D. Connectedness
a topological space X is disconnected if there exists disjoint, non-empty, open sets V and V in X such that $X=V \cup V$ if no such sets exist, then X is connected
lemma 10:
a topological space X is connected

$$
\Leftrightarrow
$$

the only sets in X that are both closed and open are X and O

Proof: (\Rightarrow) let U be an open and closed set in X
set $V=X-U$
note: V is also open and closed if U not X or \varnothing, then V and U are non-empty so X is disconnected, so we must have $U=X$ or σ
(\leftarrow) essentially the same
ThㅡㅡI: \qquad
this is proven is analysis, so we skip the proof in class, bat I include it here if you want a reminder how this goes.
Proof: Suppose $\mathbb{R}=A \cup B$ with A and B open, disjoint, and non-empty can assume $\exists a \in A$ and $b \in B$ with $a<b$
let $S=\{x \in A$ sit. $x<b\}$

note: 1) $S \neq \varnothing$ since $a \in S$
2) S is bounded above by b
so \exists a least upper bound \& for S
$s \in \mathbb{R}=A \cup B$ so $\& \in A$ or $s \in B$
If $\varepsilon \in A$, then $\exists \varepsilon>0$ st. $B_{\varepsilon}(s) \subset A$ since A open
let $d=\|\alpha-b\|$
and $\delta=\min \{\varepsilon / 2, d / 2\}$

\therefore a must be in B
so $\exists \varepsilon>0$ st $B_{\varepsilon}(\alpha) \subset B$
by the definition of 1.0.6. Ja sequence $\left\{s_{i}\right\}$ in S such that $s_{2} \rightarrow \mathbb{d}$
so for large $i \quad s_{\varepsilon} \in B_{\varepsilon}(\alpha)$
but $s_{1} \in A$ so $A \cap \overbrace{\left(\alpha-\varepsilon_{1} \alpha+\varepsilon\right)}^{B_{\varepsilon}(\alpha)} \neq \varnothing$
this contradicts $A \cap B=\varnothing$
so $1 \notin A$ or $B \$$
\therefore such A and B don't exist and \mathbb{R} is connected
Th ${ }^{\mathrm{m}}$ 12:
a subset of \mathbb{R} is connected

$$
\Leftrightarrow
$$

It is an interval or \varnothing

$$
\begin{aligned}
& \text { (7.e. }(a, b),[a, b),(a, b],[a, b],(-\infty, \infty), \\
& (-\infty, b),(a, \infty),(-\infty, b],[a, \infty), \infty)
\end{aligned}
$$

Proof: \Leftrightarrow) same argument as proof of $T^{m} / /$
\Leftrightarrow) if A is non-empty and not an interval, then $\exists a, b \in A$ and $c \in \mathbb{R}-A$ such that $a<c<b$
now $[(-\infty, c) \cap A]$ and $[(c, \infty) \cap A]$ disconnect A
example: $[0,1]$ and $(0,1)$ are not homeomorphic
note: This seems obvious but not easy to prove without connectedness!
to prove this note that for any $a \in(0,1),(0,1)-\{a\}$ is not connected
if $[0,1]$ and $(0,1)$ were homeomorphic then $[0,1]$ would have this property too indeed if $f:[0,1] \rightarrow(0,1)$ were a homeomorphism then for any $a \in[0,1]$ we know that $(0,1)-\{f(a)\}$ is disconnected its easy to see

$$
\left.f\right|_{[0,1\}-\{a\}}:(\{0,1]-\{a\}) \rightarrow((0,1)-\{f(a)\})
$$

is a homeomorphism, so $[0,1]-\{a\}$ is disconnected but note $[0,1]-\{0\}=(0,1]$ is connected
Th ${ }^{\text {m }}$ 13:
The image of a connected set under a continuous map is connected

