VI. Seifert-Van Kampen Theorem
A. Free Products with amalgamation we want to build groups from other groups given A and B
the free product of A and B is the set $A * B$ of all sequences $x=\left(x_{1} x_{2} \ldots x_{m}\right)$ some m where $x_{i} \in A$ or B
$x_{i} \neq e$ (identity in either group)
x_{1}, x_{1+1} from different groups
we call x a word in the letters $A \cup B$ of length m let $e=$ empty word
define multiplication by

$$
\begin{aligned}
\left(x_{1}, \ldots x_{m}\right)\left(y_{1}, \ldots y_{n}\right)
\end{aligned}=\left\{\begin{array}{l}
\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right) \\
\left(x_{1}, \ldots, x_{m-1}, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right) \\
\left(x_{1}, \ldots, x_{m-1}\right)\left(y_{2}, \ldots y_{n}\right) \\
\uparrow
\end{array}\right.
$$

$$
\text { if } x_{n}, y_{1} \text { in }
$$ different factors if $x_{n} y_{1}$ in same factor and $x_{n} y_{1} \neq e$ if x_{n}, y_{1} in same factor and $x_{1} y_{1}=e$

note: $\quad e \cdot x=x \cdot e=x \quad \forall x$

$$
x^{-1}=\left(x_{m}^{-1}, \ldots, x_{1}^{-1}\right)
$$

exercise: check associativity (induct on length of y)
Nice property for free products:
let $\begin{aligned} & i: A \rightarrow A * B \\ & j: B \rightarrow A * B\end{aligned}$ be the obvious riclusions

$$
j: B \rightarrow A * B
$$

given any homomorphisms

$$
\begin{aligned}
& \phi: A \rightarrow H \\
& \psi: B \rightarrow H \quad, H \text { any group }
\end{aligned}
$$

just apply中, 4 to le thess in
\exists ! homomorphism $f: A * B \rightarrow H$ such that $f \circ i=\phi \quad$ and $\quad f \circ j=\psi$ a word

Pictorially

exercise: Show if D is another group with the above property then $D \cong A * B$
(the above property is called a "universal property")
examples:

1) Recall \mathbb{Z} is the free group on one generator, say g

$$
\begin{aligned}
\mathbb{Z}= & \langle g\rangle= \\
\tau_{1} \leftarrow \text { means free } & \text { on one } \\
& \tau_{\text {all }} \text { words in } g \text { and } g^{-1} \\
& \text { (ne. all powers of } g \text {) }
\end{aligned}
$$

recall F_{n} is the free group on n generators

$$
\text { e.g. } F_{2}=\text { all reduced words in } g_{1}, g_{2}, g_{1}^{-1}, g_{2}^{-1}
$$

Claim: $F_{2} \cong \mathbb{Z}$ 世
indeed $\underset{\lambda}{\mathbb{Z}} * \mathbb{Z}=\left(\right.$ word in $\left.g, g^{-1}\right) \cdot\left(\right.$ word in $\left.h, h^{-1}\right) \cdot \ldots$ $\langle g\rangle\langle h\rangle$
let $X=\left\{g_{1}, g_{2}\right\}$ generate F_{2}
set $f: x \rightarrow \mathbb{Z} * \mathbb{Z}:\left\{\begin{array}{l}g_{1} \longmapsto g \\ g_{2} \longmapsto h\end{array}\right.$
since F_{2} a free group on X, \exists ! homeomorphism

$$
\tilde{f}: F_{2} \rightarrow \mathbb{Z} * \mathbb{Z}
$$

extending f
also $\mathbb{Z}=\langle g\rangle$ free so \exists ! homeomorphism

$$
\phi: \mathbb{Z} \rightarrow F_{2}
$$

defined by $g \mapsto g_{1}$
similarly for $\xi=\langle h\rangle$ we have

$$
\psi: \mathbb{Z} \rightarrow F_{2}
$$

defined by $h \mapsto g_{2}$
by property of free products above 3 ! homomor.

$$
h: \mathbb{Z} * \mathbb{Z} \rightarrow F_{2}
$$

that agrees with ϕ and ψ on $\langle g\rangle,\langle h\rangle$, resp.
note: $f 0 h: \mathbb{Z} * \mathbb{Z} \rightarrow \mathbb{Z}$ 解 the identity

$$
\text { ho }: F_{2} \rightarrow F_{2}
$$

so \tilde{f} and h are isomorphisms,

$$
\text { exercise: more generally } \begin{aligned}
F_{n} & \cong \underbrace{\mathbb{F}_{*}^{*} \ldots * \mathbb{Z}}_{n \text { times }} \\
& \cong F_{k} * F_{n-k} \quad 0 \leq k \leq n
\end{aligned}
$$

