〉 =

∫ b

a

cf(x)g(x) dx = c

∫ b

a

f(x)g(x) dx = c〈f, g〉.

In addition we have

〈f, f〉 =

∫ b

a

f 2(x) dx ≥ 0

since f 2(x) ≥ 0 for all x. Lastly if f ∈ C0([a, b]) and

0 = 〈f, f〉 =

∫ b

a

f 2(x) dx

then f 2(x) = 0 for all x ∈ [a, b] by a previous homework problem (since f 2 is continuous).
Thus f(x) = 0 for all x ∈ [0, 1], that is f is the zero function and we have verified that
the L2 inner product is indeed an inner product on C0([a, b]).
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11. If ‖ · ‖a and ‖ · ‖b are equivalent norms on V then a sequence {vn} is Cauchy in the
norm ‖ · ‖a if and only if it is Cauchy in the norm ‖ · ‖b. (Together with the previous
problem we see that (V, ‖ · ‖a) is a Banach space if and only if (C, ‖ · ‖b) is a Banach
space when the norms are equivalent.)
Solution: By the definition of equivalence we have positive constants C and C ′ such
that

C‖v‖a ≤ ‖v‖b ≤ C ′‖V ‖a.

Let {vn} be a Cauchy sequence in V with the norm ‖ · ‖a. Then given any ǫ > 0 there
is an N such that for all m, n ≥ N we have

‖vn − vm‖a < ǫ/C ′.

Thus we see that
‖vn − vm|b ≤ C ′‖vn − vm‖a < C ′(ǫ/C ′) = ǫ,

that is {vn} is Cauchy in the norm ‖ · ‖b.
Similarly if we are given a sequence {vn} that is Cauchy with the norm ‖ · ‖b. Then
given any ǫ > 0 there is an N such that for all m, n ≥ N we have

‖vn − vm‖b < ǫC.

Thus we see that

‖vn − vm|a ≤ 1

C
‖vn − vm‖b <

1

C
(ǫC) = ǫ,

that is {vn} is Cauchy in the norm ‖ · ‖a.
12. Let ‖ · ‖∞ be the sup-norm on C1([a, b]). Is (C1([a, b]), ‖ · ‖∞) a Banach space? In class

we saw that (C1([a, b]), ‖ · ‖C1) is a Banach space (recall ‖f‖C1 = ‖f‖∞ + ‖f ′‖∞). Are
the norms ‖ · ‖∞ and ‖ · ‖C1 equivalent on C1([a, b])?
Solution: Let fn : [−1, 1] → R be the function given by fn(x) =

√

x2 + 1/n. These
functions are all continuously differentiable so {fn} is a sequence in C1([−1, 1]). It is
clear that this sequence converges point-wise to f(x) = |x|. We claim the convergence
is also uniform. Indeed given ǫ > 0 there is some N such that 1/

√
N < ǫ. Then for

n ≥ N we see that

|fn(x) − f(x)| =
√

x2 + 1/n − |x| ≤
√

x2 + 1/N − |x|

≤
√

|x|2 +
2√
N
|x| + 1

N
− |x| =

√

(

|x| + 1√
N

)2

− |x|

= |x| + 1√
N

− |x| =
1√
N

< ǫ.

(Here we used that fn(x) > f(x) for all x and the fact that the square root function is
increasing (which is hopefully obvious)).
Since fn → f uniformly we see that {fn} converges to f in the norm ‖ · ‖∞. Thus {fn}
is Cauchy in the norm ‖ · ‖∞. But since f 6∈ C1([−1, 1]) we see that a Cauchy sequence
in C1([−1, 1]) in the sup norm does not necessarily converge to a function in C1([−1, 1).
Thus (C1([−1, 1), ‖ · ‖∞) is not a Banach space.
The norms ‖ · ‖∞ and ‖ · ‖C1 cannot be equivalent by the previous two exercises.
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13. Consider R([a, b]) with the sup norm ‖ · ‖∞ and C0([a, b]) with the sup norm. Define a
function

