
II Introduction to Topology

Everyone should be familiar with continuous functions and

convergence inmetricSpacey (from Analysis I) . We discuss the most

general context in which one can consider these ideas

A. Topological Spaces
let X be any set

a collection of subsets 7 of X is a topology for X it
← empty set

D 0 and X are in T

2) A and B in 7⇒ (An B) in T

3) if {Abney is a collection of sets in 7

then¥Aa is in 7

here J is an index set

e.g. J= { 1,23 then {Addeo means IA.AS{
E- I

,

"

then {Adaet means I . - . A. a ,A." Ao , . - -3

note . property 2) ⇒ any finite intersection of sets in 9 isin 7

e.g .
AnBric -- (AAB ) n C
-
in T
-

in T

a topological space is a pair (X, 9) where X is a set and

7 is atopology on X
elements of 9 are called open sets

examples . { a. b. 4
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isogonX

to describe interesting topologies we need a new idea

a collection B of subsets of X is called a basis for a topology
on X if

,) X is aunion of sets in B

2) it U
,
V E B and pe UN,

then I WEB set
. p e WoUN

⇒

lemma I :

given a basis B for a topology on X
let JB = { collection ofall unions ofsetsinB}

Then JB isa topology on X

Proof : need to see 7ps satisfies It - 3) in' def" of topology
1) X is in TB by condition i) ofdef

1 of B

0 is in 7ps since the
"

union of no sets in B
"

is 0 Cby convention)

2) it A and B are in 7ps then

A =¥ Y and B = Yeo Vp
for Va

. Hp E B

now if p E AnB then there is some doe
J

, po
EI

Sf
. p E Yo and p Expo?e. p E Yeon Ypo

thus by condition 2) of B I Wp E B such that

p E Wp C Udon Vpoc AnB



so An B = U Wp
Z is obvious

p c- AnB E is clear with a

moments thought !

3) it {Aalder is a collection in
.

JB ,
then

Aa =¥
,

Ufs for Uf e B

so Yeo Aa = ¥ Vdp is in 7ps

i. 7ps
-

is a topology on × #

examples .

1) let IX. d) be ametricspace

recall
,
this means X isa set and

d : Xxx→ IR

is a function satisfying
1) d Ix.y) Z O V x.y EX

2) dIx, y) = O ⇒ x
= y

3) d Cx.y ) = d ly, x)

4) d(x, z) E dcx, y) tally, z)

then Bd = { Brix) for all r >o and XEX) is a basis for a

topology on X

here Brix) = I y EX sit. dlx. y)
er }

let 's check this

D X = ×Ue×Batx) so X is a union of elements in Bd

→ given Brix,), Brix.) e Bd and a point p E Br,
G.) n Brix.)

set E = min { r, - dlxi.pl, rz-dlk.pl} ¥.

note it ZE Bdp) then p fr?
a

d (x
, ,z ) EdIx,, p)

tdIp, Z) x
.

< dlx
, , p)
tr

,
-dCx, ,p) = r,



so 2- E Br
,

Ix,)

similarly 2- E Br
,

CxD so

p e Be Ip) C Br
,

txt n Br
.

Cx.)

thus Bd is a basis for a topology on X

We call the topology Jd induced by Bd the metric topology
on X (induced by d)

e.g. X
= IR

"

dCx
. y) -

-¥2
,

Hi- Yi)
'

)
"
' where x- Cx

. , .. . , xn )

is the Euclidean metric on IR
"

so d gives IR
"

a metric topology

this
,

of course
,

is the topology studied in calculuslana lysis

also consider n

d
,
IX.y) =¥,

I X
,
- y, I

and

dz Cx ,y) = Max { Ix, - yd, - . .

,
lxn - yal }

exercise ,) these are metrics on IR
"

2) the topologies Td = Td
,

-
- Jd
,

are the same !