Proof: let X be connected and $f: X \rightarrow Y$ continuous set $Z=f(X) \subset Y$ (with the subspace topology)
Claim: Z is connected
if not, \exists non-empty, open, disjoint sets V and V in Z such that $Z=U \cup V$
we noted earlier that $f: X \rightarrow Z$ is continuous

$$
\text { so } x=f^{-1}(z)=f^{-1}(\cup \cup v)=f^{-1}(u) \cup f^{-1}(v)
$$

and $f^{-1}(U), f^{-1}(v)$ are open and non-empty more oven $f^{-1}(u) \cap f^{-1}(V)=f^{-1}(U \cap V)=f^{-1}(\varnothing)=\varnothing$ so X not connected ϕ
a space X is called path connected if for every pair of points $p, q \in X$, there is a contiricous map

$$
\begin{aligned}
& \text { nous map } \\
& \gamma:[a, b] \rightarrow X \text { from } p \text { to } q \text { called a path }
\end{aligned}
$$

such that $\gamma(a)=p, \gamma(b)=q$
Th ${ }^{m} 14$: \qquad
Proof:
we show that not connected \Rightarrow not path connected if X not connected, then \exists non-empty, disjoint, open sets U and V st. $X=U \cup V$
let $p \in V$ and $q \in V$
if there were a $p a t h \gamma:[a, b] \rightarrow X$ from p to q
then $\gamma^{-1}(u)$ and $\gamma^{-1}(V)$ would disconnect $[a, b] \otimes$ Th ${ }^{m} 12$
so X is not path connected
examples:

1) $B^{n} \subset \mathbb{R}^{n}$ (and $\left.\mathbb{R}^{n}\right)$ is connected slice it is path connected in deed $p, q \in B^{n}$, then

$\gamma(t)=(1-t) p+t q$ is a path p to q
2) $\mathbb{R}^{n}-\{0\}$ is connected if $n \geq 2$
since it is path connected to see this, take any $p, q \in \mathbb{R}^{n}-\{0\}$ it line l through p, q does not contain the origin, then

$$
\gamma(t)=(1-t) p+t q
$$

works
if $\&$ contains the origin O, then pick $\varepsilon>0$ st. $O \& B_{\varepsilon}(\rho)$ take any $z \in \partial\left(\overline{B_{\varepsilon}(\rho)}\right)-l$

let $\left.\begin{array}{rl}\gamma_{1}(t) & =(1-t) p+t z \\ \gamma_{2}(t) & =(1-t) z+t q\end{array}\right\}$ paths in $\mathbb{R}^{n}-\{0\}$
then $\gamma(t)= \begin{cases}\gamma_{1}(2 t) & t \in[0,1 / 2] \\ \gamma_{2}(2 t-1) & t \in[4 / 2,1]\end{cases}$
is a path p to q (note γ continuous by Th^{m} 9)
Remark: This shows that \mathbb{R}^{\prime} is not homeomorphic to \mathbb{R}^{n} for $n \neq 1$ (since for any $x \in \mathbb{R}^{\prime}, \mathbb{R}^{\prime}-\{x\}$ disconnected) is $\mathbb{R}^{2} \cong \mathbb{R}^{3} \ldots$? no but harder (might do later)
3) $S^{n-1} \subset \mathbb{R}^{n}$ is connected for $n \geq 2$
by $\mathbb{T h}^{\underline{m}} 13$ since $g:\left(\mathbb{R}^{n}-\{0\}\right) \longrightarrow S^{n}$

$$
x \longmapsto \frac{x}{\|x\|}
$$

is contivicous
E. Compactness
a collection $\left\{U_{\alpha}\right\}_{\alpha \in J}$ of subsets of X is called a cover of X

$$
\text { if } X=\bigcup_{\alpha \in J} U_{\alpha}
$$

a topological space X is called compact if every cover of X by open sets has a finite subcover
2.e. If $\left\{U_{\alpha}\right\}_{\alpha \in J}$ a cover of X with each U_{α} open, then $\exists J_{0} \subset \mathcal{J}$ a finite subset of J such that $\left\{v_{\alpha}\right\}_{d \in J_{0}}$ is a cover of X.
lemma 15:
A closed subset of a compact space is compact

