
Math 4318 - Spring 2011
Homework 5

Work all these problems and talk to me if you have any questions on them, but carefully write

up and turn in only problems 2, 3, 4, 11, 12, 13, 16, 17. Due: In class on March 31

2. For b > 0 and any a define

T (f)(x) = a +

∫ x

0

f(y)e−xy dy.

Show that T : C0([0, b]) → C0([0, b]) is a contraction. Hence show that there is a unique
solution to

f(x) = a +

∫ x

0

f(y)e−xy dy

in C0([0, b]).
Solution: Given two functions f, g ∈ C0([0, b]) notice that

‖T (f) − T (g)‖∞ = ‖

∫ x

0

(f(y) − g(y))e−xy dy‖∞

= sup
x∈[0,b]

{

∣

∣

∣

∣

∫ x

0

(f(y)− g(y))e−xy dy

∣

∣

∣

∣

}

≤ sup
x∈[0,b]

{

∫ x

0

|f(y)− g(y)|e−xy dy}

≤ sup
x∈[0,b]

{

∫ x

0

‖f − g‖∞e−xy dy}

= ‖f − g‖∞ sup
x∈[0,b]

{

∣

∣

∣

∣

1

x
e−xy|x0

∣

∣

∣

∣

} = sup{
1

x
(1 − e−x2

)}‖f − g‖∞.

Since 1
x
(1−e−x2

) is a continuous function on a compact interval [0, b] we see that T will

be a contraction mapping if 1
x
(1− e−x2

) < 1. That is if 1− x < e−x2

. To see this notice
that by the mean value theorem we have ex − e0 = et(x − 0) for some t between x and
0. Thus we have ex > x+1 for any x 6= 0. Now if x ∈ (0, 1] then 1−x ≤ 1−x2 < e−x2

.
If x > 1 then clearly 1 − x < 0 < e−x2

. Now the contraction mapping theorem implies
there is a function f ∈ C0([0, b]) satisfying

f = T (f) = a +

∫ x

0

f(y)e−xy dy.

3. Let φ : [a, b] × R → R be a function that is Cn (that is if you fix either of the variables
the function is Cn differentiable with respect to the other variable). Let

Φ(f)(t) = c +

∫ t

a

φ(s, f(s)) ds

(recall this is the “integral operator” used in the proof that ODEs have solutions). Show
that if f is a fixed point of Φ then f is has n + 1 continuous derivatives on [a, b]. (You
may use the fact that d

dt
φ(t, f(t)) = φt(t, f(t)) + φx(t, f(t))f ′(t).)

Notice that this problem says that if f is a solution to the differential equation

y′ = φ(t, y) y(t0) = x0
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with φ a Cn function then f ∈ Cn+1 (where it is defined).
Solution: Assume that φ is Cn. If f = φ(f) then

f(t) = c +

∫ t

a

φ(s, f(s)) ds.

The fundamental theorem of calculus gives us that

f ′(t) = φ(t, f(t)).

Notice that we are not given that f is continuous, but since the above formula shows
the derivative of f exists we know that it is continuous. Since φ and f are continuous
we see that f ′(t) is continuous. Now

f ′′(t) = φt(t, f(t)) + φx(t, f(t))f ′(t).

Since f ′, φ and f are continuous (and the product and composition of continuous func-
tions is continuous) we see that f ′′ is continuous. Notice that the kth derivative of f

(for k ≤ n+1) can be expressed as products and compositions of derivatives of (partial
derivatives of) φ and f of order < k. (We see this for k = 1, 2 and using the product
rule and chain rule easily see that if it is true of k then it is true for k + 1 if k ≤ n.)
Now if f (k) is continuous then f (j) is continuous for all j ≤ k. Thus f (k+1) is continuous
since it can be expressed as a composition and product of continuous functions. So by
induction again we see that f (n+1) is continuous.

4. Continuing the previous problem consider the function

φ(t, x) =

{

t t ≤ 1

2 − t t ≥ 1.

Solve the differential equation y′ = φ(t, y) with y(0) = 1 and show that it is C1 but not
twice differentiable.
Solution: Integrating we see that a solution γ to the differential equation is γ(t) =
1
2
t2 + 1 for t ≤ 1 and γ(t) = 2t − 1

2
t2 for t ≥ 1. Notice that γ is continuous and γ′ = t

for t ≤ 1 and 2 − t for t ≥ 1. Thus γ′ is also continuous. Now γ′′(t) = 1 for t < 1 and
γ′′(t) = −1 for t > 1. It is easy to see that γ′′(1) does not exist since taking a sequence
xn → 1 approaching 1 from the left we see that

γ′(xn) − γ′(1)

xn − 1
=

−xn − 1

xn − 1
→ −1 as n → ∞.

where as a if yn is a sequence approaching 1 from the left then

γ′(yn) − γ′(1)

yn − 1
=

yn − 1

yn − 1
→ 1 as n → ∞.

