VI. Seifert - Van Kampen Theorem

A. Free Products with amalgamation we want to build groups from other groups given A and B the free product of A and B is the set A * B of all sequences $\chi = (\chi_1, \chi_2 \dots \chi_m)$ some m where x; EA or B x; = e (identity in either group) X1, X1+1 from different groups we call x a word in the letters AUB of length m let e = empty word define <u>multiplication</u> by $\begin{pmatrix}
(x_{1,...,}x_{m},y_{1})...,y_{n}) & \text{if } x_{n},y_{1} \text{ in} \\
define \underline{x_{n},y_{1}} & \text{in} \\
(x_{1,...,}x_{m-1}, x_{m}y_{1})y_{2},...,y_{n}) & \text{if } x_{n},y_{1} & \text{in} \\
(x_{1,...,}x_{m-1})(y_{2},...,y_{n}) & \text{if } x_{n},y_{1} & \text{in} \\
(x_{1,...,}x_{m-1})(y_{2},...,y_{n}) & \text{if } x_{n},y_{1} & \text{in} \\
define \underline{x_{n},y_{1}} & \text{in} \\
define \underline{x_{n},y_{n}} & \text{in} \\
define \underline{x_{n},y_{n}} & \text{in} \\
define \underline{x_{n},y_{n}} & \text{in} \\
define$ note: ex=x·e=x Vx $\chi^{-1} = (\chi^{-1}_{\mu\mu}, \chi^{-1}_{\mu})$ exercise: check associativity (induct on length of y)

Nice property for free products: ____

let
$$i: A \rightarrow A * B$$
 be the obvious inclusions
 $j: B \rightarrow A * B$
given any homomorphisms $\psi: A \rightarrow H$
 $f : A \rightarrow H$, H any group just apply
 $f : A * B \rightarrow H$ such that
 $f \circ i = \phi$ and $f \circ j = \psi$

exercise: Show if D is another group with the above property then D=A*B (the above property is called a "universal property") <u>examples:</u> 1) Recall Z is the free group on one generator, say g Z= <g>= F, _____ means the group on one generator Coll words in g and g-1 (n.e. all powers of g) recall F_n is the free group on n generators e.g. $F_2 = all reduced$ words in g_1, g_2, g_1', g_2' $\underline{Claim}: F_2 \cong \mathbb{Z} * \mathbb{Z}$ indeed $\mathbb{Z} * \mathbb{Z} = (word in g, g^{-i}) \cdot (word in h, h^{-i}) \cdot \dots$ (9) (h) let X = {g1, g2} generate F, set $f: X \to \mathbb{Z} * \mathbb{Z} : \begin{cases} g_1 \longmapsto g \\ g_1 \longmapsto h \end{cases}$ since F2 a free group on X, J! homeomorphism $\hat{f}:F_{3} \to \mathscr{U} \ast \mathscr{U}$ extending f also Z= (9) free so 3! homeomorphism $\phi: \mathcal{E} \to F,$

defined by
$$g \mapsto g_{1}$$

similarly for $\overline{z} = \langle h \rangle$ we have
 $\psi: \overline{z} \to F_{2}$
defined by $h \mapsto g_{2}$
by property of free products above $\exists!$ homomor
 $h: \overline{z} * \overline{z} \to F_{2}$
that agrees with φ and Ψ on $\langle g \rangle, \langle h \rangle$, resp.
note: $\overline{f} \circ h: \overline{z} * \overline{z} \to Z * \overline{z}$ is the identity
 $h \circ \overline{f}: F_{2} \to F_{2}$
 $v \circ \overline{f}$ and h are isomorphisms,
enerccise: more generally $F_{n} \equiv \overline{z} * \overline{z} * \dots * \overline{z}$
 $z \in F_{k} * F_{n-k}$ $o \leq k \leq n$
2) recall $\overline{z}_{1} = integers modulo 2$
 $\overline{z}_{1} * \overline{z}_{2} = \{g, g_{2} \dots g_{n}, g, g_{n}, g_{n}$