I : R([a, b]) → C0([a, b])

by I(f)(x) =
∫ x

a
f(s) ds. Show that I is a uniformly continuous function (that is given

any ǫ > 0 there is a δ > 0 such that for all ‖f − g‖∞ < δ we have ‖I(f)− I(g)‖∞ < ǫ).
Solution: Given ǫ > 0 let δ = ǫ/(2(b − a)). Then if ‖f − g‖∞ < δ we see that

|I(f)(x) − I(g)(x)| =

∣

∣

∣

∣

∫ x

a

f(s) − g(s) ds

∣

∣

∣

∣

≤
∫ x

a

|f(s) − g(s)| ds

≤
∫ b

a

|f(s) − g(s)| ds <

∫ b

a

δ dx = δ(b − a) = ǫ/2.

Thus
‖I(f) − I(g)‖∞ = sup

x∈[a,b]

|I(f)(x) − I(g)(x)| ≤ ǫ/2 < ǫ.

14. With the notation from the last problem assume that {fn} is a bonded sequence in
R([a, b]) with the sup norm. Show that {I(fn)} has a convergent subsequence (that is
converges uniformly to some function f on [a, b]).
Solution: Since the sequence {fn} is bounded we know there is some M such that
|fn(x)| ≤ ‖fn‖∞ < M for all M . That is the sequence is uniformly bounded. Notice
that

|I(fn)(x)| =

∣

∣

∣

∣

∫ x

a

fn(s) ds

∣

∣

∣

∣

≤
∫ x

a

|fn(s)| ds ≤
∫ x

a

M ds ≤
∫ b

a

M dx = M(b − a).

That is, the sequence of continuous function {I(fn)} is uniformly bounded by M(b−a).
We claim that the sequence is also equicontinuous. Indeed for any ǫ > 0 we notice that
if δ = ǫ/M then when |x − y| < δ we have

|I(fn)(x) − I(fn)(y)| =

∣

∣

∣

∣

∫ x

a

f(s) ds −
∫ y

a

f(s) ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ y

x

f(s) ds

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ y

x

|f(s)| ds

∣

∣

∣

∣

≤ M |x − y| < Mδ = ǫ.

Thus we see that {I(fn)} is a sequence of continuous functions on [a, b] that are uni-
formly bounded and equicontinuous. So the Arzelà–Ascoli theorem says there is a
subsequence that converges uniformly to some function f .

15. Let {fn} be a sequence of functions in C1([a, b]) that are bounded in the norm ‖ · ‖C1 .
Show that there is a subsequence that converges to a function f in the ‖ · ‖∞ norm.
Solution: Since {fn} is bounded in the ‖ · ‖C1 norm we know that there is some M
such that

‖fn‖∞ + ‖f ′

n‖∞ = ‖fn‖C1 ≤ M.

Thus for all x we have
|fn(x)! ≤ ‖fn‖∞ ≤ ‖fn‖C1 ≤ M.

That is, we know the sequence is uniformly bounded.
In addition we know that for all x we have

‖f ′

n(x)‖ ≤ ‖f ′

n‖∞ ≤ ‖fn‖C1 ≤ M.
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Thus by the mean value theorem we know that for any x, y we have some c between x
and y so that

|fn(x) − fn(y)| = |f ′(c)||x − y| ≤ M |x − y|
Hence if ǫ > 0 then we can take δ = ǫ/M and notice that if |x − y| < δ we have

|fn(x) − fn(y)| ≤ M |x − y| < Mδ = ǫ.

That is we have shown that {fn} is equicontinuous. Since it is also a uniformly bounded
sequence of continuous funciotns on a compact interval the Arzelà–Ascoli theorem says
there is a subsequence that converges uniformly to some function f . Of course this is
the same as converging in the ‖ · ‖∞ norm.
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