Thus γ is C1 but not C2 proving that the result of the previous exercise is optimal.
11. Let f : R

n → R
m and suppose there is a constant M such that ‖f(x)‖ ≤ M‖x‖2 for all

x ∈ R
n. Prove that f is differentiable at x = 0 and Df(0) = 0.

Solution: Notice that f(0) = 0 since ‖f(0)‖ ≤ 0. Consider

‖f(x) − (f(0) + 0(x − 0))‖

‖x − 0‖
=

‖f(x)‖

‖x‖
≤

M‖x‖2

‖x‖
= M‖x‖.

So as x → 0 we see that ‖f(x)−(f(0)+0(x−0)‖
‖x−0‖

→ 0. Thus f is differentiable at 0 and its
derivative is the linear map 0.
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12. Let L : R
n → R

m be a linear map. Show that L is differentiable at all x ∈ R
n and

compute DL(x).
Solution: The derivative is the best linear approximation to a map and one would
expect the best linear approximation to a linear map is itself. So we check that the
linear map DL(x) = L satisfies the definition of the derivative of L at x. To this end
consider

‖L(y) − (Lx + L(y − x))‖

‖y − x‖
=

‖L(y) − Lx − (Ly − Lx)‖

‖y − x‖
=

0

‖y − x‖
= 0,

where the linearity of L was used in the first equality. Thus ‖L(y)−(Lx+L(y−x))‖
‖y−x‖

→ 0 as

y → x, from which we see that L is differentiable at x and DL(x) = L.
13. Compute the derivative (that is Jacobian matrix) of

(a) f(x, y) = sin(x2 + y3)

(b) g(x, y, z) = (z sin x, x sin y)

(c) h(x, y, z) = (x2, xy)

Solution: (a) Since all the partial derivatives of f exist and are continuous we know f

is differentiable and its derivative (using the standard basis for R
2 and R) is

Df(x, y) =
[

2x cos(x2 + y2) 2y cos(x2 + y2)
]

.

(b) The partial derivatives of the component functions (z sin x and x sin y) exist and are
continuous. Thus g is differentiable with derivative

Dg(x, y, z) =

[

z cos x 0 sin x

sin y x cos y 0

]

.

(c) The component functions all have continuous derivatives so the function h is differ-
entiable and the derivative is given by

Dh(x, y, z) =

[

2x 0 0
y x 0

]

.

16. Let f : R
3 → R

2 satisfy the conditions that f(0) = (1, 2) and

Df(0) =

[

1 2 3
0 0 1

]

.

If in addition g : R
2 → R

2 is given by g(x, y) = (x + 2y + 1, 3xy) then find D(g ◦ f)(0).
Solution: From the chain rule we know

D(g ◦ f)(0) = Dg(f(0))Df(0).

To compute Dg we note that its component functions are continuously differentiable
and hence we have

Dg =

[

1 3y
2 3x

]

.

So we have

Dg(f(0)) = Dg(1, 2) =

[

1 6
2 3

]

.

Finally we have

D(g ◦ f)(0) =

[

1 6
2 3

] [

1 2 3
0 0 1

]

=

[

1 2 9
2 4 9

]

.
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17. Let f : R
3 → R and g : R

2 → R. If h(x, y) = f(x, y, g(x, y)) then compute Dh in terms
of the partial derivatives of f and g. If h = 0, then write ∂g

∂x
and ∂g

∂y
in terms of the

partial derivatives of f .
Solution: Let G(x, y) = (x, y, g(x, y)) so that we see h(x, y) = (f ◦G)(x, y). Assuming
everything is differentiable then we have

Dh = Df(G(x, y))DG(x, y)

=
[

∂f

∂x
(x, y, g(x, y)) ∂f

∂y
(x, y, g(x, y)) ∂f

∂z
(x, y, g(x, y))

]





1 0
0 1

∂g

∂x
(x, y) ∂g

∂y
(x, y)





=
[

∂f

∂x
(x, y, g(x, y)) + ∂f

∂z
(x, y, g(x, y)) ∂g

∂x
(x, y) ∂f

∂y
(x, y, g(x, y)) + ∂f

∂z
(x, y, g(x, y))∂g

∂y
(x, y)

]

.

If h = 0 then Dh = 0 and we see that

∂f

∂x
(x, y, g(x, y)) +

∂f

∂z
(x, y, g(x, y))

∂g

∂x
(x, y) = 0

and
∂f

∂y
(x, y, g(x, y)) +

∂f

∂z
(x, y, g(x, y))

∂g

∂y
(x, y).

In other words assuming ∂f

∂z
(x, y, g(x, y)) 6= 0 we have

∂g

∂x
(x, y) =

∂f

∂x
(x, y, g(x, y))

∂f

∂z
(x, y, g(x, y))

and
∂g

∂y
(x, y) =

∂f

∂y
(x, y, g(x, y))

∂f

∂z
(x, y, g(x, y))

.
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