Proof: let C be a closed subset of a compact set X let $\left\{U_{\alpha}\right\}$ be an open cover of $C\left(U_{\alpha}\right.$ open in $\left.C\right)$
so \exists sets \tilde{U}_{α} open in X sit. $U_{\alpha}=\tilde{U}_{\alpha} \cap C$
let $U=X-C$
$\left\{\tilde{U}_{\alpha}\right\} \cup\{U\}$ is an open cover of X
so $\exists\left\{{\tilde{V_{\alpha,}}} \ldots{\tilde{\alpha_{\alpha}}}\right\} u\{U\}$ that also cover X
note $\left\{U_{\alpha_{1}}, \ldots, U_{\alpha_{n}}\right\}$ covers C
lemma 16:
a compact subset of a Hausdorff space is closed
Proof: let X be a Hausdorff space and $C \subset X$ a compact subspace We show $X-C$ is open, and hence C is closed, by showing, for each $x \in X-C, \exists$ open set U_{x} such that $x \in U_{x} \subset X-C$, then (as before) $X-C=\bigcup_{x \in X-C} U_{x}$ is open to this end, let $x \in X-C$
$\forall y \in C$, since X is Hausdorff, \exists disjoint open sets V_{y} and V_{y} sit. $x \in U_{y}$ and $y \in V_{y}$
Clearly $\left\{V_{y}\right\}_{y \in C}$ is an open cover of C so $\exists y_{1}, \ldots, y_{n}$ sit. $\left\{v_{y_{1}}, \ldots, v_{y_{n}}\right\}$ is a cover of C let $U_{x}=U_{y_{1}} \cap \ldots \cap U_{y_{n}}$
this is an open set and $U_{x} \cap\left(V_{y_{1}} \cup \ldots \cup V_{y_{n}}\right)=\varnothing$

$$
\therefore U_{x} \cap C=\varnothing \Rightarrow x \in U_{x} \subset X-C
$$

lemma 17:
the continuous image of a compact space is compact
Proof: let $f: X \rightarrow Y$ be continuous and X compact
let $\left\{u_{\alpha}\right\}$ be an open cover of $f(x)$
so $\left\{f^{-1}\left(U_{\alpha}\right)\right\}$ an open cover of X
$\therefore \exists$ a finite subcover $\left\{f^{-1}\left(U_{\alpha_{2}}\right), \ldots, f^{-1}\left(U_{\alpha_{n}}\right)\right\}$
so $\left\{U_{\alpha_{1}}, \ldots, U_{\alpha_{n}}\right\}$ is a cover of $f(x)$
Th m 18:
let $f: X \rightarrow Y$ be a continuous bijection If X is compact and Y is Hausdorff then f is a homeomorphism
this them is very helpful with quotient spaces!

Proof: we need to see $f^{-1}: \zeta \rightarrow X$ is continuous 2.e. by $T h^{\underline{m}} 7, \forall$ closed sets C in X we need to see $\left(f^{-1}\right)^{-1}(c)=f(c)$ is closed in Y
but C closed in $X \Rightarrow C$ is compact by lemma 15
$\Rightarrow f(c)$ is compact by lemma 17
$\Rightarrow f(c)$ is closed by lemma 16
Th ${ }^{\underline{m} / 9:}$
$[0,1]$ is compact
this is proven is analysis, so we skip the proof in class, but I include it here if you want a reminder how this goes.
Proof: let $\left\{U_{\alpha}\right\}$ be an open cover of $[0,1]$
let $C=\{x \in[0,1]$ sit. $[0, x]$ is contained in a finite sibcollection of $\left.\left\{U_{\alpha}\right\}\right\}$
Clearly $0 \in C$
We show C is open and closed in $[0,1]$
\therefore since C is connected lemma $10 \Rightarrow C=[0,1]$ and we are done!