<u>exercise</u>: prove this

given groups G., Gz, and K and homomorphisms 4:K->6, and $\mathcal{Y}_2: K \rightarrow \mathcal{G}_2$ then the free product with amalgamation is $G_{1} *_{k} G_{2} = G_{1} * G_{2} / \langle \Psi_{1}(k) \Psi_{2}(k)^{-1} \rangle_{k \in K}$ where (Y, (k) Y2 (k)) here is the smallest normal subgroup of G, *G2 containing the set { Y, (k) Y2(k) - '} kek the idea here is that we have all words in the elements of G, and Gz but if we see Y, (k) in a word we can replace it with Yz (k) (and vice versa) e.g. $\cdots \Psi(k) \cdots = \cdots \Psi(k) \Psi(k)^{-1} \Psi_2(k) \cdots$ $= \cdots \qquad \Upsilon_{i}(k) \left(\Upsilon_{i}(k)^{-1} \Upsilon_{i}(k) \right) \cdots$ $=\cdots \mathcal{Y}(k)\cdots$ nice property of free products with amalgamation: the inclusion maps $i_j: G_j \rightarrow G_i * G_z$ induce maps īj: G1→ G, *KG2 (by composing with quotient map) given any homomorphisms ¢,: G, → H ← any group $\phi_{1}: G_{2} \longrightarrow H$ such that $\phi_1 \circ \Psi_1(k) = \phi_2 \circ \Psi_2(k) \quad \forall k \in K$

there exists a unique homomorphism

$$\phi: G, *_{k}G_{2} \longrightarrow H$$

such that
 $\phi \circ \overline{\imath}_{1} = \phi_{1}$ and $\phi \circ \overline{\imath}_{2} = \phi_{2}$

exercise: Prove this

In terms of presentations
if
$$G_1 \cong \langle g_1 \dots g_n | r_1 \dots r_m \rangle$$

 $G_2 \cong \langle g'_1 \dots g'_n | r_1 \dots r'_m \rangle$
 $K \cong \langle h_1 \dots h_p | r'_1 \dots r'_m \rangle$

then

$$G_1 *_K G_2 \cong \langle g_1 ... g_n, g'_1 ... g'_n, |r_1 ... r_m, r'_1 ... r'_n, q'_1 ... q'_1 (h_2) \Psi_2(h_2)^{-1} \rangle$$

 $\Psi_1(h_1) \Psi_2(h_1)^{-1} ... \Psi_1(h_2) \Psi_2(h_2)^{-1} \rangle$

B <u>Seifert - Van Kampen Theorem</u> So far we have only been able to compute The of spaces homotopy equivalent to a point or S' With the following theorem we can do much more!

$$Th = 1 (Sectent - Van Kampen):$$

$$let X be a topological space with base point X_{o}$$
suppose X = A v B where
A and B are path connected open sets,
A n B is path connected, and
 $x_{o} \in A \cap B$

$$let \Psi_{A}: T_{i}(A \cap B, x_{o}) \rightarrow T_{i}(A, x_{o}) \text{ and}$$
 $\Psi_{B}: T_{i}(A \cap B, x_{o}) \rightarrow T_{i}(B, x_{o})$
be the homomorphisms induced by the
inclusion maps
$$C A$$
AnB $\subseteq B$
Then
$$T_{i}(X, x_{o}) \cong T_{i}(A, x_{o}) *_{T_{i}(A \cap B, x_{o})} T_{i}(B, x_{o})$$
before we sketch a proof, let's look at a tew examples
examples:
i) let $W_{a} = "wedge of 2 circles"$
ize take $x, \in S'$ be a fixed point on S'
 $x_{i} \in S'$ be a fixed point on a copy of S'
then
$$W_{2} = S' U S' [X, x_{o}]^{2}$$
 W_{2}
 V_{4}
 $V_{4} = [(x, y_{i})] (x + 0]^{2} y^{2} = i]$
 V_{4}
 V_{4}
 $V_{4} = [(x, y_{i})] (x + 0]^{2} y^{2} = i]$

so $\pi_i(A, x_o) \cong \{e\} \cong \pi_i(B, x_o) \cong \langle | \rangle$ $\pi_i(A \cap B, x_o) \cong \mathbb{Z} \cong \langle g | \rangle$

