VIII Covering Spaces

A. Covering Spaces

recall, when we computed $\pi_i(s')$ we used the map $p: \mathbb{R} \to s'$ $t \mapsto (\cos 2\pi t, \sin 2\pi t)$

the key facts about p were

path lifting: given
$$\delta: [0, 1] \rightarrow 5'$$
, then for each
 $x \in p^{-1}(\delta(0)), \exists unique \delta_{x}: [0, 1] \rightarrow \mathbb{R}$
s.t. $\delta_{x}(0) = \chi$ and $p \circ \delta_{x} = \delta$

homotopy lifting: given a homotopy
$$H:[0,1] \times [0,1] \rightarrow S'$$

then for each $x \in p^{-1}(H(0,0))$, \exists unique
 $\widetilde{H}_{x}:[0,1] \times [0,1] \rightarrow \mathbb{R}$ s.t. $\widetilde{H}_{x}(0,0) = x$ and
 $p_{0} \widetilde{H}_{x} = H$

to prove these properties we used that:

$$S' = A \cup B \quad with A \text{ and } B \text{ open}$$

$$P''(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P''(B) = \bigcup_{i=-\infty}^{U} B_i; \quad s.f.$$

$$P''(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P''(B) = \bigcup_{i=-\infty}^{U} B_i; \quad s.f.$$

$$P''(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P''(B) = \bigcup_{i=-\infty}^{U} B_i; \quad s.f.$$

$$P''(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P''(B) = \bigcup_{i=-\infty}^{U} B_i; \quad s.f.$$

$$P''(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P''(B) = \bigcup_{i=-\infty}^{U} B_i; \quad s.f.$$

$$P''(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P''(B) = \bigcup_{i=-\infty}^{U} B_i; \quad s.f.$$

$$P''(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P''(B) = \bigcup_{i=-\infty}^{U} B_i; \quad s.f.$$

$$P''(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P''(B) = \bigcup_{i=-\infty}^{U} B_i; \quad s.f.$$

$$P''(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P''(B) = \bigcup_{i=-\infty}^{U} B_i; \quad s.f.$$

$$P''(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P''(B) = \bigcup_{i=-\infty}^{U} B_i; \quad s.f.$$

$$P''(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P''(B) = \bigcup_{i=-\infty}^{U} B_i; \quad s.f.$$

$$P''(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P''(B) = \bigcup_{i=-\infty}^{U} B_i; \quad s.f.$$

$$P''(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P''(B) = \bigcup_{i=-\infty}^{U} B_i; \quad s.f.$$

$$P''(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P''(B) = \bigcup_{i=-\infty}^{U} B_i; \quad s.f.$$

$$P''(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P''(B) = \bigcup_{i=-\infty}^{U} B_i; \quad s.f.$$

$$P''(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P''(B) = \bigcup_{i=-\infty}^{U} B_i; \quad S.f.$$

$$P''(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P''(B) = \bigcup_{i=-\infty}^{U} B_i; \quad S.f.$$

$$P''(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P''(B) = \bigcup_{i=-\infty}^{U} B_i; \quad S.f.$$

$$P''(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P''(B) = \bigcup_{i=-\infty}^{U} B_i; \quad S.f.$$

$$P''(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P''(B) = \bigcup_{i=-\infty}^{U} B_i; \quad S.f.$$

$$P''(A) = \bigcup_{i=-\infty}^{U} A_i; \quad P''(B) = \bigcup_{i=-\infty}^{U} A$$

given a topological space Xa <u>covering space</u> of X is a pair (\widetilde{X}, p) where \widetilde{X} is a

