
D
. Connectedness

a topological space X is disconnected it there exists disjoint ,

non - empty , open sets U and V in X such that X = U u V

it no such sets exit
, then X is connected

lemma 10 :

a topological space X isconnected

⇒

the only sets in X that are both

closed and open are X and 0

Proof : I ⇒ ) let U be an open and closed set in X

set V = X - u

note : V is also open and closed

if U not X or 0
,

then V and U are non - empty
so X is disconnected

, so we must have U -

- X or 0

⇐ ) essentially the same E#

Thall .

IR is connected

this is proven is analysis ,
so we skip the proof in class

,
but

I include it here if you want a reminder how this goes .

+
Proof :Suppose IR = A U B with A and B open , disjoint,

and non - empty
S in
N in can assume I a EA and be B with a < b
§ I

→ u let S = { x EA s . t
. x a b }S R

IE s

n note :  i ) S t 0 since a c- S

4 § a S is bounded above by b
I is

to so I a least upper bounds for S
S



se IR = AUB so SEA or s e B

it s e A
,

then Fe > o set
. Bees) CA since A open

let D= lls - toll ¥-and 8 = min 144%3 Bees )
b

note St be Bees) CA } ⇒ sees E S XO s 1. v. b
.

s -18 s b

:
. s must be in B

so I E > O St Bds) CB

by the definition of lab
.

I a sequence I se. } in S

such that s
,

→ s

so for large I s
,

C- Bds )

-Bec B

but s
,

C- A so An C s - e
, see ) t0

this contradicts An 13=0

so set A or B XO

: . such A and B don't exist and IR is connected E#

Th ' 12

a subset of IR is connected

⇐

it is an interval or 0

4.e . ( a. b)
,

[ a. b)
,

la , b ]
,

la , b ]
,

C- xp )
,

C- x. b)
,

Ca ,
x )

,
to

,
b ]

,
[ a. x )

,
0 )

Proof ⇐ ) same argument as proof of Thall

⇐ ) if A
-

is non - empty and not an interval
,

then I a. BEA

and CE IR - A such that a < cab

now C-x. c) n A ] and [ cc , x ) n A ] disconnect A
L#

example . [ o
,

l ) and Co
,

I ) are not

homeomorphicnote : This seemsobvious but not easy to prove

without connectedness !



to prove thisnote that for a# a C- I o
,

1)
,

to
,

it - la ) is

netconnected

it Lois and lo
.

D were homeomorphic then lol ' ]

would have this property too

indeed if f : lo , D → Lon ) were a homeomorphism
then for any a E Lo,

D we know that

( o , 1) - Ifla ) 3 is disconnected

its easy to see

flea , . ga ,
:( soil - lat ) → I cont - Head)

is a homeomorphism ,
so lo . A - la ) is disconnected

but note I oil ] - lotto . D is connected

Tha 13

The image of a connected set under a

continuous map is connected

Proof . let X be connected and f :X → Y continuous

set Z -

- f- I X) c Y ( with the subspace topology )

Claim : Z is connected

if not
, I non - empty , open , disjoint sets U and V in Z

such that Z -

- U u V

we noted earlier that f :X → Z is continuous

so X = f-
'

I Z ) -

- f
- '

( U u V ) = f -  ' ( u ) u f
- '

( v )

and f
- ' to )

, f
- ' ( v ) are open and non - empty

moreover f - '

I O ) n f
-  '

( v) = f
- '

I ur V) = f
- '

I 01--0

so X not connected *
L#

a space X is called path connected it for every pair of points

p.ge X
,

there is a continuous map

8 :c a. by → ×
←

called a

pathfrom p to 9



such that Hal =p ,
rib ) = of

Th ' 14 .

X path connected ⇒ X connected

Proof .

we show that not connected ⇒ not path connected

if X not connected
,

then 7 non - empty , disjoint , open sets

U and V set
.

X -

- Voll

let p EU and q
E V

it there were a path 8 :C a. b) → X from p tog

then 8-
' to ) and 8- ' Ill ) would disconnect I ai b ] * Th " 12

so X is not path connected
E#

examples .