 $\Psi_{A}: \ \Psi_{I}(A \land B, \times_{o}) \longrightarrow \Psi_{I}(A, \times_{o}): g^{n} \longmapsto e \quad \forall n$ similarly for 4 6 no generators $50 \ \pi_{1}(5^{2}, \chi_{o}) \cong \{e\} *_{\mathcal{H}} \{e\} \cong \langle | \psi_{A}(g) \psi_{B}(g)^{-1} \rangle$ = {e} trivial group : TI (5, x) is the trivial group we will see more complicated examples later, but first Idea of proof of Seifert-Van Kampen Theorem: given a loop & in X based at & EANB ß X you can pick points x1,... xk in VA (AAB) st. arc x to x2+1 in A or B (use lebesque number) now use path connectedness of ANB to choose arcs in ANB connecting to to Xi now consider

the inclusion maps give $\phi_A: \ T_i(A, x_o) \longrightarrow \ T_i(X, x_o)$ $\phi_{\mathcal{B}}: \mathcal{T}_{i}(\mathcal{B}, x_{o}) \longrightarrow \mathcal{T}_{i}(\mathcal{K}, x_{o})$ note for hETT, (ANB, ro) we see $\phi_{B} \circ \Psi_{B}(h) = i(h)$ where $i:A \cap B \to X$ is $\phi_{A} \circ \psi_{A}(4) = \dot{\gamma}(4)$

so the universal property for free products with amalgamation says we get a homomorphism $\phi: \pi_{I}(A, x_{\circ}) * \pi_{I}(A \cap B, x_{\circ}) \xrightarrow{T_{I}(B, x_{\circ})} \xrightarrow{T_{I}(X, x_{\circ})}$ the above argument says & is onto we are left to see \$ is injective (see any book on algebraic topology for this)

C. Fundamental Group, Surfaces, and 1st Homology

let's compute M, (T', x.)

<u>exercisé</u>: A ~] ≝ 5' homeomorphic

So we have $\begin{aligned}
\pi_{i} (\mathcal{T}^{2}, \pi_{o}) &\cong \pi_{i} (\mathcal{A}, \pi_{o}) * \pi_{i} (\mathcal{A}, \mathcal{B}, \pi_{o}) \\
&\cong \langle g_{i} g_{2} | \rangle *_{\langle u_{1} \rangle} \langle 1 \rangle \\
&\cong \langle g_{i} g_{2} | \mathcal{Y}_{A} (u) \mathcal{Y}_{B} (u)^{-1} \rangle \\
&\cong \langle g_{i} g_{2} | g_{2} g_{i}^{-1} g_{2}^{-1} \rangle \\
g_{i} g_{2} g_{i}^{-1} g_{2}^{-1} \text{ is called the <u>commutator</u> of g, and g_{2} and is denoted <math>\Sigma g_{i}, g_{2}] \\
\text{the relation says } g_{i} \text{ and } g_{2} \text{ commute} \\
g_{i} g_{2} g_{i}^{-1} g_{2}^{-1} &= g_{2} \\
g_{i} g_{2} g_{i}^{-1} g_{i}^{-1} &= g_{2} \\
g_{i} g_{i}^{-1}$ we saw earlier that this is a presentation for $\mathbb{Z} \oplus \mathbb{Z}$ so $\pi_i(T^2, x_o) \cong \mathbb{Z} \oplus \mathbb{Z}$ since $\pi_i(S, x_o) = \{e\}$ we see S^2 and T^2 are not homeomorphic we already knew this, but now we see they are also not even homotopy equivalent! now if Σ_g is a surface of genus g, then recall $\Sigma_g = 4g$ -gon with edges identified