topological space and

$$p: \tilde{X} \rightarrow X$$

is a continuous map (called a covering map) such that
 $\forall x \in X$, there is an open set $U \in X$ containing x
 $st. p^{-1}(U) = \{U\}_{\substack{X \in I}}$
where the U_i are open, pairwise disjoint sets in \tilde{X}
and $p|_{U_i}: U_i \rightarrow U$ is a homeomorphism
 $\{U \text{ is called on evenly covered set}\}$
examples:
i) $p: \mathbb{R} \rightarrow S'$ is clearly a covering map
a) $p_i: S' \rightarrow S': \oplus \mapsto n \oplus$ can easily be seen to be a cover
 $y_{a_i} = y_{a_i} = y_{a_i} = y_{a_i}$
so $y_{a_i} = y_{a_i} = y_{a_i} = y_{a_i}$
 $p_i: \mathbb{R}^2 \rightarrow T^2 = S' \times S'$ where p is from 1)
 $(x,y) \mapsto (p(x_i, p_i, y_i)$
can easily be checked
to be a covering map
more generally
 $exercise:$ if $p_x: \tilde{X} \rightarrow X$ and $p_i: \tilde{Y} \rightarrow T$ are covering maps,
then show $p(x,y) = (P_x(x_i), P_y(y))$ is a covering map
 $p: \tilde{X} \times \tilde{Y} \rightarrow X \times Y$
 $repeating the proofs we gave for $p: \mathbb{R} \rightarrow S'$ $(Th = II.8 \text{ and } 10)$$

we get

Thmz (Homotopy Infing): -

$$\begin{split} & i \neq p: \widetilde{X} \to X \text{ is a covering map,} \\ & H:(o,i] \times [o,i] \to X \text{ a homotopy, and} \\ & x \in p^{-1}(H(o,o)) \\ & \text{then } \exists \text{ unique } \widetilde{H}_{x}: [o,i] \times [o,i] \to \widetilde{X} \text{ such that} \\ & \widetilde{H}_{x}(o,o) = X \text{ and } p \circ \widetilde{H}_{x} = H \end{split}$$

$$\frac{lemma 3}{|let p: \hat{X} \rightarrow X} = a \text{ covering map with } X \text{ connected}$$

$$if \exists a \text{ point } x_0 \in X \text{ with } |p^{-1}(x_0)| = k, \text{ then}$$

$$|p^{-1}(x)| = k, \forall x \in X$$

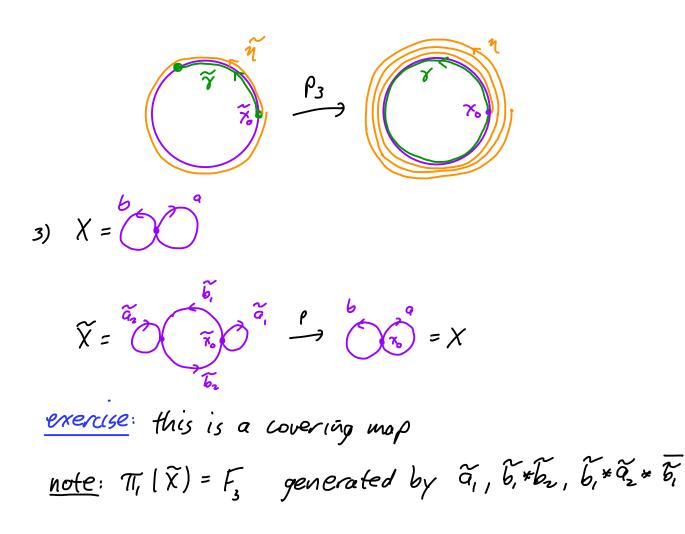
but
$$U_{x} \cap P^{-1}(x) = 1$$
 point $\forall x$
 $\therefore I = \{1, ..., k\}$
so $|P^{-1}(y)| = k, \forall y \in U$
 $\therefore A \text{ is open}$
Claim: A is closed
switch argument enercise
since X is connected $A = X$ (lemma I.10)
lemma 4:
 $P: \tilde{X} \rightarrow X \text{ a covering map, } \tilde{x}_{0} \in \tilde{X}, x_{0} = p(x_{0})$
then
 $P_{x}: T_{1}(\tilde{X}, \tilde{x}_{0}) \rightarrow T_{1}(X, x_{0})$
is injective
Moreover, $[Y] \in P_{*}(T_{1}(\tilde{X}, \tilde{x}_{0}))$
 \Leftrightarrow
the lift of Y to a path based
 $at \tilde{X}_{0}$ is a bop in \tilde{X}

