Differential Geometry

- curves and surfaces-
I. Introduction
A. What is Differential Geometry

How can you tell if you "live "on the surface of a ball

or the plane

one way is to look at "straight lines"
in the plane

if two people walk in the "same direction" from different porits they stay a fixed distance apport
(parallel lines don't intersect)
but on the sphere

the distances get closer together
that is, the "geometry" of "lines" on the sphere is different from the geometry of the plane.
so we see the "curvature" of the sphere by looking at straight lines in the space

Question: What about the 3-dimensional space in which we live? is it "flat Euclidean space"? is it a"3-dimensional sphere"?
something else?
General Relativity postulates that gravity can be undestood as a "curvature" in space (time).
The language to study all these ideas is Riemanniain Geometry or more generally Differential Geometry
and it all starts with studying curves and straight lines
This course is an introduction to Riemanncion Geometry through curves and surfaces in Euclidean space (see list of topics on the web page)
B. The geometry of Euclidean Space

$$
\mathbb{R}^{n}=\left\{\left(p_{1}, \ldots, p_{n}\right) \mid p_{i} \text { a real number, ie. } p_{1} \in \mathbb{R}\right\}
$$

we can think of $\vec{p}=\left(p_{1}, \ldots, \rho_{n}\right)$ as a point in \mathbb{R}^{n} or a vectior in \mathbb{R}^{n}

when thinking of \vec{p} as a vector we will frequently write it as a column vector

$$
\vec{p}=\left[\begin{array}{c}
\rho_{1} \\
\vdots \\
\rho_{n}
\end{array}\right]
$$

given $\vec{p}, \vec{q} \in \mathbb{R}^{n}$ then their dot product is

$$
\vec{p} \cdot \vec{q}=p_{1} q_{1}+p_{2} q_{2}+\ldots+p_{n} q_{n}=\sum_{i=1}^{n} p_{i} q_{i}
$$

we sometimes write $\langle\vec{p}, \vec{q}\rangle$ for $\vec{p} \cdot \vec{q}$ and this gives an inner product on \mathbb{R}^{n}, that is $\langle\cdot, \cdot\rangle$ satisfies

1) $\langle\vec{p}, \vec{q}\rangle=\langle\vec{q}, \vec{p}\rangle$
2)

$$
\langle a \vec{p}, \vec{q}\rangle=a\langle\vec{p}, \vec{q}\rangle=\langle\vec{p}, a \vec{q}\rangle
$$

$$
\langle\vec{p}+\vec{q}, \vec{r}\rangle=\langle\vec{p}, \vec{r}\rangle+\langle\vec{q}, \vec{r}\rangle
$$ linear

3)

$$
\begin{aligned}
& \langle\vec{p}, \vec{p}\rangle \geq 0 \\
& \langle\vec{p}, \vec{p}\rangle=0 \Leftrightarrow \vec{p}=\overrightarrow{0}
\end{aligned}
$$

geometry is about lengths and angles, with a dot product we can define the length of \vec{p} to be

$$
\|\vec{p}\|=\sqrt{\langle\vec{p}, \vec{p}\rangle}
$$

and the angle between \vec{p} and \vec{q} to be

$$
\cos \theta=\frac{\left\langle\vec{p}_{1} \vec{q}\right\rangle}{\|\vec{p}\|\|\vec{q}\|}
$$

note for this to be well-defured, we need
lemma 1 (Cauchy-Schwartz inequality):
for all $\vec{p}, \vec{q} \in \mathbb{R}^{n}$

$$
|\langle\vec{p}, \vec{q}\rangle| \leq\|\vec{p}\|\|\vec{q}\|
$$

with equality if and only if \vec{p} and \vec{q} are linearly dependent
Proof: nice trick: compute the length of a linear combination

$$
\left.\begin{array}{rl}
0 \leq \| a \vec{p} & +b \vec{q} \|^{2}
\end{array}=\langle a \vec{p}+b \vec{q}, a \vec{p}+b \vec{q}\rangle\right)
$$