2) recall $\mathbb{Z}_{2}=$ integers modulo 2

$$
\mathbb{Z}_{2} * \mathbb{Z}_{2}=\{\underbrace{g_{1} g_{2} \ldots g_{1} g_{2}}_{k \text { times }}, \underbrace{g_{1}, g_{2} \ldots g_{1} g_{2} g_{1}}_{k \text { times }}, \underbrace{g_{2} g_{1} \ldots g_{2} g_{1}}_{k \text { times }}, \underbrace{g_{2} g_{1} \ldots g_{2} g_{1} g_{2}}_{2}, e\}_{k=0}^{\infty}
$$

exercise: check this
3) Recall a group presentation of G is an isomorphism. from G to $\left\langle g_{1}, \ldots g_{n} \mid r_{1}, \ldots r_{m}\right\rangle$ where $\left\langle g_{1} \ldots g_{n} \mid r_{1} \ldots r_{m}\right\rangle$ is the group $F_{n} /\left\langle r_{1} \ldots r_{m}\right\rangle$ where F_{n} is the free group

$$
\text { egg. } \mathbb{Z}_{n} \cong\left\langle g \mid g^{n}\right\rangle
$$ and $\left\langle r_{1} \ldots r_{m}\right\rangle$ is the smallest normal subgroup of F_{n} containing the r_{1}

if $\left\langle g_{1} \ldots g_{n} \mid r_{1} \ldots r_{m}\right\rangle$ and $\left\langle g_{1}^{\prime} \ldots g_{n}^{\prime}, \mid r_{1}^{\prime} \ldots r_{m}^{\prime}\right\rangle$ are
presentations of G_{1} and G_{2}, respectively then $G_{1} * G_{2}$ has presentation

$$
\left\langle g_{1} \ldots g_{n}, g_{1}^{\prime} \ldots g_{n^{\prime}}^{\prime} \mid r_{1} \ldots r_{m_{1}} r_{1}^{\prime} \ldots r_{m^{\prime}}^{\prime}\right\rangle
$$

exercise: prove this
given groups G_{1}, G_{2}, and K and homomorphisms

$$
\begin{aligned}
& \Psi_{1}: K \rightarrow G_{1} \text { and } \\
& \Psi_{2}: K \rightarrow G_{2}
\end{aligned}
$$

then the free product with amalgamation is

$$
G_{1} *_{k} G_{2}=G_{1}^{*} G_{2} /\left\langle\psi_{1}(k) \psi_{2}(k)^{-1}\right\rangle_{k \in K}
$$

where $\left\langle\Psi_{1}(k) \Psi_{2}(k)\right\rangle_{h \in K}$ is the smallest normal subgroup of $G_{1} * G_{2}$ containing the set $\left\{\Psi_{1}(k) \Psi_{2}(k)^{-1}\right\}_{k \in K}$
the idea here is that we have all words in the elements of G, and G_{2} but if we see $\Psi_{1}(k)$ in a word we can replace it with $\psi_{2}(k)$ (and vice versa)

$$
\text { e.g. } \quad \begin{aligned}
\ldots \psi_{2}(k) \cdots & \left.=\ldots \psi_{1}(k) \psi_{2}(k)^{-1}\right) \psi_{2}(k) \cdots \\
& =\ldots \psi_{1}(k)(\underbrace{\psi_{2}(k)^{-1} \psi_{2}(k)}_{e}) \cdots \\
& =\ldots \psi_{1}(k) \ldots
\end{aligned}
$$

nice property of free products with amalgamation:
the riclusion maps $i_{j}: G_{j} \rightarrow G_{1} * G_{2}$ induce maps

$$
\bar{\tau}_{j}: G_{2} \longrightarrow G_{1} *_{k} G_{2} \begin{aligned}
& \text { (by composing with } \\
& \text { quotient map) }
\end{aligned}
$$

given any homomorphisms

$$
\begin{aligned}
& \phi_{1}: G_{1} \longrightarrow H \longleftrightarrow \text { any group } \\
& \phi_{2}: G_{2} \rightarrow H
\end{aligned}
$$

such that

$$
\phi_{1} \circ \psi_{1}(k)=\phi_{2} \circ \psi_{2}(k) \quad \forall k \in K
$$

there exists a unique homomorphism

$$
\phi: G_{1}{ }_{K} G_{2} \longrightarrow H
$$

such that

$$
\phi \circ \bar{l}_{1}=\phi_{1} \text { and } \phi \circ \bar{l}_{2}=\phi_{2}
$$

