(More on Free Products

Th m 10 (Kurosh Subgroup Thm)

Let H be a subgroup of a free product A * B Then H= (* Ha) * F where Hy is a subgroup of a conjugate of A or B and F is a free group

Cor 11:

an indecomposable subgroup of a free product is isomorphic to it or contained in a conjugate of a factor

Proof: if H is indecomposable then by Thm 10, H is conjugate into a factor or H is a free group, and the only indecomposable free group is the

<u> (or 12:</u> If two non-trivial elements of a free product commute, then they are either powers of a

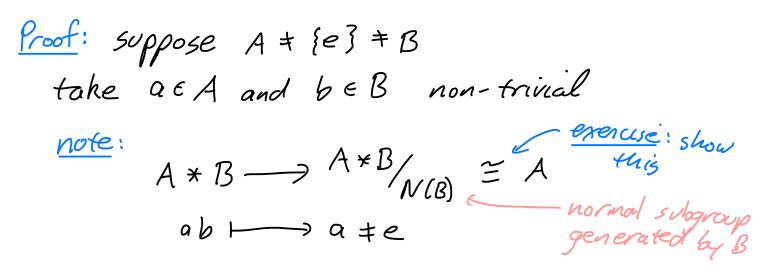
single element or are both contained in a wrijugate of a factor

Proof: Suppose x, y EA * B commute let H= (x, y) = subgroup generated by x and y then H is abelian, :. H indecomposable so H = Z (⇒ X, y powers of a single element) or H c conjugate of a factor Ħ <u>Cor 13:</u>

If two elements of a free group commute then they are powers of a single element

60r14:

The center of a non-trivial free product is trivial

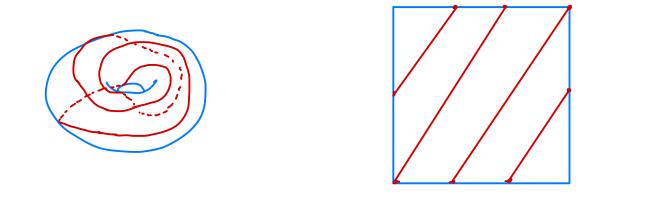


so ab E conjugate of B similarly ab & conjugate of A now lef z & Z(A * B) suppose Z = e Z and ab commute: by Lor 12 2 and ab are powers of a single element (since ab & conjugato f a factor) but ab is not a proper power so z=(ab)" for some n>0 note: $a(ab)^n \neq (ab)^n a$ this contradiction => Z(A * B) = {e}

application to knot theory

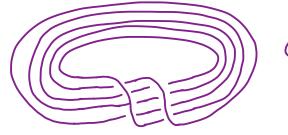
let T² be the standardly embedded torus in S³

any knot that sits on T is called a torus knot



given any curve of slope 1/p, with (p.g)=1, in R² you get a curve Kpig c R'/#2 = T?

so you get a (p,q)-torus knot



(5,2) torus knot

 $\frac{exercise}{\pi_{i}(X_{K_{p,q}})} \cong \langle x, y \mid x^{p}y^{-q} \rangle$

Hint: 1) don't use Wirtinger presentation! 2) can write $S^3 = \frac{5' \times D^2 \vee D^2 \times 5'}{V_1}$ consider A = V, 1 X Kpig and $B = V_2 \land \chi_{K_{p,q}}$ in the Seifert-Van Kampen the m

Th=15:

1) $K_{p,q}$ is unknot $() p \text{ or } q = \pm 1$ 2) if p,q,p',q' > 1, then Kp.q is isotopic to Kpiq' $\{p,q\} = \{p',q'\}$

 $\frac{Proof}{if p \text{ or } q = \pm 1 \text{ then } (1)$ and one can easily use Reidemenster type one moves to show this is the unhnot t piq>1, then let Z = x^P= y⁹ clearly z commutes with x and y 50 Z E Z (TT, (X_{Kp,q})) and so (2) is a normal subgroup $\pi_{i}(X_{K_{p,q}}) \cong \langle x, y \mid x', y^{q} \rangle$ $\langle z \rangle$ E Zp * Zq note: this is non-abelian so T. (XKDO)

is non-abelian
but
$$\pi_i (X_{unhoot}) \stackrel{\sim}{=} \stackrel{\sim}{\mathbb{Z}} \quad so \quad K_{p,q} \text{ is}$$