so if $a=\|\vec{q}\|$ and $b= \pm\|\vec{\rho}\|$, then we have

$$
\left.\begin{array}{rl}
0 & \leq 2\|\vec{p}\|^{2}\|\vec{q}\|^{2} \pm 2\|\vec{p}\|\|\vec{q}\|\langle\vec{p}, \vec{q}\rangle \\
& =2\|\vec{p}\|\|\vec{q}\|(\|\vec{p}\|\|\vec{q}\| \pm\langle\vec{p}, \vec{q}\rangle)
\end{array}\right\}
$$

so if $\|\vec{p}\| \neq 0 \neq\|\vec{q}\|$, then

$$
\pm\langle\vec{p}, \vec{q}\rangle \leq\|\vec{p}\|\|\vec{q}\| \quad \text { if either }\|\vec{p}\|=0 \text { or }\|\vec{q}\|=0
$$

and $\|\vec{p}\|\|\vec{q}\| \geq \max \{\langle\vec{p}, \vec{q}\rangle,-\langle\vec{p}, \vec{q}\rangle\}$ then \leq is obvious)

$$
=|\langle\vec{p}, \vec{q}\rangle|
$$

thus the \leq in the lemma is true
note: assuming $\|\vec{p}\| \neq 0 \neq\|\vec{q}\|$ then

$$
\langle\vec{p}, \vec{q}\rangle=\|\stackrel{\rightharpoonup}{p}\|\|\vec{q}\|
$$

$$
\Longleftrightarrow
$$

we have equality in

$$
\|\|\vec{p}\| \vec{q} \pm\| \vec{q}\|\vec{p}\|=0 \quad\left\{\begin{array}{l}
\text { non-degeyeracy } \\
\text { of inner product }
\end{array}\right.
$$

$$
\|\vec{p}\| \vec{q} \pm\|\vec{q}\| \vec{p}=0
$$

$\imath_{i . e .} \vec{p}$ and \vec{q} are linearly dependent
The standard distance between points in \mathbb{R}^{n} is,

$$
d(\vec{p}, \vec{q})=\|\vec{p}-\vec{q}\|
$$

a metric on a set X is a function
$d: X \times X \rightarrow \mathbb{R} \quad$ (metrics describe distance between points)
such that

1) $d(p, q) \geq 0$ with equality $\Leftrightarrow p=q$
2) $d(p, q)=d(q, p)$
3) $d(p, q) \leq d(p, r)+d(r, q)$ triangle inequality
exercise: Show that $d(\vec{p}, \vec{q})$ above is a metric on \mathbb{R}^{n}
given two metric spaces $\left(M_{1}, d_{1}\right)$ and $\left(M_{2}, d_{2}\right)$ an isometry is a surjective function

$$
\phi: M_{1} \rightarrow M_{2}
$$

such that

$$
d_{2}(\phi(x), \phi(y))=d_{1}(x, y) \quad \text { for all } x_{1}, y \in M_{1}
$$

Isometries identify points of M_{1} with points of M_{2} so that distances are preserved. They are "symmetrier"of spaces with metrics
We are interested in isometries from $\left(\mathbb{R}^{n}, d\right)$ to itself Notice any "geometric quantity" should not change under isometries (eg. length of a curve...)