2)
let IX. 7) and IY, 7) be two topologicalspaces

set B = { U x V : U E J and V E 9
'

}
Claim . B is a basis for a topology on Xx Y

indeed : I) Xx Y E B so XxY is a union of etfs in B

y
2) if A

,
B E B then I Va

,
VB E T and VA , VB E T

'

A such that
A = Vax VA and B = VB x VB

VA
• y①

p it p= ix.y)
E An B then X E VA A UB E I

V
y E Va A Vp E T

'

'#
x

so peah.tt#vDcAnBUp U
A



so B a basis for a topology on X × Y

the topology on XxY induced by B is called the product topology

exercise . show that the metric topology on IN is the same as the

product topology on IR x IR where IR is given the metric topology

another way to get a topology is as follows
let IX. 7) be a topological space

A CX a subset

set Jai IAn U : U e 9)

exercise : 7A isa topology on A

7A is called the subspacetopology on A

exercise :

.) If IX.d) a metric space andAcX then A has an induced metric da

Show 4d)A - 7
@a)

T

subspace topology
T
metric topology on A

of metric topology induced by da
on X

2) IR
'

c IR
'

as the x-axis
,

then the subspace topology on IR
'

coming from IR
'
with the metric topology is the

metric topology on IN
'

M2
examples .

1) S
'
= { Cx, y) E IN : x 't y

'
= I}

gets a topology from IN #
moregenerally
5=1 exo, . . . xn ) e R

" "
: ¥ xi = 13

gets a topology from IR
""



2) E C IR gets a apology from IR (what is it ?)
→

integers
, go , is c R gets a topology from R

note: open sets in Eo , B are unions of

[o
,
b )

O Lac b L l
(a . b)
(a, I]

[oil ]

so open sets in a subspace topology
need not be open in original space !

4) subspace topologies t product topologies give a topology
on 5×5

and more generally S
"

x Sm

B
. Liinitpointsandsequences
If A is a subset of a topological space (X. 7), then p E X is

a hinitpoint of A it for each open set U containing p
we have

A n ( u- Ep3) *0

the closure of A is the set containing A and all the limit points

of A
,
denote the closure by Tt

a set C is called closed if it contains all its limit points

lemma 2
:DI is closed Cee. I= Is

::÷÷÷÷:÷÷÷÷÷÷÷÷:÷:i



Proof .

2) l⇒) it A is closed then any p
ex-A is not a limit pt

of A
,
so I some open set Up such that

Up n A = (Up - Ip3) n A --0

that is Up C X- A

so X- A = pY*aUp is

openly
⇐ it X -A is open , then for any pet A we have

p EX -A and (*-Al - {p)) n A = 0

so p is not a limit pt of A

i.e
.
A contains all its limit pts so A is

closed
3) it A , B are closed

,
then LX-A)

,
(X- B) are open

so X - (AUB) = (X-A) n (x - B) is open
←
deMorgan 's Law

:
.
A U B is closed

4) almost same as proof of 3)

exercise check D Ett
← natural numbers

a sequence in X is a function p : IN→ X

we denote pen by pa and the sequence by Ipn )

a sequence Ipal converges to p if for every open set U containing p
there is some number N such that

Pn E U for all n zN

U
we denote this pn→p P.

.

"

if'p.



exercise: show if IX. d) is a metric space then

{ pm ) converges top ( in metric topology)
⇒

He > o IN such that dlpa.pk E Hn zN

so convergence in metric spaces is just like
from analysis class

⇒ie¥¥÷÷÷:÷÷:::::::¥"n
Proof: if p C- A

,
then p eA so done

it p EA , then for any open set
U containing p, since pn→p

F N s.t. H n Z N
, pn EU

note pn EA , p E A , so Pne p

i . (V - {pl ) nA F 0 ( contains pn.tn > N)

thus p is a limit pt. of A and so p EA L#

Remain: Sequences can behave strangely in a general topological space
for example : x

;!%?,.... ",}
note: the sequence

pn = a H n

wob !

What went wrong ?

answer: not enough open sets to
"

distinguish
"

a and b



also recall from analysis you expect that if p is a limit
point of A then -3 a sequence Ipn ) in A such that pn

→p

but in a general topological space that is not true !

