Math 4441 - Fall 2020 Extra Practice Problems

- 1. Let Σ be a regular, connected, compact, orientable surface in \mathbb{R}^3 which is not homeomorphic to a sphere. Prove that there are points on Σ where the Gaussian curvature is positive, negative and zero.
- 2. Determine the Christoffel symbols of a surface represented in the form z = f(x, y).
- 3. Write down the differential equations that determine a geodesic on the surface given by z = f(x, y) where $f : \mathbb{R}^2 \to \mathbb{R}$ is any function. That is if $\boldsymbol{\alpha}(t) = \boldsymbol{f}(a(t), b(t))$ is a geodesic. What equations must a and b satisfy?
- 4. Can there be a smooth closed geodesic curve bounding a disk on a surface with Gauss curvature is (a) strictly positive? (b) strictly negative? (c) zero? Prove your answer.
- 5. Let $p \in \Sigma$ and $S_r(\mathbf{p})$ be the geodesic circle with center \mathbf{p} and radius r. Let L be the length of $S_r(\mathbf{p})$ and A the area of the region bounded by $S_r(\mathbf{p})$. Prove that

$$4\pi A - L^2 = \pi^2 K(\boldsymbol{p})r^4 + R$$

where R is a function of r satisfying

$$\lim_{r \to 0} \frac{R}{r^4} = 0.$$

- 6. Let Σ be the surface parameterized by $f(u, v) = (u \cos v, u \sin v, u^2)$ for $u \ge 0$ and $0 \le v \le 2\pi$. Let Σ_r be the portion of the surface with $0 \le u \le r$.
 - (a) Calculate the geodesic curvature of the boundary circles of Σ_r and also compute $\int_{\partial \Sigma_r} \kappa_g(s) \, ds$.
 - (b) What is $\chi(\Sigma_r)$?
 - (c) Use the Gauss-Bonnet Theorem to compute $\int_{\Sigma_r} K \, dA$. Compute the limit as $r \to \infty$.
 - (d) Compute K directly.
 - (e) Use the previous computation to explicitly compute $\int_{\Sigma_r} K \, dA$.