An orthogonal transform is a linear map

$$
A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

such that

$$
\langle A \vec{p}, A \vec{q}\rangle=\langle\stackrel{\rightharpoonup}{p}, \vec{q}\rangle \text { for all } \vec{p}, \vec{q}
$$

Theorem 2:
If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an isometry, then there is some $\vec{a} \in \mathbb{R}^{n}$ and orthogonal transform A such that $f(\vec{p})=\vec{q}+A \vec{p}$

Proof: let $\tilde{f}(\vec{p})=f(\vec{p})-f(\overrightarrow{0})$
if we show \tilde{f} is (1) linear and
(2) satisfies $\langle\tilde{f}(\vec{p}), \tilde{f}(\vec{q})\rangle=\langle\vec{p}, \vec{q}\rangle$
then we are done since we can set $A=\tilde{f}$ and $\vec{a}=f(\overrightarrow{0})$ to get

$$
f(\vec{p})=A \vec{p}+\vec{a}
$$

note: $\langle\vec{x}-\vec{y}, \vec{x}-\vec{y}\rangle=\|\vec{x}\|^{2}+\|\vec{y}\|^{2}-2\langle\vec{x}, \vec{y}\rangle$
so

$$
2\langle\vec{x}, \vec{y}\rangle=\|\vec{x}\|^{2}+\|\vec{y}\|^{2}-\|\vec{x}-\vec{y}\|^{2}
$$

thus

$$
\begin{aligned}
2\langle\tilde{f}(\vec{p}), \tilde{f}(\vec{q})\rangle & =\|\tilde{f}(\vec{p})\|^{2}+\|\tilde{f}(\vec{q})\|^{2}-\|\tilde{f}(\vec{p})-\tilde{f}(\vec{q})\|^{2} \\
& =\|f(\vec{p})-f(\vec{o})\|+\| f(\vec{q})-f\left(\vec{o}\| \|^{2}-\|f(\vec{p})-f(\vec{q})\|^{2}\right. \\
& =\|\vec{p}-\bar{\delta}\|^{2}+\|\vec{q}-\bar{\delta}\|^{2}-\|\vec{p}-\vec{q}\|^{2} \\
& =\|\vec{p}\|^{2}+\|\vec{q}\|^{2}-\|\vec{p}-\vec{q}\|^{2}=2\langle\vec{p} \cdot \vec{q}\rangle
\end{aligned}
$$

so \tilde{f} satisfies (2)
now let $\vec{e}_{1}, \ldots, \vec{e}_{n}$ be an orthonormal basis for \mathbb{R}^{n}

$$
\text { (e.g. } \left.\vec{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \vec{e}_{2}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right], \ldots\right)
$$

exercise: $\tilde{f}\left(\vec{e}_{1}\right), \ldots, \tilde{f}\left(\vec{e}_{n}\right)$ is also an orthonormal basis for \mathbb{R}^{n} because of (2)
so for any i

$$
\begin{aligned}
&\left\langle\tilde{f}(\vec{p}+\vec{q}), \tilde{f}\left(\vec{e}_{1}\right)\right\rangle=\left\langle\vec{p}+\vec{q}, \vec{e}_{i}\right\rangle=\left\langle\vec{p}_{2}, \vec{e}_{2}\right\rangle+\left\langle\vec{q}, \vec{e}_{2}\right\rangle \\
&=\langle\tilde{f}(\vec{p}), \tilde{f}(\vec{e})\rangle+\left\langle\tilde{f}(\vec{q}), \tilde{f}\left(\vec{e}_{2}\right)\right\rangle \\
&=\left\langle\tilde{f}(\vec{p})+\tilde{f}(\vec{q}), \tilde{f}\left(\vec{e}_{2}\right)\right\rangle \quad \text { for all } i
\end{aligned}
$$

and thus $\tilde{f}(\vec{p}+\vec{q})=\tilde{f}(\vec{p})+\tilde{f}(\vec{q})$
exercise: Prove this if it is not clear to you
Hint: $\vec{b}_{1} \ldots \vec{b}_{n}$ an orthonormal basis, then

$$
\vec{v}=\vec{w} \Leftrightarrow\left\langle\vec{v}, \vec{b}_{i}\right\rangle=\left\langle\vec{w}, \vec{b}_{i}\right\rangle \text { for all } i
$$

similarly $\left\langle\tilde{f}(c \vec{p}), \tilde{f}\left(\vec{e}_{1}\right)\right\rangle=\left\langle c \vec{p}, \vec{e}_{2}\right\rangle=c\left\langle\vec{p}, \vec{e}_{1}\right\rangle$