Copen: if $x \in C$ then let $U_{\alpha_{1}}, \ldots, U_{\alpha_{n}}$ be sets covering $[0, x]$ \exists, st. $x \in U_{\alpha_{j}}$
$U_{\alpha, \text { open }} \Rightarrow \exists \delta>0$ s.t $\quad(x-\delta, x+\delta) \subset U_{\alpha_{j}}$
so $(x-\delta, x+\delta) \subset C$
C closed: if x is a limit point of C, then let $U_{\alpha_{0}}$ be set containing x.
so $\exists(a, b)$ st. $x \in(a, b) \subset U_{\alpha_{0}}$
since x a limit point of C, we know $((a, b)-\{x\}) \cap C \neq \varnothing$
let $y \in((a, b)-\{x\}) \cap C$, so $[y, x]$ (or $[x, y]) \subset U_{\alpha_{0}}$
now $y \in C \Rightarrow \exists\left\{U_{\alpha_{1}}, \ldots, U_{\alpha_{n}}\right\}$ st. $[0, y] \subset U_{\alpha_{1}} \cup \ldots \cup U_{\alpha_{n}}$
$\therefore U_{\alpha_{0}}, \ldots, U_{\alpha_{n}}$ covers $[0, x]$, so $x \in C$ and C closed
exercise: The product of 2 compact spaces is compact Hint: this is hard. start by interpreting compactness in terms of basic open sets
Th 20 (Herie-Borel):
a subset of \mathbb{R}^{n} is compact

$$
\Leftrightarrow
$$

It is closed and bounded

Proof: \Leftrightarrow) if $C \subset \mathbb{R}^{n}$ is closed and bounded
then bounded $\Rightarrow \exists R$ st. $C \subset[-R, R]^{n}$
but $[-R, R]$ is homeomorphic to $[0,1]$ (What's the homeo.?) so $[-R, R]$ is compact and thus so in $[-R, R]^{n}$ by exercise now C closed in a compact set $\Rightarrow C$ compact (lemma 15)
$\Leftrightarrow C$ a compact set in $\mathbb{R}^{n} \Rightarrow C$ closed by lemma 16 (since \mathbb{R}^{n}
C is bounded because if not, there is Hausdorff by $7 n^{-1} 6$) would be a sequence $\left\{p_{n}\right\}$ in C s.t. $\left|p_{n}\right|>n \forall n$
clearly no subsequence of $\left\{p_{n}\right\}$ can converge this contradicts the following result

Th ${ }^{m} 21:$
If X is a $1^{\text {st }}$ countable space, then
X compact \Rightarrow every sequence in X has a convergent subsequence)
If X a metric space, then \Leftrightarrow
and $\exists I>0$ such that

$$
\begin{aligned}
& d\left(x_{n_{i}}, x\right)<\varepsilon / 2, \text { and } \\
& \frac{1}{n_{i}}<\varepsilon / 2 \quad \forall z \geq I
\end{aligned}
$$

so $C_{n_{1}} \subset B_{1 / n_{1}}\left(x_{n_{1}}\right) \subset B_{\varepsilon}(x) \subset U$
$\therefore\left\{x_{n}\right\}$ has no convergent subsequence

Proof of Th $^{m} 21(\Leftrightarrow)$:
Claim: If X is sequentially compact, then $\forall \varepsilon>0, X$ can be covered by finitely many ε-balls
Pf: if not, let $x_{1} \in X$ be any point $B_{\varepsilon}\left(x_{1}\right)$ does not cover X
let $x_{2} \in X-B_{\varepsilon}\left(x_{1}\right)$
given x_{1}, \ldots, x_{n} such that $B_{\varepsilon}\left(x_{1}\right), \ldots, B_{\varepsilon}\left(x_{n}\right)$ doesn't cover X
take $x_{n+1} \in X-\left(B_{\varepsilon}\left(x_{1}\right) \cup \ldots \cup B_{\varepsilon}\left(x_{n}\right)\right)$
note: $d\left(x_{2}, x_{j}\right) \geq \varepsilon \quad \forall \imath \neq j$
$\left\{x_{1}\right\}$ can have no convergent subsequence (since all balls of radius $\varepsilon / 2$ can have at most one x_{i})
$\therefore X$ is not sequentially compact Φ
now let C be an open cover of X
by lemma 22, \exists a Lebesgue number $\delta>0$ for C find a cover of X by finitely many balls of radius $\delta / 3$ each ball has diam $=\frac{2 \delta}{3}<\delta$
so each ball in some U_{i} in C choose one such U_{i} for each ball this is a finite subcover of e
F. Quotient Spaces