Proof: $[X] \in TI_{i}(X, \tilde{x}_{0})$ Suppose $p_{*}([X]) = e$ i.e. $p \circ X = \tilde{x}_{0}$ so \exists homotopy $H: [o, i] \times [o, i] \rightarrow X$ s.t. x_{0} homotopy I:f ting says \exists $H: [o, i] \times [o, i] \rightarrow \tilde{X}$ s.t. $H(o, 0) = \tilde{X}_{0}$ and $p \circ H = H$

note: poH(s,o) = por so H(s,o) is a lift of por starting at Xo, so it is & $\therefore \widetilde{H}(s, o) = \mathcal{K}(s)$ also $\widetilde{H}(o,t) \in p^{-1}(X_o) \subset points with discrete topology$ so $\widetilde{H}(o,t) = \widetilde{x}_{o} \ \forall t$ similarly H(1,t)= & Ut and H(s,1)= & Us 1<u>C</u>. $\tilde{x}_{o} \begin{bmatrix} 1/1 \\ 1/1 \\ 1/1 \end{bmatrix} \tilde{x}_{o}$ is a homotopy $\tilde{x} = \tilde{x}_{o}$: $[\tilde{x}] = e$ and p* is injective now, if $[\gamma] \in P_*(T_1(\widetilde{X}, \widetilde{K}))$ then $\exists [Y] \in T_1(\widetilde{X}, \widetilde{K})$ s.t. p,([x]) = [y] ne por = m let i be a lift of M storting at is by homotopy lifting 8= if rel end points but & a loop so & a loop too if [7] & P* (TI, (X, x)), then the lift of of y based at % can't be a loop since it it were then $[\tilde{\gamma}] \in T_{I_1}(\tilde{X}, \tilde{x})$ and $[\tilde{\gamma}] = \rho_*([\tilde{\gamma}]) \approx$ $\underline{exercise}: \left[\mathcal{T}_{I_{i}}(X, x_{o}) : p_{*}(\mathcal{T}_{i}(\widetilde{X}, \widetilde{x_{o}})) \right] = degree of (\widetilde{X}, p)$ Cindex of subgroup Hint: Show there is a bijection from right cosets of $P_{x}(T_{i}(\widetilde{X},\widetilde{x}))$ to $p^{-1}(x_{o})$

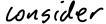
$$\begin{array}{l} \begin{array}{c} examples:\\ i) \ p: \ R \to 5'\\ p_{\star}: \ T_{l}(R) \to \ T_{l}(s') & no \ non-trivial \ loop \ in \ S' \ lifts \ to \\ & \left\{ e^{3} \right\} & \ Hs & a \ loop \ in \ R\\ & degree = \ ob = \left\{ \mathbb{Z}: \{e^{3}\right\} \right]\\ \end{array}$$

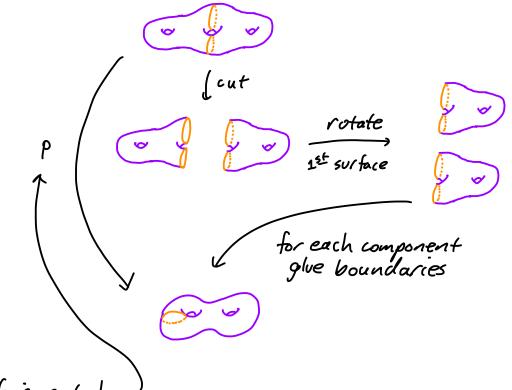
$$\begin{array}{c} 2) \ p_{n}: \ 5' \to 5': \ \partial \mapsto n \ \partial \\ (p_{n})_{\star}: \ T_{l}(S') \to \ T_{l}(S') & so \ im \ (p_{n})_{\star} = n \ \mathbb{Z}\\ & \ Hs & degree = n = \left\{ \mathbb{Z}: n \ \mathbb{Z} \right\} \\ & \ \mathbb{Z} & \ \mathbb{Z} & degree = n = \left\{ \mathbb{Z}: n \ \mathbb{Z} \right\}\\ & \ m \longmapsto \ nm & \ loop \ in \ S' \ lifts \ to \ a \ loop \ iff \ if \ 'goes \ around'' \ S' \ a \\ & \ m \ (tiple \ of \ n \ times \end{array}$$



so image $(p_{\star}) = \langle a, b, bab^{-1} \rangle = G$ G has index 2 in $\pi_i(X, x_s) \cong F_2$! note rank went up! 4) consider Z₂

let's find a degree 2 cover (there are actually a lot)





define p to be -

<u>exercise</u> 1) Show this is a 2-fold covering map $\Sigma_3 \rightarrow \Sigma_2$ 2) Work out in (ρ_*) 3) Experiment constructing other covers of other surfaces e.g. $\Sigma_n \rightarrow \Sigma_2$ by an n-1 fold cover for $n \ge 2$

let
$$p: \tilde{X} \to X$$
 be a covering map with $p(\tilde{x}_{0}) = \tilde{x}_{0}$
 $f: Y \to X$ be a continuous map such that $f(y_{0}) = \tilde{x}_{0}$
a lift of f to \tilde{X} is a continuous map $\tilde{f}: Y \to \tilde{X}$
 $s.t. \tilde{f}(y_{0}) = \tilde{x}_{0}$ and $p \circ \tilde{f} = f$
 $\tilde{f} = \frac{2}{3} \tilde{X} + \frac{2}{3}$