B
"

1) B
"

c IR
" ( and IR " ) is connected

y
.

P

since it is path connected
.

q

indeed p.ge B
"

,
then

8 It ) = Li - Hpt tar is a path p to g

2) IR
"

- to ) is connected it n 22

since it is path connected d-÷"
to see this

,
take any p , g EIR

"
- 103

it line l through p , g does not suit work

contain the origin ,
then

THI ed- t ) p t top
82

works

if l contains the origin O
,

then a

pick E > o set. O E Bdp) 8
,

→

take any Z E 2431pA - l



let Y
,

CH -

- d- t ) p t t z

KCH -

- a - t , z  + + q
} Paths in IR

"

- { o }

then TCH = { Mkt ) t E Eoc 's ]

Valet - I) te [ 42
,

I ]

is a path p to
of ( note 8 continuous

by The 9)

Remark . This shows that IR
'

is not homeomorphic to IN
"

for n ± I

I since for any x E IN
'

,
IR

'

- Ix } disconnected )

is WEIR ? . . .
? no but harder ( might do later )

3) S
" "

c IR
"

is connected for n 22

by Tha 13 since g :(IR
"

- to3) → s
"

x 1-3
×

11×11

is continuous

E
. Compactness

a collection{ Val
a es

of subsets of X is called a cover of X

it X -

- desk
a topological space X is called compact if every cover of X

by open sets has a finite sub cover

?e
.

it { Vahey a cover of X with each Va open ,
then

I To of a finite subset of J such that

{ Valdez is a cover of X
.

lemma 15

Aclosed subset of a compact space is compact



Proof : let C be a closed subset of a compact set X

let I Va ) be an open cover of C I Va openin C )

so F sets I open inXs.t. Ua = To n C

let U = X - C

{ VT ) u fu ) is an open cover of X

so I I %
. ,

. . . Mulu } that also cover X

note { Va ,
. . . ,

Van ) covers C
Eff

lemma 16 .

a compact subset of a Hausdorff space is closed

Proof . let X be a Hausdorff space and Cc X a compact subspace
We show X - C is open ,

and hence C is closed
, by

Showing,
for each x ex - C

,
3 open set Ux such that

x c- Ux CX - C
,

then ( as before ) X - C = ¥ ,
Ex isopen

to this end
,

let x e X - C

V y E C
,

since X is Hausdorff
,

I disjoint open sets Vy and Uy

St
. x e Uy and y

E Vy

Clearly lllylyec is an open cover of C

SO I
Yi , . . . , ya Set

.
{ Vy

, , . . . Mya } is a cover of C

let U×= Uy,
A - . in Vyn

this isan open set and Ux n I Vy
,

u - -
au Vya) = 0

: .
U

× A C = 0 ⇒ x E Ux CX - C
L#

lemma 17 .

the continuous image of a compact space is compact

Proof . let f :X → Y be continuous and X compact



let I y ) be an open cover off CX)

so { f- ' IVa ) ) an open cover of X

. iI a finite sub cover { f
-

Yy
.

)
,

. . .

,
f- ' I Van ) )

so 14
, , . . . , Van ) is a cover of ft X )

#

The 18 :

let f :X → Y be a continuous bijection
this th ' is V

It X is compact and Y is Hausdorff helpful with quotient

then f is a homeomorphism
spaces !

Proof : we need to see f-
 '

: Y -7 x iscontinuous

re
. by Tha 7

,
t closed sets C in X we need to see

Lf- ' )
- '

(c) = f Ic ) is closed in Y

but C closed in X ⇒ C is compact by lemma 15

⇒ fcc ) is compact by lemma 17

⇒ fcc ) is closed by lemma 16*7

Tha 19 .

[ o
,

I ] is compact

this is proven is analysis ,
so we skip the proof in class

,
but

I include it here if you want a reminder how this goes .

Proof . let { y } be an open cover of Co.
D

X

S in
o n let C = { x e to , is set

.
[ on ] is contained in a finite sub collection

§ I

of { Va } )

E.Eµ §
Clearly o e C

§ is
We show C isopen and closed in foil ]

Exo

:
. since C is connected lemma 10 ⇒ C = foil ] and

s
we are done !