Pictorally

exercise: Prove this
In terms of presentations
if

$$
\begin{aligned}
& G_{1} \cong\left\langle g_{1} \ldots g_{n} \mid r_{1} \ldots r_{m}\right\rangle \\
& G_{2} \cong\left\langle g_{1}^{\prime} \ldots g_{n^{\prime}}^{\prime} \mid r_{1} \ldots r_{m^{\prime}}^{\prime \prime}\right\rangle \\
& K \cong\left\langle h_{1} \ldots h_{l} \mid r_{1}^{\prime \prime} \ldots r_{m^{\prime \prime}}^{\prime \prime}\right\rangle
\end{aligned}
$$

then

$$
\begin{aligned}
& G_{1}{ }^{*} K G_{2} \cong\left\langle g_{1} \ldots g_{n}, g_{1}^{\prime} \ldots g_{n}^{\prime}\right| r_{1} \ldots r_{m}, r_{1}^{\prime} \ldots r_{m}^{\prime}, \\
& \\
& \left.\psi_{1}\left(h_{1}\right) \psi_{2}\left(h_{1}\right)^{-1} \ldots \psi_{1}\left(h_{l}\right) \psi_{2}\left(h_{l}\right)^{-1}\right\rangle
\end{aligned}
$$

exercise: Prove this

B Seifert-Van Kampen Theorem
So far we have only been able to compute π_{1} of spaces homotopy equivalent to a point or S^{\prime} With the following theorem we can do much more!

Th $\underline{m} 1$ (Seifert-Van Kampen):
let X be a topological space with base point x_{0} suppose $X=A \cup B$ where
A and B are path connected open sets,
$A \cap B$ is path connected, and

$$
x_{0} \in A \cap B
$$

let $\psi_{A}: \pi_{1}\left(A \cap B, x_{0}\right) \rightarrow \pi_{1}\left(A, x_{0}\right)$ and

$$
\psi_{B}: \pi_{1}\left(A \cap B, x_{0}\right) \longrightarrow \pi_{1}\left(B, x_{0}\right)
$$

be the homomorphisms induced by the inclusion maps

$$
A \cap B \subset B \begin{aligned}
& C A \\
& \subset B
\end{aligned}
$$

Then

$$
\pi_{1}\left(X, x_{0}\right) \cong \pi_{1}\left(A, x_{0}\right) * \pi_{1}\left(A \cap B, x_{0}\right) \pi_{1}\left(B, x_{0}\right)
$$

before we sketch a proof, let's look at a tew examples
examples:

1) let $W_{2}=$ "wedge of 2 circles"
ie. take $x_{1} \in S^{\prime}$ be a fixed point on S^{\prime}

$$
x_{2} \in S^{\prime} \text { be a fixed polit on a copy of } S^{\prime}
$$

then

$$
w_{2}=s^{\prime} U S^{\prime} / \underbrace{\left\{x_{1} \sim x_{2}\right\}}_{x_{0}}
$$

we can think of w_{2} as a subset of \mathbb{R}^{2}

$$
\text { ie. } \begin{aligned}
W_{2}= & \left\{(x, y) \mid(x-1)^{2}+y^{2}=1\right\} \\
& \cup\left\{(x, y) \mid(x+1)^{2}+y^{2}=1\right\}
\end{aligned}
$$

we need path connected open sets A and B

similarly

so $A \cap B$ is

pick x_{0} to be the "wedge point" = origin
exercise:

1) A and B are homotopy equivalent to S^{\prime}

Hint: Show A and B are homeomorphic to

$$
\begin{array}{ll}
S^{\prime} v(-1,1) /\left\{x_{1} \sim x_{2}\right\} & \text { where } \\
x_{1} \in S^{\prime} \\
x_{2} & =0 \in(-1,1)
\end{array}
$$

then use homotopy equivalence of $(-1,1)$ to x_{0} to give the desired homotopy equivalence
2) $A \cap B$ is homotopy equivalent to $\left\{x_{0}\right\}$
so

$$
\begin{aligned}
& \pi_{1}\left(A, x_{0}\right) \cong \mathbb{Z} \cong\left\langle g_{1} \mid\right\rangle \\
& \pi_{1}\left(B, x_{0}\right) \cong \mathbb{Z} \cong\left\langle g_{2} \mid\right\rangle \\
& \pi_{1}\left(A \cap B, x_{0}\right)=\{e\}
\end{aligned}
$$

and $\Psi_{A}: \pi_{1}\left(A \cap B, x_{0}\right) \rightarrow \pi_{1}\left(A, x_{0}\right)$
$e \longmapsto e$
and similarly for ψ_{B}
thus $\pi_{1}\left(W_{2}, x_{0}\right) \cong \mathbb{Z}_{\{e\}} \mathbb{Z}$

$$
\begin{aligned}
& \cong\left\langle g_{1}, g_{2} \mid \psi_{A}(e) \psi_{B}(e)^{-1}\right\rangle \\
& \cong\left\langle g_{1}, g_{2} \mid e e^{-1}\right\rangle=\left\langle g_{1}, g_{2} \mid e\right\rangle \\
& \cong\left\langle g_{1}, g_{2} \mid\right\rangle \cong F_{2}
\end{aligned}
$$

why!
so $\pi_{1}\left(w_{2}, x_{0}\right)$ is the tree groop on 2 generators
exercise: if $w_{n}=$ wedge of n circles
then $\pi_{1}\left(\omega_{n}, x_{0}\right) \cong F_{n}$