How can we fix these problems ?

a topological space 4,7) is called Hausdorff it for every
pair ofdishespoints x. y E X there are

disjointopen sets U and V
' such that x EU and yell

we call a collection N of open sets in X containing p e X

aneighborhood basis for p if for every open set
U containing p , there is some set V EN such that p EVCU

we call ( X
,
9) 1st countable if every point

pex
has a

Countable neighborhood basis
lemma 4 :

It IX, T) is a Hausdorff topological space and
{Pnl is a sequence in X that converges to

p and to q , then p
-

-

g .

Proof: It p * q , then
I disjoint open sets V and V such

that p E U and g
EV

since pn -7p, IN such that pn EU
and Pne V, V n IN

: . Vnv I0

this contradicts disjointness of U and V, so we

must have p = g #

lemma 5.

let (X, 9) be a 1st countable topological space
If p is a limit point ofA ,

then I a sequence
Ipn ) in A such that pn →p



Proof . let lui }? be a neighborhood basis for p
Set U

,
-
- V

,

Uzi U, nv, = V
, Nz

i

Un = Un
- in Vn = V, n K n . . . mln

:

note : U
,
> Up . . .

- Uno . . .

exercise : Show 143!
,
is also a neighborhood basis for p

I called nested neighborhood basis)

now it p e A , then take prep for alln , and we see pn→p

it p EA ,then note

(Un - Ip ))n A ¥0 It
.
n since p a limit pt of A

so pick pint (Un AA)
note Ipn ) is a sequence in A

Clarin : pn→ p

indeed
,

it U is any open set containing p
then since IUn } a nbhd basis for p

IsinceF some N set. Un C U :. Unc U tf n IN nested)

:
. pmEUnc U Hn zN

,
that ispm →p #

That .

7 metric spaces are Hausdorff and It countable

2) subspaces of Hausdorff spaces are Hausdorff
" ' ' 1st countable " ' ' 1st countable

3) products of Hausdorff spaces are Hausdorff
" " 1st countable " ' ' 1st countable

Proof: D Hausdorft : if x *y in a metric space (X. d), then Edlx.y)>0

note Bc
,

n Body) = Of



Istloontable: given x e X , then I Byam}! can easily be
checked to be a nbhd basis

exercise : Check 2) and 3)
L#

C. Continuous Functions

let Hi7) and (Y, 7
') be two topological spaces

a function
f :X→ Y

is continuous if f-
'

fu) is an open set if X for all open sets U in Y

← this means {x EX : f Cx) EU}

exercise : You can easily check
f : IR

"
→ IR
"

is continuous

so continuity generalizes Iusing standard metric topologies)
what you know from ⇒

analysis He >o and xEIR
"

,

IS >O such that

dIx.y) c 8 ⇒ dffcxl, fly)) c E

Tha 7

for a function fix→ Y the following are equivalent
.) f is continuous

2) f
- 'IC) is closed in X for all closed C in Y

3) for any A C X
,
HATE HAT

Proof : 1) ⇒ 2) .

-

We first note that for any ACY
: f

- 'IY-A) = X- f
- '

(A)

indeed : E : x E f
- '

IY-A) ⇒ fix) E Y-A
,
so text EA

: . x I f
- 'CA) and so x E X- f

- '

(A)

Z : x E X??
,

- '(A) ⇒ x & f
-

YA) so HHEtA
-Cx) C- Y- A

,
thus xEt

-

YY-AL



now if f- is continuous and C c Y is closed

then Y- C is open and thus f
- '

( Y- C) = X- f
-

Yc) is open
hence f- '(C ) closed : 2) is true

2¥ is same argument
3)⇒ let C be closed in Y

Set A = f -Yc) by 3) deft ofA
-←

it x EA, then fat EHATEFCA ) = fff-ya) E E = C
T

C-

⇒: sin::#
"" " """".