Cope : it x EC then let Va
, , . . . , Van be sets covering Eo

,
X )

I j St
. X E Va

;

Va
,

open ⇒ Is > o St .
( x - Sixt 8) C Ug .

so IX - S
,

Xt 8 ) C Er

Cctosed : it x is a limit point of C
,

then let Go be set containing X .

so I ( a. b) St
.

X E ( a. b) C Go

since x a limit point of C
,

we know ( C aid -

H ) n C * 0

let ye I I a. b) -

Ix) ) n C
,

so Ey
,

x ] ( or Ex
. 43) c Uy

.

now y E C ⇒ I { Va
, , . . .

,Van } set
.

lo . y ] C YY . . .

u Van

:
. Go

,
. . . Yan covers I on ]

,
so X E C and C closed

#

exercise The product of 2 compact spaces is compact
Hint : this is hard

. start by interpreting compactness
in terms of basic open sets

Th ' 20 ( Heine - Borel ) :

a subset of IR " is compact
⇒

it is closed and bounded

Proof . ⇐ ) it CCIR
"

is closed and bounded
then bounded ⇒ I R et

.
C c E - R

, RJ

but ER
,
R ) is homeomorphic to Coil ) lWhat's the home o

.
? )

so I - R
,

R ] is compact and thus so in ER ,
RT by exercise

now C closed in a compact set  ⇒ C compact ( lemma 15)

⇐ ) C a compact set in IR
"

⇒ C closed

by
lemma16 I since IR

"

( isbounded because if not
,

there
is Hausdorff by Th

' 6)

would be a sequence I Pn } in
' C set

.

I pal > n V n



clearly no subsequence of {pn } can converge

this contradicts the following result
L#

That 21

If X is a It countable space ,
then

X compact  ⇒ every sequence in X has }← called
a convergent subsequence Sequentially

If X a metric space ,
then ⇒ Compact

this proof is quite involved
,

we only prove ⇐ ) for metric spaces

it uses the following lemma that we will need later

lemma 22 I Lebesgue number lemma ) :

let IX. d) be a sequentially compact metric

espy
called

If E is an open cover of X
,

then ?S > 0 Lebesgue
such that for every set Sc X with diam I s) as number

I a set U EC such that S c U

here diam I s ) = sup { d I x. y ) I x. yes }

Proof . given ( X.d) a metric space and E an open cover of X

We show that if no such 8>0 exist
,

then X is not sequentially cpt .

if no such 8 exists then V n > o let Cu be aset with

1) diam Cn a th and

2) Cn not in any open set in E

take a point Xue Cn for each n

Claim : I xn ) has no convergent subsequence
to see this

, suppose find is a convergent subsequence

and xn
,

→ x

note X e U for some U E e

so I C > O such that Dead c U



and I I > o such that

dlxn
,

,
x ) < Eh

,
and

this 42 tf ez I

s :::::::::::c:::: .:* .
Proof of Th " 21€ ) :

Claim : If X is sequentially compact ,
then V-E > o

,
X can be

covered by finitely many E - balls

PI : if not
,

let x
,

c- X be any point

Bec xD does not cover X

let Xz EX - Back )

given x. , . . . ,Xn such that Beck )
,

. . .

,Bad Xu ) doesn't cover X

take xnt ,
E X - ( Bec xD u - .  - u Bccxn ))

note: d ( x
, ,x ,

) I E V it j

{ x
, } can have no convergent subsequence I since all balls of

radius 42 canhave at most one Xi )

:
. X is not sequentially compact Er

now let e be an open cover of X

by lemma 22
,

3- a Lebesgue number 8>0 for C

find a cover of X by finitely many balls of radius 813

each ball has diam -

- ¥ as

so each ball in some 4 .  in e

choose one such Ui for each ball

this is a finite sub cover of E
#,



F. Quotient Spaces

Luo tieat spaces are a great way to build interesting and

complicated spaces ,
and construct maps between them .

let X be a topological space ,

Y a set
,

and

f : X → Y a s±EEiEfunction

The collection

Tf -
- { U c Y I f -  '

tu ) open in X }

is called the quotient topology on Y

exercise . Show If is a topology on Y

Tha 23 :

let X and Y be topological spaces ,
and

f :X → Y
a surjective map

Then the quote ut topology If on Y

agrees with the given topology on Y

⇒

Uopeninu-fff-YGopen.mx#*O

a surjectivemap f :X → Y satisfying ④ is called a quotient map

hopefully it is clear a quotient map is continuous
.