2) consider $S^{2} \subset \mathbb{R}^{3}$

let

and

so $A \cap B$ is

pick x_{0} on the equation
we know A and B are disks so each is $\simeq\left\{x_{0}\right\}$

$$
A \cap B \cong \text { annulus } \simeq s^{\prime}
$$

so $\pi_{1}\left(A, x_{0}\right) \cong\{e\} \cong \pi_{1}\left(B, x_{0}\right) \cong\langle 1\rangle$

$$
\pi_{1}\left(A \cap B, x_{0}\right) \cong \mathbb{Z} \cong\langle g \mid\rangle
$$

$$
\Psi_{A}: \pi_{1}\left(A \cap B, x_{0}\right) \longrightarrow \pi_{1}\left(A, x_{0}\right): g^{n} \longmapsto e \quad \forall n
$$

similarly for ψ_{B}
so $\pi_{1}\left(s^{2}, x_{0}\right) \cong\{e\}{ }_{Z}\{e\} \cong\left\langle\left\{\psi_{A}(g) \psi_{B}(g)^{-1}\right\rangle\right.$
$\cong\{e\}$ trivial group
$\therefore \pi_{1}\left(s^{2}, x_{0}\right)$ is the trivial group
we will see more complicated examples later, but first
Idea of proof of Seifert-Van Kampen Theorem:
given a loop γ in X based af $x \in A \cap B$

you can pick points $x_{1}, \ldots x_{k}$ in $\gamma \wedge(A \cap B)$ st arc x_{2} to x_{2+1} is A or B (use lebesgue number) now use path connectedness of $A \cap B$ to choose arcs in $A \cap B$ connecting x_{0} to x_{i}

now consider

this gives γ^{\prime} homotopic to γ written as a product of elements from $\pi_{1}\left(A, x_{0}\right)$ and $\pi_{1}\left(B, x_{0}\right)$

$$
g_{1} h_{1} g_{2} h_{2}
$$

the inclusion maps give

$$
\begin{aligned}
& \phi_{A}: \pi_{l}\left(A, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right) \\
& \phi_{B}: \pi_{1}\left(B, x_{0}\right) \rightarrow \pi_{1}\left(x, x_{0}\right)
\end{aligned}
$$

note for $h \in \pi_{1}\left(A \cap B, x_{0}\right)$ we see

$$
\begin{array}{cc}
\phi_{A} \circ \psi_{A}(h)=i_{*}(h) \\
\phi_{B} \circ \psi_{B}(h)=i_{*}(h) & \text { where } i: A \cap B \rightarrow X \text { is } \\
\text { inclusion }
\end{array}
$$

so the universal property for free products with amalgamation says we get a homomorphism

$$
\phi: \pi_{1}\left(A, x_{0}\right) * \pi_{1}\left(A \cap B, x_{0}\right) \pi_{1}\left(B, x_{0}\right) \longrightarrow \pi_{1}\left(x, x_{0}\right)
$$

the above argument says ϕ is onto
we are left to see ϕ is infective (see any book on algebraic topology for this)
C. Fundamental Group, Surfaces, and $1^{\text {st }}$ Homology let's compute $\pi\left(T^{2}, x_{0}\right)$

let $\tilde{A}=$
exercise: $\widetilde{A} \simeq \square \cong S^{\prime}$

exercise: \uparrow ア $\square \uparrow$ homutopy
equivalent nomeomorphic
let

let

so $\tilde{A} \simeq s^{\prime}$ gives
$A \simeq$ wedge of 2 circles!
so $B \simeq$ point
note $A \cap B$ is

so $A \cap B \simeq s^{\prime}$
and $T^{2}=A \cup B$ pick $x_{0} \in A \cap B$
now

$$
\begin{aligned}
& \pi_{1}\left(A, x_{0}\right) \cong F_{2} \cong\left\langle g_{1} g_{2} \mid\right\rangle \\
& \pi_{1}\left(B, x_{0}\right)=\{e\} \\
& \pi_{1}\left(A \cap B, x_{0}\right) \cong \mathbb{Z} \cong\langle n \mid\rangle
\end{aligned}
$$

note $\psi_{B}: \pi_{1}\left(A \cap B, x_{0}\right) \rightarrow \pi_{1}\left(B, x_{0}\right)$

$$
h^{n} \longmapsto e \quad \forall n
$$

for $\psi_{A}: \pi_{1}\left(A \cap B, x_{0}\right) \longrightarrow \pi_{1}\left(A, x_{0}\right)$
we claim $\psi_{A}(h)=g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}$
indeed note

so

$$
\psi_{A}(h) \simeq g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}
$$

so we have

$$
\begin{aligned}
\pi_{1}\left(T^{2}, x_{0}\right) & \cong \pi_{1}\left(A, x_{0}\right) \pi_{1}\left(A \cap B, x_{0}\right) \pi_{1}\left(B, x_{0}\right) \\
& \cong\left\langle g_{1} g_{2} \mid\right\rangle *^{*}\langle n \mid\rangle\langle 1\rangle \\
& \cong\left\langle g_{1} g_{2} \mid \psi_{A}(n) \psi_{B}(n)^{-1}\right\rangle \\
& \cong\left\langle g_{1} g_{2} \mid g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}\right\rangle
\end{aligned}
$$