Quotient spaces are a great way to build interesting and complicatid spaces, and construct maps between them.
let X be a topological space,
Y a set, and
$f: X \rightarrow Y$ a surjetive function
The collection

$$
J_{f}=\left\{U \subset Y \mid f^{-1}(U) \text { open in } X\right\}
$$

is called the quotient topology on Y
exercise: Show I_{f} is a topology on Y
Th ${ }^{m}$ 23:
let X and Y be topological spaces, and

$$
f: x \rightarrow y
$$

a surjective map
Then the quotent topology I_{f} on Y agrees with the given topology on Y
\checkmark open in Y iff $f^{-1}(U)$ open in X
a surjective map $f: X \rightarrow Y$ satisfying $*$ is called o quotient map hopefully it is clear a quotient map is continuous.
Proof: \Leftrightarrow) U open in $Y \Leftrightarrow V \in \mathcal{L}_{f} \Leftrightarrow f^{-1}(v)$ open in X $C_{\text {def }}$ ㅇ of J_{f}
so \otimes true
$\Leftrightarrow) U \in J_{f} \Leftrightarrow f^{-1}(U)$ open in $X \Leftrightarrow V$ open in Y def n of \mathcal{J}_{f}
lemma 24: \qquad
let $f: X \rightarrow Y$ be a continuous surjection If f is a closed mop or an open map, then f is a quotient map.
here f being closed/open means that for any closed/open set A in $X, f(A)$ is closedlopen in Y
Proof: Assume f is an open map
If U open in Y, then $f^{-1}(U)$ open in X since X is conticinous.
If U any set in Y and $f^{-1}(u)$ open in X, then
$f\left(f^{-1}(0)\right)=0$ is open in Y since f is an open map
since f is surjective!
so $f^{-1}(u)$ open in $X \Leftrightarrow V$ open in K.
thus f is a quotient map
similar argument for f a closed map (exercise)
example:
let $X=[0,1]$
$Y=S^{\prime}=$ unit circle in \mathbb{R}^{2} with the subspace topology
$f: X \rightarrow Y: t \longmapsto(\cos 2 \pi t, \sin 2 \pi t)$
f is continuous (we know cos, sin are continuous from calculus now done by discussion of continuous maps to products)
f is clearly surjective
Claim: f is a quotient map
to see this we show f is a closed map
note: X is compact (Th $^{m} 19$)
Y is Hausdorff (since it is a metric space, $T^{m}{ }^{m} 6$)
A closed is $X \Rightarrow A$ compact (lemma 15)
$\Rightarrow f(A)$ compact (by lemma 17)
$\Rightarrow f(A)$ closed (by lemma 16)
Intuition: given $f: X \rightarrow Y$ with Y having the quotient topology we think of Y as "constructed" from X by identifying points