← hypothesis
Proof . ⇐ ) U open in Y ⇐ V e If ⇒ f

-

Yu) open in X
T def I of If

so ④ true
f by ④

⇐ ) U e Tf ⇐ f
- '

I u ) open in X ⇐ V open in Y
L#

T
deff of If



lemma 24 .

let f : X → Y be a continuous surjection
If f is a closed map or an open map ,thenf- is a quotient map .

here t being closed / open means that for any closed I open

set A in X
,

HA ) is closed I open in Y

Proof Assume t is an open map
If U open in Y

,
then f

-

YU) open in X since X is continuous
.

If U any set in Y and f
- '

to ) open in X
,

then

f- If -  ' (d) = O is open in Y since f is an open map+
since f is surjective !

so f - '
tu ) open in X ⇐ U open in Y

.

thus f is a quotient map

similar argument for f a closed map ( exercise )
L#

example .

let X = Co , D

Y = S
'

= unit circle in IR
'

with the subspace topology

f- :X → Y : t to ( cos 2kt
,

Sir 21T t )

f- is continuous ( we know cos
,

sin are continuous from calculus

now done by discussion of continuous

maps to products )

f- is clearly surjective
Claim : f is a quotient map

to see this we show f is a closed map

note X iscompact Hh" 19)
Y is Hausdorff I since it is a metricspace ,

Tha 6)

A closed in X ⇒ A compact ( lemma 15)



⇒ flat compact I by lemma 17)

⇒ f CA) closed Iby lemma 16 )
L#

Intuition
. given f :X → Y with Y having the quotient topology

we think of Y as
"

constructed
"

from X by identifying points

§→ . → .

1 identify
O and 1

this is dear in this example but quotient maps make

this rigorous
Th " 25 .

Given a quotient map f :X → Y and another space
Z

Then
g : Y → Z is continuous

⇒

got : X -7 Z is continuous

More Intuition . If f : X → Y is a quotient map ,
then

studying continuous functions on Y

is equivalent to
=I=

studying continuous functions on X

that are constant on the preimageof points in Y

example .

continuous functions on S
'

we use this

are the same as continuous functions

on [ 0 ' ' ] that map o and 1 to same point!
} all the twine !

note I oil ] is a
"simpler

"

space than S
"

so quotient maps allow us to study continuous functions
on s

'

by looking at such functions on a
" sniper

"

space

Proof . ⇐ ) composition of continuous functions is continuous



⇐ If V is open in Z
,

then (g of )
"

lol - f
-  '

(g
-  'LUD is open in X

by definition of the quotient topology , g
-

Yu ) open in Y

so g is continuous E#

We now make precise the idea of "

gluing spaces together from

simple pieces
"

let X be a topological space

a decomposition D of X is a collection of disjoint subsets of X

whose union is X

let p
: X → D : x t set in

' D containing x

this is clearly a surge trie map

so we give D the quotient topology Tp

I i.e . S CD is open ⇐ Yess is open in X )

D with this topology is called a decomposition space ,
or

quotient space ,
of X

you should think of D as X where all the sets SED have

been collapsed to points

example .

let X = I o
,

I ]

D= { I x } Ix e Coin ) u { I on 33

each point on the interior of [ oil is in its own set in D

the only set in D with more than one point is So , 13

so D is [ o
, I ] with 0

,
I identified to a single point

let p : So, is → D be the quotient map

not surprisingly D is homeomorphic to S
'

Proof [ o
, if # s

'

, sin 21T t )

Pt
.

.
,

.