$g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}$ is called the commutator of g_{1} and g_{2} and is denoted $\left[g_{1}, g_{2}\right]$
the relation says g_{1} and g_{2} commute

$$
\begin{aligned}
& g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}=e \\
& g_{1} g_{2} g_{1}^{-1} g_{2}^{-1} g_{2}=e g_{2} \\
& g_{1} g_{2} g_{-1}^{-1}=g_{2} \\
& g_{1} g_{2} g_{1}^{-1} g_{1}=g_{2} g_{1} \\
& g_{1} g_{2}=g_{2} g_{1}
\end{aligned}
$$

we saw earlier that this is a presentation for $\mathbb{Z} \oplus \mathbb{Z}$
so $\pi_{1}\left(T, x_{0}\right) \cong \mathbb{Z} \oplus \mathbb{Z}$
since $\pi_{1}\left(S^{2}, x_{0}\right)=\{e\}$ we see S^{2} and T^{2} are not homeomorphic we already knew this, but now we see they are also not even homotopy equivalent!
now if Σ_{g} is a surface of genus g, then recall
$\Sigma g=4 g$-gin with edges identified

$\operatorname{eg} \Sigma_{2}$ is

exercise: Show

$$
\pi_{1}\left(\Sigma_{g}, x_{0}\right) \cong\left\langle g_{1}, \ldots, g_{2 g} \mid\left[g_{1}, g_{2}\right]\left[g_{3}, g_{4}\right] \cdots\left[g_{2 g-1}, g_{2 g}\right]\right\rangle
$$

are these groups different?
If G is any group, i's commutator subgroup $[G, G]$ is the smallest normal subgroup of G containing $\left\{\mathrm{ghg}^{-1 /} \mathrm{h}_{\mathrm{g}, \mathrm{h} \in G}\right.$ the abelionization of G is $G /[G, G]$
exercise:

1) Show $G /[G, G]$ is abelian
2) if $G \cong\left\langle g_{1} \ldots g_{n} \mid r_{1} \ldots r_{m}\right\rangle$ then

$$
G /\{G, G] \cong\left\langle g_{1} \ldots g_{n} \mid r_{1} \ldots r_{m}\left[g_{2}, g_{j}\right] \quad 1, j=1, \ldots, n\right\rangle
$$

3）if $G \cong H$ ，then $G /[G, G] \cong H /[H, H]$
if X is a path connected topological space and $x_{0} \in X$ then the first homology group of x is

$$
H_{1}(x) \cong \pi_{1}\left(x, x_{0}\right) /\left[\pi_{1}\left(x, x_{0}\right), \pi_{1}\left(x, x_{0}\right)\right]
$$

so $H_{1}\left(\Sigma_{g}\right) \cong\left\langle g_{1} \cdots g_{2 g} \mid\left[g_{1}, g_{2}\right] \cdots\left[g_{1}, g_{2 g}\right],\left[g_{1}, g_{2}\right], \ldots\right\rangle$
note the first relation follows from all the other relations，so we can discard it

$$
H_{1}\left(\Sigma_{g}\right) \cong\left\langle g_{1} \ldots g_{2 g} \mid\left[g_{1}, g_{j}\right] \quad 2, j=1, \ldots 2 g\right\rangle
$$

exercise：$\left\langle g_{1} \ldots g_{2 g} \mid\left[g_{1}, g_{j}\right] \quad 1, j=1, \ldots 2 g\right\rangle \cong \underbrace{\mathbb{Z} \oplus \oplus \notin \mathbb{Z}} \cong \oplus_{2 g} \mathbb{Z}$
（ie．Σg has＂rig independent holes＂）
now is \oplus_{k} 飞半 \oplus_{l} 飞 if $k \neq l$ ？
recall $\oplus_{k} \mathbb{Z} \subseteq \mathbb{R}^{k}$（set of integer points）
subset
and group operation in $\oplus_{k} \notin$ is just vector addition
\mathbb{R}^{k} is spanned by $\left[\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right], \ldots\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ 1\end{array}\right]$ and these are all in $\oplus_{k} \mathbb{Z}$
a linear map on \mathbb{R}^{k} is determined by what it does on a basis
so any homomorphism $\phi: \oplus_{l} \mathbb{T} \rightarrow \oplus_{l} \mathbb{\text { will }}$ induce a linear map $\Phi: \mathbb{R}^{k} \rightarrow \mathbb{R}^{l}$
exerccé: ϕ is a group isomorphism $\Rightarrow \Phi$ is a vector space isomorphism
this implies $\oplus_{k} \mathbb{\#} \cong \oplus_{l} \mathbb{} \Leftrightarrow k=l$

$$
\therefore H_{1}\left(\Sigma_{g}\right) \cong H_{1}\left(\Sigma_{h}\right) \Leftrightarrow g=h
$$