 $\frac{exercise}{\pi_{1}(\Sigma_{g}, \times_{o})} \cong \langle 9_{1}, \dots, 9_{2g} | \Sigma_{9_{1}}, 9_{2} \Im_{9_{3}}, 9_{4}] \dots [9_{2g-1}, 9_{2g}] \rangle$

are these groups different? If G is any group, ifs <u>commutator subgroup</u> [G,G] is the smallest normal subgroup of G containing {ghg-1h⁻¹}_{g,heG} the <u>abelionization</u> of G is $\frac{1}{2}$ [G,G]

exercise:

i) Show
$$G_{EG,GJ}$$
 is abelian
2) if $G \cong \langle g_1 ... g_n | r_1 ... r_m \rangle$ then
 $G_{EG,GJ} \cong \langle g_1 ... g_n | r_1 ... r_m [g_1, g_j] , j = 1, ..., n \rangle$

3) if
$$G \cong H$$
, then $G'_{EG,GJ} \cong H'_{EH,HJ}$
if X is a path connected topological space and $\pi_0 \in X$
then the first homology group of X is
 $H_1(X) \cong \pi(X,\pi_0)$, $\pi(X,\pi_0)$
So $H_1(Z_g) \cong \langle g_1 \dots g_{2g} \mid [g_1,g_2] \dots [T_n,g_{2g}], g_1,g_2], \dots$
note the first relation follows from all the
other relations, so we can discard it
 $H_1(Z_5) \cong \langle g_1 \dots g_{2g} \mid [g_{11},g_{2J} = 1, j=1, \dots 2g \rangle$
enercise: $\langle g_1 \dots g_{2g} \mid [g_{11},g_{2J} = 1, j=1, \dots 2g \rangle$
enercise: $\langle g_1 \dots g_{2g} \mid [g_{11},g_{2J} = 1, j=1, \dots 2g \rangle$
enercise: $\langle g_1 \dots g_{2g} \mid [g_{11},g_{2J} = 1, j=1, \dots 2g \rangle \cong \mathbb{Z} \oplus \dots \oplus \mathbb{Z} \cong \bigoplus_{2g} \mathbb{Z}$
(if Z_g has " $2g$ independent holes")
now is $\Phi_k \mathbb{Z} \cong \Phi_g \mathbb{Z}$ if $k \equiv \ell$?
recall $\Phi_k \mathbb{Z} \subseteq \mathbb{R}^k$ (set of integer points)
and group operation in $\Phi_k \mathbb{Z}$ is just vector addition
 \mathbb{R}^k is spanned by $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}_{j_1} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}_{j_2} \dots \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}_{j_1} \dots \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}_{j_1} \dots \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}_{j_1} \dots \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \mathbb{Z}$
 $a linear map on \mathbb{R}^k$ is determined by unat it
 $does on a basis$
so any homomorphism $\Phi: \Phi_k \mathbb{Z} \to \oplus_g \mathbb{Z}$ will
induce a linear map $\overline{\Phi}: \mathbb{R}^k \to \mathbb{R}^k$

$$\begin{array}{l} \underbrace{exercuse}_{\mathrel{\sc e}} & \varphi \text{ is a group isomorphism} \Rightarrow \overline{\Phi} \text{ is a} \\ vector \text{ space isomorphism} \\ \text{this implies} & \widehat{\Phi}_{k} \overset{}{=} & \widehat{\Phi}_{k} \overset{}{=} & \varphi \\ \text{this implies} & \widehat{\Phi}_{k} \overset{}{=} & \widehat{\Phi}_{k} \overset{}{=} & \varphi \\ \vdots & H_{i}(\Sigma_{g}) \overset{}{=} & H_{i}(\Sigma_{h}) & (\Rightarrow g = h \end{array}$$

$$\frac{\mathcal{T}_{h}^{\mu}\mathcal{Z}}{\mathcal{Z}_{g}} \cong \mathcal{Z}_{h} \Leftrightarrow \mathcal{Z}_{g} \cong \mathcal{Z}_{h} \Leftrightarrow g = h$$