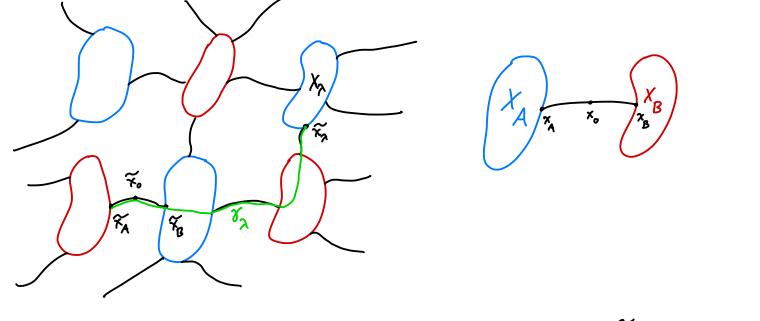
not is otopic to the unknot
now by (or 14 $\mathbb{Z}[\mathbb{Z}_p \times \mathbb{Z}_q] = \{\mathbb{C}\}$
 $\therefore \mathbb{Z}(\pi_i(X_{k_{p,q}})) = \langle\mathbb{Z}\rangle$
if $G_i \stackrel{\sim}{=} G_2$, then $G_{1/\mathbb{Z}(G_i)} \stackrel{\sim}{=} G_{2/\mathbb{Z}(G_2)}$
 $\therefore K_{p,q} \text{ isotopic to } K_{p;r'} \stackrel{\Rightarrow}{=} \pi_i(X_{K_{p,q}}) = \pi_i(X_{K_{p;r'}})$
 $\stackrel{\Rightarrow}{=} \mathbb{Z}_p \times \mathbb{Z}_q \stackrel{\cong}{=} \mathbb{Z}_{p'} \times \mathbb{Z}_{q'}$
(or $|| \stackrel{\Rightarrow}{=} \mathbb{Z}_p \subset \text{conjugate of } \mathbb{Z}_{p'} \text{ and } \mathbb{Z}_{q'}$
 $\therefore p!p' \text{ or } p!q'$
similarly $q!p' \text{ or } q!q' \quad \text{and } p'|p \text{ or } p'|q$
and $q'|p \text{ or } q'|q$
 $\mathbb{Z}_p \stackrel{\cong}{=} [p;q]^2 = [p;q]^2$
 $\mathbb{Z}_p \stackrel{\cong}{=} [p;q]^2$
 \mathbb{Z}_p

Proof of Th= 10 (Kurosh):

let X_A and X_B be connected Z-complexes with $\pi_i(X_{A, x_A}) \cong A$ and $\pi_i(X_{B, x_B}) \cong B$

(can assume XA, XB are only 0-cells of X, and Xg) let X be obtained from XA IL XB by attaching a l-cell e as follows $\begin{pmatrix} X_A & e & X_B \\ & X_A & e & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$ by Seifert - Van Kampen theorem $\pi_{i}(\chi_{i}\chi_{o}) \cong \pi_{i}(\chi_{A}) * \pi_{i}(\chi_{B})$ ∉ A * B careful with base point, eg TI(XAIRA) $\cong \pi(\chi_{A}, e, k)$ let H be a subgroup A*B $\exists a \text{ coverving space } p:(\tilde{X}, \tilde{x}_0) \rightarrow (X, x_0)$ s.t. $\rho_{\star}(\pi_{i}(\widetilde{X},\widetilde{\kappa})) = H$

<u>note</u>: each component of $p^{-1}(X_A)$ is a covering space of X_A " $p^{-1}(\chi_B)$ " " $X_{\mathcal{B}}$ 11 " p⁻¹(e) is a l-cell <u>۱۱</u>



let \widetilde{x}_{A} and \widetilde{x}_{B} be end points of I-cell in X containing \widetilde{x}_{o} let X be a component of p-'(XA) or p-'(XB), say p-'(XA) choose $x_{A} \in X_{A}$ s.t. $x_{A} \in p^{-1}(x_{A})$ let & be a path from x to x then poly is a loop in X based at xA $\pi_{i}(X, x_{A}) \cong \pi_{i}(X, x_{A})$ [pox] + gr $\mathcal{T}_{i}\left(X_{\lambda}, \chi_{\lambda}\right) \to \mathcal{T}_{i}\left(\widetilde{X}_{i, \chi_{\lambda}}\right) \stackrel{\mathcal{E}}{\Longrightarrow} \mathcal{T}_{i}\left(\widetilde{X}_{i, \tilde{\chi}_{\lambda}}\right) \stackrel{\mathcal{E}}{\longrightarrow} \mathcal{T}_{i}\left(X_{i, \chi_{\lambda}}\right) \stackrel{\mathcal{E}}{\Longrightarrow} \mathcal{T}_{i}(X_{i, \chi_{\lambda}}) \stackrel{\mathcal{E}}{\Longrightarrow} \mathcal{T}_{i}(X_{i, \chi_{\lambda}})$ $\alpha \longmapsto \overrightarrow{\delta}_{\lambda} \ast \alpha \ast \overrightarrow{\delta}_{\lambda} \longmapsto \overrightarrow{\delta}_{\lambda} \overset{}{}^{'} [\alpha]_{\mathcal{G}_{\lambda}}$ this composition takes $\pi_i(X_{\lambda}, x_{\lambda}) \subset g_{\lambda}^{-1} \pi_i(X_{\lambda} \cup e, x_{\lambda}) g_{\lambda}$

 $= g_{\lambda}^{-1} A g_{\lambda}$

now let X' be obtained from X' by quotienting a maximal tree in X₂")

just as in the proof of lemma VIII. 8 X' = X and X' has a single o-cell x so let X' be X with all X2 changed as above 50 X = X and X = graph I with X's attached at the verticies now let $\tilde{X}'' = \tilde{X}'$ with a maximal tree of Γ collapsed to a point (still call resulting graph [] as above $\widetilde{X}'' \simeq \widetilde{X}'$ Seifert-Van Kampen now yields $\pi_{I}(\widetilde{X},\widetilde{x}_{\bullet}) \cong \pi_{I}(\widetilde{X}''_{\widetilde{Y}}_{\bullet}) \cong (*_{\lambda} \pi_{I}(X'_{\lambda},x'_{\lambda})) * \pi_{I}(\Gamma')$ $\mathfrak{T}\left(\star_{\lambda} \pi_{i}(\chi_{a}', \chi_{a}') \right) \star \pi_{i}(\Gamma)$ from above p* (Ti(X', x')) is in a conjugate of A or B and TT, (T) is a free group So we see $H = p_*(\pi(\tilde{X}, \tilde{X}))$ has the desired form