Th ${ }^{\text {re }} 2:$

$$
\begin{aligned}
\Sigma_{g} \cong \Sigma_{h} & \Leftrightarrow \Sigma_{g} \simeq \Sigma_{h} \Leftrightarrow g=h \\
& \Leftrightarrow X\left(\Sigma_{g}\right)=X\left(\Sigma_{h}\right) \\
& \Leftrightarrow H_{1}\left(\Sigma_{g}\right)=H_{1}\left(\Sigma_{h}\right) \Leftrightarrow \pi_{1}\left(\Sigma_{g}, x_{0}\right) \cong \pi_{1}\left(\Sigma_{g}, y_{0}\right)
\end{aligned}
$$

exercise:

1) Show the fundamental group of N_{n} is

$$
\pi_{1}\left(N_{n}, x_{0}\right) \cong\left\langle g_{1} \ldots g_{n} \mid g_{1}^{2} \ldots g_{n}^{2}\right\rangle
$$

2) Show the fundamental group of $\Sigma_{g, k}$ for $k>0$ is

$$
\pi_{1}\left(\Sigma_{g, k}, x_{0}\right) \cong F_{2 g+k-1}
$$

and for $N_{n, k}$ for $k>0$ is

$$
\pi_{1}\left(N_{n, k}, x_{0}\right) \cong F_{n+k-1}
$$

D. Groups and Topology

We will now see how to build topological spaces realizing a given group as its fundamental group and how to realize group homomorphisms vià continuous maps!
(2.e. turn algebra in to topology!)
let $D^{n}=$ unit disk in \mathbb{R}^{n}

$$
s^{n-1}=\partial D^{n}
$$

given a topological space Y and a continuous map

$$
a: S^{n-1} \rightarrow Y
$$

the space obtained from Y ba attaching an n-cell is

$$
Y u_{a} D^{n}=Y \Perp D^{n}{/\{x \sim a(x)\}_{x \in S^{n-1}}}
$$

of course $Y U_{a} D^{n}$ has the quotient topology
we can similarly attach many n-cells at one time ie. given

$$
a=\frac{11}{\lambda} a_{\lambda} \quad a_{\lambda}: S_{\lambda}^{n-1} \rightarrow Y
$$

then

$$
Y v_{a} \frac{\|}{\lambda} D_{\lambda}^{n}
$$

an n-complex, or n-dimensional CW complex is defined inductively by
$a(-1)$-complex is \varnothing
an n-complex is any space obtained by attaching n-cells to an (n-1)-complex an n-complex is finite if it has frritely 1 -cells for all 1 between 0 an n
the k-skeleton of an n-complex X is the union of all r-cells for $1 \leq k$, it is denoted by $X^{(k)}$
(can define ∞-dimensional complexes as
$X=\bigcup_{n=0}^{\infty} X_{n} \quad$ where X_{n} is an n-complex obtained from X_{1-1} by attacking n-cells
here $U_{\text {in }} X$ is open $\Leftrightarrow U_{\cap} X_{n}$ open $\left.\forall n\right)$
this is called the weak topology on X explains the W in $C W$

Fact: (W complexes are Hausdorff
examples:

1) any n-simplicial complex is an n-complex
2) S^{n} is an n-complex

0 -skeleton is
attach n-cell by $a: \partial D^{n} \rightarrow\{p t\}$

$$
D^{n} \| / 1 / \xrightarrow{s^{n-1} a} \cdot
$$

2.e. S^{n} is D^{n} with the boundary collapsed to a point
3) 1- complexes are graphs (and graphs are 1-compleres)