this is clear in this example but quotient maps make this rigorous
Th" ${ }^{\text {²5: }}$
Given a quotient map $f: X \rightarrow Y$ and another space Z Then
$g: Y \rightarrow Z$ is continuous
\Leftrightarrow
$g \circ f: X \rightarrow Z$ is continuous
More Intuition: If $f: X \rightarrow Y$ is a quotient map, then studying continuous functions on Y
is equivalent to
stadying contrincous functions on X that are constant on the preimage of points in Y
example: continuous functions on S^{\prime}
are the same as continuous functions on $[0,1]$ that map 0 and 1 to same point!
note: $[0,1]$ is a "smimpler" space thon S^{1}
so quotient maps allow us to study contrinous functions on S ' by looking at such functions on a "simpler" space
Proof: (\Rightarrow) composition of contivuous functions is continuous
\Leftrightarrow If U is open in Z, then $(g \circ f)^{-1}(u)=f^{-1}\left(g^{-1}(v)\right)$ is open in X by definition of the quotient topology, $g^{-1}(u)$ open in Y so g is continuous
We now make precise the idea of "gluing spaces together from simple pieces"
let X be a topological space
a decomposition D of X is a collection of disjoint subsets of X whose union is X
let $p: X \rightarrow D: x \mapsto$ set in D containing x
this is clearly a surjetive map
so we give D the quotient topology T_{p}
(2.e. $s \subset D$ is open $\Leftrightarrow \bigcup_{s \in \&} s$ is open in X)

D with this topology is called a decomposition space, or quotient space, of X
you should think of D as X where all the sets $S \in D$ have been collapsed to points
example:

$$
\begin{aligned}
& \text { let } X=\{0,1] \\
& D=\{\{x\} \mid x \in(0,1)\} \cup\{\{0,1\}\}
\end{aligned}
$$

each point on the interior of $[0,1]$ is in its own set in D the only set in D with more than one point is $\{0,1\}$ so D is $[0,1]$ with 0,1 identified to a single point let $p:[0,1] \rightarrow D$ be the quotient map not surprisingly D is homeomorphic to S^{\prime}

Proof: $[0,1] \xrightarrow{f} S^{\prime} \quad f(t)=(\cos 2 \pi t, \sin 2 \pi t)$
 clearly $\exists \bar{f}: D \rightarrow S^{\prime}$ by $\mathrm{Th}^{\mathrm{m}} 25 \bar{f}$ continuous
also clearly \bar{f} a bijection
now \bar{f} a homeomorphism by $T^{m} 18$
(since S'Hausclorff and D is compact since it is the continuous in age of $\{0,1]$)
so we have rigorously seen S^{\prime} is just $[0,1]$ with 0 and 1 "glued together"
generalizing this we have
Th ${ }^{\underline{m}} 26:$
let $f: x \rightarrow z$ be a continuous surjection
set $D=\left\{f^{-1}(a): a \in Z\right\}$
give D the quotient topology
The map f induces a contivicous bijection $g: D \rightarrow Z$ Moreover, g is a homeomorphism

$$
\Leftrightarrow
$$

f is a quotient map
Proof: Clearly f induces a bijection $g: D \rightarrow Z$

$$
\text { (for any } x \in \rho^{-1}(s) \text {, set } g(s)=f(x) \text {) }
$$

let $p: X \rightarrow D$ be the quotient map from above by $T h=25 g$ is continuous since $90 p=f$ is \Leftrightarrow If g a homeomorphism we know
U open in $Z \Leftrightarrow g^{-1}(u)$ open in D

$$
\Leftrightarrow f^{-1}(u)=p^{-1}\left(g^{-1}(u)\right) \text { open in } X
$$

(\Leftrightarrow) assuming f is a quotient map we see

$$
\& \subset D \text { open in } D \Leftrightarrow p^{-1}\left(-\frac{d}{}\right) \text { open in } X
$$

but $p^{-1}(z)=f^{-1}(g(z))$
so $\&$ open in $D \Leftrightarrow g(Z)$ open in Z
thus g^{-1} is continuous and hence g is a homeomorphism
examples:
1)

$$
\begin{aligned}
X= & {[0,1] \times[0,1] } \\
D= & \left\{\frac{\{(x, y)\} \mid 0<x, y<1\} \cup\{\{(1, y),(0, y)\} \mid 0<y<1\}}{U\{\{(x, 1),(x, 0)\} \mid 0<x<1\} \cup\{\{(0,0),(0,1),(1,0),(1,1)\}\}}\right.
\end{aligned}
$$

exercise: $D \cong S^{\prime} \times s^{\prime}$ Chomeomorphic
2)

3) Let $X=D^{2}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}=\left\{(r, \theta) \in \mathbb{R}^{2}: r \leq 1\right\}$

$$
D=\left\{\{(x, y)\}: x^{2}+y^{2}<1\right\} \cup\{\underbrace{\left\{(x, y): x^{2}+y^{2}=1\right.}_{s^{\prime}}\}\}
$$

So S^{2} is just D^{2} with boundary crushed to a point!