I't p EA , then Hp) E f (A)
c FTA) ✓

if p EA, then p
is a limit point of A

it f Ip) E fCA) then done so assume fIp) Et f(A)

Claim: fcp) is a limit point of HA)

( :. f- Ip) C- FIAT and done)

to see this suppose fIp) not a limit point of FIA)

thus F an open set U inY set
. fcp) EU

and Un fCA) =0

we know f-
'

(u)isopen in X I since f cont.)and p c- f-
Icu)
← hopefully obvious

* f-'IAnB) = f
-

YAI af
- '
CB) also f

- '

Iu)nA E f
-'

(u) n f
- 'IHAD

E : obvious since AnBCA
= f

- '

(U nf(A)) = f - '(0) =0*

so p is not a limit point ofA * choice of p÷÷÷÷÷i÷÷÷÷ ....... ..
⇒



Tha8 :

If X is 1st countable
Then f :X→ Y is continuous

⇒

for each sequence pn →p
in X

we have flpn) → fcp) in Y

Proof . ⇐) let pn-sp in X

let U be an open set in
Y such that Hp) EU

then f-
'

to) open in X andp e f
-

Yu)

so IN such that n ?N⇒ pne f
-'
(u)

:
.
f- Ipn )

E f (f
- "

(u)) c U It n zN

ie
. fcpn )→ Hp) note: this implication

does not need 1st count.
⇐ ) let A be a set in X

We show fCAT c FTA) then done by Th 17

so take p EA

it p EA , then f Ip) C-HA) c FTA)
V

it petA , then p a limit pt ofA

so by lemma 5 I a sequence {pn) in A
St

. putp

now ftp.t → Hp) is Y and IfCpn)) a sequence in f LA)

:
. lemma 3 ⇒ Ap ) EFTA)

so HA) EFTA) E#

examples of continuous maps
1) it yo EY a point , then the const

mapf:X→ Y : x to Yo

is continuous
,
since for any open set Uc Y

t
-

401--19 PIET isopen in X



2) if A a subspace of X, then the Inclusionmapj
: A→ X : x tox

is continuous
,
since for any open set U CX

i
- 'IU) = UNA is open in A

3) if f : X -7 Y is Antinous and Ac X has the subspace topology,
then the restriction

f la : A →X

is continuous
,
since for any open Vc Y

Hla )
"

IV) = f
- 'tu) n A is open in A

4) pyjamas are continuous

x. : XxY→ X : (x. y) tix (Xxi has the

since for any open set U in×
product topology )

IT
,

-

Yu) = UxYis open in Xx Y

similarly for
y

.

.
XxY→ Y : Cx

, y)MY

5) compositions of continuous maps are continuous

f- :X-7 Y
, g

: Y→ Z

g of :X→ Z : xt gCfcxD

since if U is open in Z, then §of)
- '

ful = f-
'

Ig - 'ND

and g
-Yu) open in Y so f-

'

Ig
- ' tu)) open in X

b) F : Z→ Xx Y : zAHH,get) is continuous

⇒

f- : Z→ X and g : Z→ Y are continuous

indeed :#) follows since f = T
,
o F and g

= Tho F Iby 41,5))
⇐I exercise



Tha 9 .

let IX.9) be a topological space and X- Au B with
A and B closed sets inX

It D f : A -2 Y and g : B→ Y are continuous and

2) Hx) =gIx) for all xeAnB

Then there is a unique continuous map

h :X→ Y

such that Vx EA
,
h txt fix) and Fx eB

,
had =g Cx)

Proof .

define h :X→ y : ×,→ { fix) x eA

g-Ix) x E B

by 2) , h is clearly well-defined

we show h
- '(c) closed for any closed C in Y I then h continuous

by Th' 7)
Claim: h

- '(c) = f
- '(c) ug

- '(c)

PI :(E ) x eh
- '

Ld c X

so x e A or x E B
, say x

EA ( other case similar)

so h Ix) = fCx) : fix) EC and x E f
- '(c) c f

- '
(c) ug

F) x e f
- '