4) Compact surfaces without boundary is a 2-complex

|o-cell $2 g$ 1-cells

1 z-cell P itself

5) Fact: any (differentiable) manifold is homotopy equivalent to a CW-compler

Lemma 3.
let X be a topological space and

$$
a: \partial D^{2} \rightarrow X
$$

be a contriuous map.
let $1 \in \pi_{1}\left(\partial D_{1}^{2}, p_{0}\right) \cong \mathbb{Z}$ be a generator and $r=a_{x}(1) \in \pi_{1}\left(X, x_{0}\right)$ where $x_{0}=a\left(p_{0}\right)$
If $Y=X v_{a} D^{2}$, then

$$
\pi_{c}\left(Y, x_{0}\right) \cong \pi_{r}\left(x, x_{0}\right) /\langle r\rangle
$$

so" attacking a 2 -cell" adds a relation to the fundamental group exercise: Show that if Y is obtained from X by attacking an n-cell with $n \geq 3$, then $\pi_{1}\left(Y, x_{0}\right) \cong \pi_{1}\left(X, x_{0}\right)$
Proof: We use Seifert-Van Kampen T^{m} let $A=X \cup_{a} S^{\prime} \times(1 / 2,1]$ subset of D^{2}

note: A is an open set in Y
exercise: $A \simeq X$

let $B=$ disk of radius $2 / 3 \subset D^{2}$
so $A \cap B=S^{\prime} \times(1 / 2,2 / 3) \simeq S^{\prime}$
take $y_{0} \in A \cap B$

$$
\begin{aligned}
& \pi_{1}\left(A \cap B, y_{0}\right) \cong \mathbb{Z} \\
& \pi_{l}\left(B, y_{0}\right)=\{e\} \\
& \pi_{1}\left(A, y_{0}\right) \cong \pi_{l}\left(x, y_{0}\right) \cong \pi_{1}\left(x, x_{0}\right)
\end{aligned}
$$

exercise:

so

$$
\begin{aligned}
\pi_{1}\left(y_{1} y_{0}\right) & \cong \pi_{1}\left(A, y_{0}\right) * \pi_{1}\left(A \cap B, y_{0}\right) \pi_{1}\left(B, y_{0}\right) \\
& \cong \pi_{1}\left(x, x_{0}\right) *\{e\} /\left\langle z_{*}(1) e^{-1}\right\rangle \\
& \cong \pi_{1}\left(x, x_{0}\right) /\langle r\rangle
\end{aligned}
$$

Th \underline{m} :
let G be a group
Then \exists a topological space X (in fact a 2 -complex) such that $\pi\left(x, x_{0}\right) \cong G$

Proof: we consider a group G with a finite presentation

$$
\left\langle g_{1} \ldots g_{n} \mid r_{1} \ldots r_{m}\right\rangle
$$

the general case is almost the same but need to be happy with infinite complexes
let $W_{n}=$ wedge of n circles (so a 1 -complex)
recall $\pi_{1}\left(w_{n}, x_{0}\right) \cong F_{n} \cong\left\langle g_{1} \ldots g_{n} \mid\right\rangle$
let $a_{i}: \partial D^{2} \rightarrow w_{n}$ be a continuous map such that

$$
\begin{gathered}
\left(a_{1}\right)_{*}: \pi_{1}\left(\partial D_{1}^{2} p_{0}\right) \longrightarrow \pi_{1}\left(w_{n}, x_{0}\right) \\
1 \longmapsto r_{i}
\end{gathered}
$$

exercise: construct a_{i}
Hint: if $r_{i}=g_{j_{1}}^{\varepsilon_{1}} \cdots g_{j_{k}}^{\varepsilon_{k}} \quad \varepsilon_{2}= \pm 1$
then define r_{i} on $[j / k, j+1 / k] \quad j=0, \ldots, k-1$ to map onto the loop in w_{n} corresponding to g_{j} agreeing with orientation or not depending on ε_{i}
let $X=w_{n} U_{a_{i}}\left(\prod_{n=1}^{m} D^{2}\right)$
lemma $3 \Rightarrow \pi_{1}\left(x, x_{0}\right) \equiv\left\langle g_{1} \ldots g_{n} \mid r_{1} \ldots r_{m}\right\rangle$

Th $-5:$
let G and H be any groups, and

$$
\phi: G \rightarrow H
$$

any homomorphism.
let X, Y be topological spaces such that

$$
\pi_{1}\left(X, x_{0}\right) \cong G \text { and } \pi_{l}\left(Y, y_{0}\right) \cong H
$$

If X is a 2 -complex, then \exists a continuous
function $f: X \rightarrow Y$
such that $f_{*}=\phi$
Remark: Note this implies that any homomorphism betheen the fundamental groups of surfaces is induced by a continuous map!
Proof: Though not necessary we take X to be the 2-complex defined in $T_{h}{ }^{m} 4$
so $\pi_{1}\left(x, x_{0}\right) \cong G \cong\left\langle g_{1} \ldots g_{n} \mid r_{1} \ldots r_{m}\right\rangle$
let γ_{i} be any loop in Y based at y_{0}
st. $\left[\gamma_{2}\right]=\phi\left(g_{2}\right) \in \pi_{l}\left(Y_{2} Y_{0}\right)$
ie. $\gamma_{i}:[0,1] \rightarrow Y$ sit. $\gamma_{1}(0)=\gamma_{2}(1)=\gamma_{0}$ $\left[\gamma_{1}\right]=\phi\left(g_{2}\right)$
now $X=W_{n} U_{a_{n}}\left(\mathbb{L} D^{2}\right)$
define $f: W_{n} \rightarrow Y$ on the g_{i} loop by γ_{1}