Thm 5 (lifting criterion):

$$p: \hat{X} \rightarrow X \ a \ covering \ map, \ p(\hat{x}_{o}) = \chi_{o}$$

$$f: Y \rightarrow X \ a \ continuous \ map \ st. \ f(\chi_{o}) = \chi_{o}$$
assume Y is path connected and
$$locolly \ path \ connected$$
Then $\exists a \ lift \ \tilde{f}: Y \rightarrow X \ of \ f$

$$\Leftrightarrow$$

$$f_{*}(\pi_{i}(Y_{i}\chi_{o})) \subseteq p_{*}(\pi_{i}(\tilde{X}_{i}\tilde{\chi}_{o}))$$

$$if \ \tilde{f} \ exists \ it \ is \ unique$$

a space is locally path connected if for every point x and open set U containing it, there is an open set V such that x EVCU and V is path connected

<u>example</u>: $\begin{pmatrix} \{ \forall_n \} \times [0, i] \\ \cup (\{ 0 \} \times [0, i]) \\ \cup ([0, i] \times \{ 0 \}) \\ path connected but not \\ locally path connected \\ \end{pmatrix}$

note: all manifolds are locally path connected

Proof: (=) if
$$\overline{f}$$
 exists, then clearly
 $f_*(\pi_1(Y, y_0)) = p_* \circ \overline{f}_*(\pi_1(Y, y_0)) = p_*(\pi_1(\overline{X}, \overline{X}))$
(*) need to construct $\overline{f}: Y \to \overline{X}$
given $y \in Y$, let $Y_y: \{o, 1\} \to Y$ be a path st
 $Y_y(o) = Y_o$, $Y_y(i) = Y$ (ver path connected)
for \overline{Y}_y is a path in X from $x_0 = f(x_0)$ to $f(y)$
lift for Y_y to a path $\overline{Y}_y(i)$
if \overline{f} is well-defined, the clearly $p \circ \overline{f}(y) = f(y)$
so \overline{f} is a lift of f
to see \overline{f} is well-defined, let \overline{Y}_y' be another
path from Y_0 to Y
note: $\overline{Y}_y \times \overline{Y}_y] \in \pi_1(Y, y_0)$
 $\overline{Y}_y \times \overline{Y}_y = \overline{f} = [\underline{f} \circ \overline{Y}_y] * (\overline{f} \circ \overline{Y}_y')] \in \pi_1(X, x_0)$
by assumption $[\underline{f} \circ \overline{Y}_y) \cdot (\overline{f} \circ \overline{Y}_y')] \in p_*(\pi_1(\overline{X}, \overline{Y}))$
so by kemma 4 $f(\circ \overline{Y}_y) \times (\overline{f} \circ \overline{Y}_y')$ lifts to a loop
in \overline{X} based at $x_0: (\overline{f} \circ \overline{Y}_y) = (\overline{f} \circ \overline{Y}_y) = (\overline{f} \circ \overline{Y}_y)$
con easily check by uniqueness of lifts that
this bop is $(\overline{f} \circ \overline{Y}_y) \times (\overline{f} \circ \overline{Y}_y')$ Lift struct
 $\overline{T}_y(1)$