Proof: define $f: x \rightarrow s^{2}:(r, \theta) \mapsto(\sin \pi r \cos \theta, \sin \pi r \sin \theta, \cos \pi r)$ can check f is a continuous closed surjection
so f is a quotient map and f induces D
similarly check S^{n} is D^{n} with ∂D^{n} collapsed to point.
4) $X=S^{2 n+1}=\left\{\left(z_{0}, \ldots, z_{n}\right) \in \mathbb{C}^{n+1}:\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}+\ldots+\left|z_{n}\right|^{2}=1\right\}$
we say $z, w \in S^{2 n+1}$ are equivalent if $\exists \lambda \in S^{\prime}$ such that $\lambda z=w$

$$
\text { (ie. } \left.\left(\lambda z_{0}, \ldots, \lambda z_{n}\right)=\left(w_{0}, \ldots, w_{n}\right)\right)
$$

let $D=$ \{equivalence classes of points in $\left.S^{2 n+1}\right\}$
denote this by $\mathrm{s}^{2 n+1} \mathrm{~s}^{\prime}$ and give it the quotient topology another way to think of $5^{2 n+1} / \mathrm{s}^{1}$
let $\mathbb{C} \mathbb{P}^{n}=\left\{\right.$ complex lines in $\left.\mathbb{C}^{n+1}\right\}$
one dimensional linear subspaces
note: each complex line intersects $S^{2 n+1}$ in an S^{1}

exercise: Show there is a one-to-one correspondence between $S^{2 n+1} / s^{\prime}$ and $\mathbb{C} P^{n}$
(we can use this to put a topology on $\mathbb{C} P^{n}$) we call $\mathbb{C} P^{n}$ complex projective space
hard exercise: $\mathbb{C} P^{\prime}$ is homeomor phic to S^{2}
Hint: consider map $s^{3} \xrightarrow{h} s^{2}$

$$
\left(z_{0}, z_{1}\right) \mapsto\left(2 z_{0} \bar{z}_{1},\left|z_{0}\right|^{2}-\left|z_{1}\right|^{2}\right)
$$

h is called the Hoof map here $S^{2} \subset \mathbb{C} \times \mathbb{R}^{\lambda}$ and is a famous "fibration"
5) given spaces Y and Z,
a subspace A of Y, and
a continuous map $f: A \rightarrow Z$
consider the following decomposition of $Y \cup Z$:
the non-trivial elements of D are
sets that contain $\{\{a, f(a)\} \mid a \in A\}$
more than one point
we say that D is the space obtained by
gluing Y to Z along $A(v i a f)$
denote it by $Y U_{A} Z$, or better $Y U_{f} Z$
e.g. a)

$$
\begin{aligned}
& Y=[0,1] \\
& Z=\mathbb{R}^{2}
\end{aligned}
$$

$A=\{0,1\} \quad f(0)=(0,0) \quad f(1)=(1,0)$

b)

$$
\begin{aligned}
& Y=Z=D^{2} \\
& A=S^{\prime}=\text { boundary } D^{2} \\
& f: A \rightarrow Z: x \mapsto x
\end{aligned}
$$

exercise: $Y v_{f} Z$ homeomorphic to S^{2}
c)

$$
\begin{aligned}
& Y=D^{4}=\text { unit disk in } \mathbb{R}^{4}=\mathbb{C}^{2} \\
& A=\text { boundary of } D^{4}=S^{3} \\
& Z=S^{2}
\end{aligned}
$$

$f: A \rightarrow Z$ the Hop map from above hard exercise: $Y u_{f} Z$ homeomorphic to $\mathbb{C} P^{2}$