recall $w_{n}=\frac{\hat{1}}{1=1}[0,1] / \sim \quad \begin{aligned} & \text { where all end points } \\ & \text { are identified }\end{aligned}$
so on $2^{+4}[0,1]$ define f to be γ_{i} this decends to the quotient space we want to extend f over each 2 -cell in x let D^{2} be the $1^{\text {st }}$ 2-cell (same argt for others) note $a_{1}\left(\partial D^{2}\right)$ is a loop in w_{n} representing the relation r_{1} so $\left[a,\left(\partial D^{2}\right)\right]=e \in \pi_{1}\left(x, x_{0}\right) \cong G$ (note $x_{0} \in a_{1}\left(\partial D^{2}\right)$)

$$
\begin{gathered}
\therefore \phi([\underbrace{\prime \prime}_{a_{1}\left(\partial D^{2}\right)}])=e \text { in } \pi_{1}\left(Y_{1} y_{0}\right) \\
\left.f_{1}: f_{\circ}\right): s^{\prime} \rightarrow Y
\end{gathered}
$$

so $f_{1}:[0,1] \longrightarrow Y$ is homotopi to the trivial loop that is \exists homotopy $H:\left[\begin{array}{l}{[0,1]} \\ s\end{array}\right] \times \underset{f_{1}}{[0,1]} \rightarrow Y$

consider the quotient map

clearly H induces a map

$$
\tilde{H}: D^{2} \rightarrow Y
$$

such that $\left.\tilde{H}\right|_{\partial D^{2}}=f \circ a_{1}$
so use \tilde{H} to extend f over the $1^{\text {st }} 2$-cell continuing we get $f: X \rightarrow Y$
by construction $f_{*}=\phi$ on the g_{i} so they are equal on all of G
Th ${ }^{m}$ 6:
let Σ, Σ 'be compact surfaces without boundary Σ^{\prime} not homeomorphic to S^{2} or P^{2} Then $f_{0}, f_{1}: \Sigma \rightarrow \Sigma^{\prime}\left(f_{i}\left(x_{0}\right)=y_{0}\right)$ are homotopic (lorene pt $\left.\begin{array}{l}\text { preserving }\end{array}\right)$

$$
\left(f_{0}\right)_{k}=\left(f_{1}\right)_{*}: \pi_{1}\left(\Sigma, x_{0}\right) \rightarrow \pi_{1}\left(\Sigma_{1}^{\prime} y_{0}\right)
$$

"maps between (most) surfaces are determined (uptohomstopy) by their action on $\pi_{1}^{\prime \prime}$
Remark:

1) not true in higher dimensions
2) $\left\{\right.$ homotopy classes $\left.S^{2} \rightarrow S^{2}\right\} \longleftrightarrow \mathbb{Z}$

Proof: (\Rightarrow) exercise in Section II just after Th ${ }^{m} 3$ \Leftrightarrow) need to define

$$
\begin{array}{ll}
& H: \sum x[0,1] \rightarrow \Sigma^{\prime} \\
\text { s.t. } & H(x, 0)=f_{0}(x) \\
& H(x, 1)=f_{1}(x)
\end{array}
$$

now let $g_{1} \ldots g_{2 g}$ be generators of $\pi_{1}\left(\Sigma_{1} x_{0}\right)$
coming from

since $\left(f_{0}\right)_{*}\left(g_{1}\right)=\left(f_{1}\right)_{*}\left(g_{2}\right)$
we know $f_{0} \circ g_{2} \simeq f_{1} \circ g_{i}$.
let H_{2} be this homotopy define H on $g_{1} \times\{0,1]$ by H_{i} on $\sum x\{i\}$ by f_{i}
note: $(\Sigma \times[0,1]) \backslash\left(U_{g_{2}} \times[0,1]\right)$

$$
=(4 n-g o n) \times[0,1]=B^{3}
$$

Fact (we prove this (ater): any map $S^{2} \rightarrow \Sigma^{\prime}$ is
homotopic to a constant map
(here is where we need $\Sigma^{\prime} \neq S^{2}$ or p^{2})
now $\left.H\right|_{\partial B^{3}}: S^{2} \rightarrow \Sigma^{\prime}$
since the map is homotopically trivial we get a homotopy

$$
\begin{aligned}
& G: S^{2} \times[0,1] \rightarrow \Sigma^{2} \\
& G(p, 0)=c \\
& G(p, 1)=H(p)
\end{aligned}
$$

C some fixed point in Σ^{\prime}
so G induces a map $\tilde{G}: s^{2} \times[0,1] / s^{2} \times\{0\} \rightarrow \Sigma^{\prime}$ use \tilde{G} to extend H over rest of $\sum \times[0,1]$