$$\Leftrightarrow \mathcal{X}(\mathcal{Z}_{g}) = \mathcal{X}(\mathcal{Z}_{h})$$

$$\Leftrightarrow H_{i}(\mathcal{Z}_{g}) = H_{i}(\mathcal{Z}_{h}) \Leftrightarrow \mathcal{T}_{i}(\mathcal{Z}_{g}, \mathcal{X}_{0}) \cong \mathcal{T}_{i}(\mathcal{Z}_{g}, \mathcal{Y}_{0})$$

everuse:
1) Show the fundamental group of
$$N_n$$
 is
 $T_i(N_n, x_o) \cong \langle g_1 \dots g_n | g_i^2 \dots g_n^2 \rangle$
2) Show the fundamental group of $\Sigma_{g,k}$ for $k > 0$ is
 $T_i(\Sigma_{g,k}, x_o) \cong F_{2g+k-1}$
and for $N_{n,k}$ for $k > 0$ is
 $T_i(N_{n,k}, x_o) \cong F_{n+k-1}$

D. Groups and Topology

given a topological space Y and a continuous map $a: 5^{n-1} \rightarrow \gamma$ the space obtained from Y ba attaching an n-cell is $Y U_a D^n = Y \coprod D^n / \{x \sim a(x)\}_{x \in S^{n-1}}$ of course Yua D" has the quotient topology we can similarly attach many n-cells at one time $1.e. given a = \prod_{\lambda} a_{\lambda} \qquad a_{\lambda} : S_{\lambda}^{n-1} \to Y$ then Y Va II D an n-complex, or n-dimensional CW complex is defined inductively by a (-1)-complex is Ø an n-complex is any space obtained by attaching n-cells to an (n-1)-complex an n-complex is finite if it has finitely 1-cells for all 1 between 0 an n the <u>k-skeleton</u> of an n-complex X is the union of all 2-cells for 1=k, it is denoted by X (k) (can define so-dimensional complexes as X = UX, where X, is an n-complex obtained from Xn-1 by attaching n-cells here U in X is open to Un X, open Vn) this is called the weak topology on X explains the Win CW

Fact: (W complexes are Hausdorff examples: 1) any n-simplicial complex is an n-complex 2) Sⁿ is an n-complex 0-sheleton is attach n-cell by a: 20" -> {pt} Constant map D"(///) 5" a . 2.e. 5" is D" with the boundary collapsed to a point 3) 1- complexes are graphs (and graphs are 1-complexes) 4) lompact surfaces without boundary is a 2-complex $E_g = P/n$ Zy I-cells 1 2-cell Pitself 1 O-cell $\mathcal{H}_{q_2}^{o_2} = \frac{\partial P}{\partial n}$ 5) Fact: any (differentiable) manifold is homotopy equivalent to a CW-complex

$$\frac{Th - 4}{Iet \ 6 \ be \ a \ group}$$

$$Then \ \exists \ a \ topological \ space \ X \ (in \ fact \ a \ 2-complex)$$

$$such \ that \ \pi(X, x_o) \cong 6$$

Proof: we consider a group G with a finite presentation

$$\langle g_1 \dots g_n | r_i \dots r_m \rangle$$

the general case is almost the same but need to be
happy with infinite complemes
let $W_n = wedge \ of \ n \ circles \ (so \ a \ 1-complex)$
recall $\mathcal{T}_i (W_n, x_o) \cong F_n \cong \langle g_1 \dots g_n | \rangle$
let $a_i : \partial D^2 \longrightarrow W_n$ be a continuous map such that
 $(a_1)_* : \mathcal{T}_i (\partial D_i^2 p_o) \longrightarrow \mathcal{T}_i (W_n, x_o)$
1. $\longmapsto recall$

exercise: construct q_i Hint: if $r_i = g_{j_1}^{\epsilon_1} \dots g_{j_k}^{\epsilon_k}$ $\epsilon_i = \pm 1$ $eg_{r=g_1g_2g_1}^{-1}$ then define r_i on $[j_{k_1}, j^{+1}/k]$ $j=0,\dots,k-1$ then define r_i on $[m_{n}, j^{+1}/k]$ $j=0,\dots,k-1$ g_1 to map onto the loop in W_n corresponding to g_{j_i} g_2 agreeing with orientation or not depending on ϵ_i $let X = W_n U_{q_i} (\prod_{i=1}^n D^2)$ $lemma 3 \Rightarrow T_i (X, x_b) \equiv \langle g_1 \dots g_n | r_1 \dots r_m \rangle$