. f
-

-7

Htt = ( cos it t

clearly 3- I : D → s
'

by Th ' 25 I continuous



also clearly I a bijection
now F a homeomorphism by Th ' 18

I since S
'

Hausdorff and D is

compact since it is the

continuous image of Eo . I ] )

so we have rnigeromusdyseen S '
is just 1913 with

O and 1
" glued together

"

generalizing this we have

Tha 26 .

let f :X → Z be a continuous surjection

setD= { f
- ' la) : a e Z }

give D the quotient topology

The map f induces a continuous bijection g : D → Z

Moreover
, g is a homeomorphism

⇒

f- is a quotient map

Proof . Clearly t induces a bijection g
: D → Z

( for any x e p
-  '

I s )
,

set g Cs ) = ft x ) )

let p :X → D be the quotient map from above

by Th ' 25 g is continuous since gop -

- f is

⇐ ) it g a homeomorphism we know

U open in Z ⇐ g-
 ' tu ) open in D

⇒ f
- '

I u ) =p
-  ' (g

-  i (D) open in X

⇐ ) assumingf is a quotient map we see

S C D open in D ⇒ p
- ' tf ) open in X

but p
- ' I S ) = f

- '
I g (

SDso S open in D ⇐ g CS) open in Z

thus g
- i is continuous and hence g isahomeomorphism #



examples
1) X = [ 0

, I ] x Co ,
I ]

D= { {

IM
I 0 ex

, y c I } u { { Cl, y )
,

to
, y ) } I ocycl }

ulkxekx.es/ocx
. 33

9TH→¥0
exercise . D = S

'

x s
'

+ homeomorphic
2)

x =

t a-

3) let X = D ! { x , y ) EIRZ : x 't y
'

e I } = { Cr
,

t ) E IR
'

i r E I }

D = { { Cx
, y ) ) : X 't y

2 a } u { { Cx , y ) : Hey 2=1 } )
my

f- So 5 is just④ →
Irishman: day

I a point !

o
t

←
unit sphere

Proof: define f : X → s
'

: ( r
,

a ) t I sin  
Tir cost

,
suit rsuit ,

cos Tlr )

can check f- is a continuous closed surjection



So f is a quotient map.
and f induces D

similarly check S
"

is D
"

with 3D
"

collapsed A point .

4) X = S
" "

= { CZo
,

. . .

,
Zu ) E E

" "
: IZoft IZ

,
ft

. . .

t IZat
'

= I }
we say Z

,
w e S

" "

are equivalent if FXES
' such that XZ -

- w

( i.e . ( X Zo
, . . . X Zn ) = ( Wo ,

. . . , wa ))
t unit S

'
in a

let D= { equivalence classes of points in S
" " }

denote this by 5%1 and give it the quotient topology

another way to think of S
"  

% i

let Eph = { complex lines in an
" }

-

one dimensional linear subspaces

note : each complex 'C
a

line intersects sit
.

put
'

in an S
'

sent '

•

exercise Show there is
£

a one - - to -one correspondence
between 5 "  "

Isi and EP "

( we can use this to put a topology on EP
"

)

we call EP "

complex projective space

hard exercise . EP
'

is homeomorphic to 5

Hint : consider map S3

h→
5

( Z of,
) I → ( 2 ZOE

,
It ol

'
- I zip )

T A

h is called the Hopf map here 5 c exit

and is a famous "

fibration
"



5) given spaces
Y and Z

,

a subspace A of Y
,

and

a continuous map f : A  → Z

consider the following decomposition of Yu Z :

the non - trivial elements of D are

/ { { a
,

f ca ) } I a c- A }
sets that contain

more than one point

we say that D is the space obtained by
gluing Y to 2- along A ( via f )

denote it by YUAZ ,
or better YUFZ

C. g . a) Y = [ o
,

I ] A  = { o
, I } flo ) -

- ( o.O ) flit = 140 )

" " "

yo ¥ a
b) Ys Z= D2

A  = S
'

= boundaryD
'

f : A  → Z : x t x

"
'

z

"

yid → ' id =

exercise .
Y Uf Z homeomorphic to S2

c) Y - D "
= unit disk in 1124=62

A  =boundary of 134=53

Z  = S2

f : A  → Z the Hopf map fromabove

hard exercise : Y of Z homeomorphic to EP
'