(c)
u g-

'(c)

suppose x e f
-'K) I other case similar)

so XEA and h CH - HH E C so x e f
' '(Er

f-
,G continuous ⇒ f-

'(c) closed in A and

g-
'Cc) closed in B

exercise . Since A and B are closed in X
,
show f-

' '

CC ) and

g-
' Ic) are closed in X

: . h
- 'Ic) = f

-

Yc) ug
-'Cc) is closed in X (by lemma 2) L#



a function f :X→Y is a homeomorphism if f- is a continuous

bijection and the inverse function f
- '

: Y→ X is also

continuous

This isthe natural equivalence
between topological spaces

we say X and Y are homeomorphic if there is a homeomorphism
from one to the other

note . all questions about continuity, convergence, and the like

are exactlythesame in homeomorphic spaces

so from the perspective of topology, you should think of

homeomorphic spaces as the same
examples .

1) let X -- IR
'
- 110,0) ) with the subspace topology

Y-- S
'

x IR with the product topology
( s

'

gets subspace topology from
IR
'

where s
'
= { (a. b ) :

ah
b? I }

Claire: X and Y are homeomorphic

"
""

→

f
-I

so while X and Y
"

look
"

different

they are really the same ! (topologically)

f- ( Ia
,
b)
,
z) = Leta

,
et b)

g I x.y) = in Fit)
→

on unit circle It-defined since x'e y' >o



note: t of
- '

Cx.yt (e"FEE ,
eh ¥⇒ )

= (x , y)

f-'of Hard
,H -%EE.bg#y , InFEI)✓ I I

u 1
I

= l la . b), Z)

so f is a bijection with inverse f
- '

from calculus we know Nx IR → IR : Hey,Htt xe
't

is continuous
,
so restricting to S

'

x IR

also continuous

similarly for Hey,z) t yet
so f- is continuous since its component functions are.

you can similarly use calculus to see f-
'
iscontinuous

so f is a homeomorphism !

2) let X= I- I, I] x I- I , I] = { Ix, y) E IR
'
: txt El

, ly I E I }

Y = D
'
= { Cx, y) I x 'ty

' E I}

Clavin : X and Y are homeomorphic
Iso topology doesn't

"

see
"

corners)

X f Y
111 11,
T

1/4/11,11, 111
→ I II, 141f

- I

there is a continuous function g : S
'

→ Co, x)

such that got gives lengthy,*



indeed

geo, = flash
' '

,

teEE
.
ul IT]

Is in 01 a c- L It , Jul ,
I

exercise . g is continuous I
use Th ' 9)

now f- trio ) = Ig lotr, t) ( polar coordinates)

f- 'Ir
,
it ) = ( gtfo, r , t)

clearly f a bijection with inverse f
"

and f and f
- I
are continuous (why ? )

Remark . It is very important in the definition of homeomorphism
that t

-'
is continuous

example .

go;D I, t, Ds
'

f :X→ Y : t1-7 (cos 2kt, sin 2Tt)

it we think of f- as a map X→ IR
'

it is easy to see

from calculus that f is continuous

this implies f :X→ Y is continuous

Isince U open in Y means F Vopen in IN
'

such that U = s
'
n V

and f-
'
I u) = f

-'

( s 'nd = f-
'

Ix) open in X )

so f- is a continuous bijection , but we don't want

to think of the interval and s
'
as the same !

luckily they ann 't because

Claim : f
- '

is not continuous

indeed let pn= f C I
- I ) p. .

÷
.
. p

this is a sequence Ipn ) ins
'

.
is"

and pn→p = Ii ,o) in St
P'



but f-
'

Ip) -
- o

f-'Cp)
f-'Ip.)

- I

so f-
'

(Pr ) does not converge to f- Ip)

: . f-
- '

is not continuous

an injective continuous map f :X→ Y is called an embedding

iff :X→ fix
) is a homeomorphism where f(X) CY has

the subspace topology
so if we have an embedding X→ Y then we may think of X as

a subspace of Y

example if A c X is a subspace , then the inclusion map 2 :A→X

isan embedding
knots give interesting embeddings of s

'
in IR

'