It G and H be any groups, and

$$\phi: G \rightarrow H$$

any homomorphism.
let X, Y be topological spaces such that
 $\pi_i(X, x_o) \cong G$ and $\pi_i(Y, y_o) \cong H$
If X is a 2-complex, then \exists a continuous
function $f: X \rightarrow Y$
such that $f_* = \phi$

Remark: Note this implies that any homomorphism between
the tundamental groups of surfaces is induced by
a continuous map!
Proof: Though not necessary we take X to be the 2-complex
defined in
$$Th^{m}$$
 4
so $Ti_i(X_ix_0) \equiv G \cong \langle g_1 \dots g_n | r_1 \dots r_m \rangle$
let \mathcal{B}_i be any loop in Y based at Yo
st. $[\mathcal{B}_i] = \phi(g_i) \in T_i(Y, Y_0)$
 $1 \leq \mathcal{B}_i : [\mathcal{D}_i, 1] \rightarrow Y$ s.f. $Y_i(0) = \mathcal{B}_i^{(1)} = Y_0$
 $[\mathcal{B}_i] = \phi(g_i)$
now $X = W_n \cup_{q_n} (I \perp D^2)$
define $f: W_n \rightarrow Y$ on the g_i bop by \mathcal{B}_i
 $\frac{1}{2} + \frac{1}{2} + \frac{$

recall
$$W_{n} = \prod_{i=1}^{n} [2^{o}, 1]/n$$
 where all end points
ore identified
so on $1^{\frac{1}{2}} [2^{o}, 1]$ define f to be δ_{i}
this decends to the quotient space.
We want to extend f over each 2-cell in X
let D^{2} be the $1^{\frac{5}{2}}$ 2-cell (some argt for others)
note $a_{i} [3D^{2}]$ is a loop in W_{n} representing
the relation r_{i}
so $[a_{i}(3D^{2})] = e$ in $T_{i}(X, r_{0}) = 6$ (note $x_{0}ea_{i}(3D^{2})$)
 $\therefore \phi([0, (3D^{2})]) = e$ in $T_{i}(Y, r_{0})$
 $f_{i}: f \circ a_{i}: 5' \rightarrow Y$
 $f_{i}: 5' \rightarrow$

clearly H widuces a map

$$[H:D^2 \rightarrow Y]$$

such that $[H]_{\partial D^2} = f \circ Q_i$
so use H to extend f over the 1^{St} 2-cell
continuing we get $f: X \rightarrow Y$
by construction $f_{=} = \phi$ on the g_i so they
are equal on all of G ##

let
$$\Sigma, \Sigma'$$
 be compact surfaces without boundary
 $\Sigma' \underline{not}$ homeomorphic to $5^2 \text{ or } P^2$
Then $f_0, f_i: \Sigma \to \Sigma' (f_i(x_0) = \gamma_0)$ are homotopic (base p_1^+)
 \overleftarrow{P}
 $(f_0)_{\mathbf{x}} = (f_i)_{\mathbf{x}} : T_i(\Sigma_i x_0) \to T_i(\Sigma'_i \gamma_0)$

"maps between (most) surfaces are determined
(upto homotopy) by their action on
$$T_r$$
"
Remark:
i) not true in higher dimensions
z) {homotopy classes $S^2 \rightarrow S^2$ } $\iff Z$
Proof: (\Rightarrow) exercise in Section I just after Th^{m_3}
(\Leftarrow) need to define
 $H: \Sigma \times [0,1] \rightarrow \Sigma'$
 $S.t. H(x,0) = f_0(x)$
 $H(x,1) = f_1(x)$
now let $g_1 \dots g_{2g}$ be generators of $T_r(\Sigma, x_0)$