so f is well-defined the last thing we need to do is see it is continuous. this is more involved (and uses local connectivity) you can find a proof in Hatcher, but the idea is: given YEY, 3 an open set UCY containing y and open set V in X containing f(y) such that $f'_{U} = p'_{V} \circ f$ continuous $(\mathbf{V} \cdot \mathbf{F}(\mathbf{y})) = \widetilde{X}$ $\underbrace{\underbrace{\bullet_{\mathbf{y}}}_{\mathbf{y}}}_{\mathbf{y}} \xrightarrow{f} \underbrace{\bullet_{\mathbf{f}(\mathbf{y})}}_{\mathbf{\chi}}$ Fact: given a surface Eg of genus g if 9>0, then I a covering map $\rho\colon \mathbb{R}^{\perp} \longrightarrow \mathbb{Z}_{q}$ (for g>1, this uses "hyperbolic geometry") <u>The:</u>_ If g ≥ 1 and n ≥ 2, then any $f: S^n \to \mathbb{Z}_g$ is homotopic to the constant map! Recall, this was used in the proof of Thm I.6 <u>Proof</u>: given f, clearly $f_*(\pi_1(s^n)) = \{e\} \subset P_*(\pi_1(\mathbb{R}^2))$ so f lifts to a map $f: S^n \rightarrow \mathbb{R}^2$ " covering map by Thm 5

let
$$\widehat{H}: S^* \times [a, 1] \to \mathbb{R}^2$$

 $(p, t) \mapsto f(p)$
 $\widehat{H}(p, 0) = \text{ constant}$
 $\widehat{H}(p, 0) = \widehat{F}$
 $\text{set } H = po \widehat{H}: [a, 1] \times [a, 1] \to \mathbb{Z}_g$
this is a homotopy from the constant map to \widehat{F}_{gg}
We saw that for every covering $p: \widehat{X} \to X$, there is a
 $\text{subgroup } G = p_{\#}(\pi_{*}(\widehat{X}, \widehat{x})) \text{ of } \pi_{*}(X, \varepsilon_{0})$
For most spaces, there is a converse !
Fact:
 $\text{let } X \text{ be path connected}$
 $\text{locally path connected}$
 $\text{semi-locally simply connected}$
 $\text{Then } \forall G < \pi_{*}(X, \varepsilon_{0}) \text{ there is a covering space}$
 $p: \widehat{X} \to X$ such that $p_{\#}(\pi_{*}(\widehat{X}, \widehat{z}_{0})) = G$
a space X is semi-locally simply connected if
 $\forall x \in X, \exists \text{ on open set } U \subset X \text{ such that } x \in U \text{ and}$
 $1_{\#}: \pi_{*}(U, x) \to \pi_{*}(X, \varepsilon_{0})$
is the trivial map, where $\tau: U \to X$ is inclusion
Fact: mainfolds and CW complexes are semi-locally
 $\text{simply connected}.$

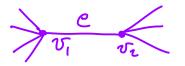
We will not prove this, but the idea for G={e} < Ti(X) is let X = { paths in X starting at xo}/n here X~N if they are homotopic rel end points set p: X→X: [x] + X(1) you can pat a topology on X so this is the desired covering space B. <u>Subgroups</u> we use covering spaces to show Th^m7(Mielsen-Schreier):

any subgroup of a free group is free

We need some lemmas <u>lemma 8:</u> let X be a graph, then TT, (X) is free

Proof: we can assume X is connected if X has only one vertex, then X is a wedge of circles so from Section II we know M(X) free group

if X has more than one vertex, then there is an edge e in X connecting distinct verticies



CW Fact: if X is a CW complex, and A is a contractible subcomplex, then X/A = X
<u>exercise</u>: try to prove this in above situation so X/e = X and T_i(X) = T_i(X/e), but X/e is a graph with one less vertex thus we can inductively find a graph Y with one vertex that is homotopy equivalent to X
... done III

<u>lemma 9:</u>— If X is a graph and p: X→X is a covering space then X is a graph

more generally, coverings of CW complexes are CW complexes

Sketch of Proof: p⁻¹(X⁽⁰⁾) is a discrete set of points in X this will be X⁽⁰⁾ each edge e of X is a path so it lifts to X the union of all lifts of all edges will be the edges of X to make this rigorous we need to see how to "attach" edges to the verticies but hopefully this is intuitively clear Proof of Th = 7:

given a free group F_n on a generators let $W_n = wedge$ of n-circles so $\pi_i(W_n) \cong F_n$ given any $G < F_n \cong \pi_i(W_n)$, \exists a covering space $p: \tilde{X} \to X$ by injectivity such that $\pi_i(\tilde{X}) \cong p_*(\pi_i(\tilde{X})) = G$ now lemma 9 says \tilde{X} is a graph and thus by lemma 8, $\pi_i(\tilde{X})$ is a free group \therefore G is a free group \boxplus