$$
\begin{aligned}
& =c\left\langle\tilde{f}(\vec{p}), \tilde{f}\left(\vec{e}_{\imath}\right)\right\rangle=\left\langle c \tilde{f}(\vec{p}), \tilde{f}\left(\vec{e}_{\imath}\right)\right\rangle \\
& \text { so } \tilde{f}(c \vec{p})=c \tilde{f}(\vec{p})
\end{aligned}
$$

and thus \tilde{f} is linear

So any isometry of \mathbb{R}^{n} (also called a rigid motion) is a composition of
(1) an orthogonal transformation

$$
f(\stackrel{\rightharpoonup}{p})=A \bar{p} \quad \text { and }
$$

(2) a translation

$$
f(\vec{p})=\vec{p}+\bar{a}
$$

we understand (2). let's explore (1)
Recall: given a linear map $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
we can express if as an $n \times n$ matrix
e.g. let $\vec{e}_{1}, \ldots \vec{e}_{n}$ be the standard basis for \mathbb{R}^{n}

$$
\begin{aligned}
& A \vec{e}_{2}=a_{12} \vec{e}_{1}+\ldots+a_{n i} \vec{e}_{n} \\
& \text { let } M_{A}=\left(a_{i j}\right)=\left(\begin{array}{ccc}
a_{11} & a_{12} & \ldots \\
\vdots & a_{1 n} \\
a_{n 1} & \cdots & \vdots \\
a_{n n}
\end{array}\right)
\end{aligned}
$$

any vector can be written

$$
\vec{v}=v_{1} \vec{e}_{1}+\ldots+v_{n} \vec{e}_{n}=\left[\begin{array}{c}
v \\
\vdots \\
v_{n}
\end{array}\right]
$$

then $A \vec{v}$ corresponds to the vector $M_{A}\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]$ from now on we will think of A as the matrix a hove that represents if in this basis
now with $\vec{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]$ and $\vec{w}=\left[\begin{array}{c}w_{1} \\ \vdots \\ w_{n}\end{array}\right]$
note
$\langle\vec{v}, \vec{w}\rangle=\vec{v} \cdot \vec{w}=\vec{v}^{\top} \vec{w}$ where \vec{v}^{\top} means the transpose of v re switch rows and columns
for any matrix A

$$
\left\langle A^{\top} \vec{v}, \vec{w}\right\rangle=\left(A^{\top} \vec{v}\right)^{\top} \vec{w}=\vec{v}^{\top}\left(A^{\top}\right)^{\top} \vec{w}=\vec{v}^{\top} A \vec{w}=\langle\vec{v}, A \vec{w}\rangle
$$

If A is an or thogonal transform, then

$$
\langle\vec{v}, A \vec{w}\rangle=\left\langle A^{\top} \vec{v}, \vec{w}\right\rangle=\left\langle A A^{\top} \vec{v}, A \vec{w}\right\rangle
$$

so

$$
\left\langle\vec{v}-A A^{\top} \vec{v}, A \vec{w}\right\rangle=0=\langle\overrightarrow{0}, A \vec{w}\rangle \text { for all } \vec{w}
$$

\therefore if we let \vec{w} run through an orthonormal basis $\vec{e}_{1}, \ldots, \vec{e}_{n}$ we see

$$
\vec{v}-A A^{\top} \vec{v}=\overrightarrow{0}
$$

So

$$
A A^{\top} \vec{v}=\vec{v}=I d_{n} \vec{v}
$$

and

$$
A A^{\top}=I d_{n}
$$

this implies $1=\operatorname{det}\left(1 d_{n}\right)=\operatorname{det}\left(A A^{\top}\right)=(\operatorname{det} A)^{2}$
so

$$
\operatorname{det} A= \pm 1
$$

if $\operatorname{det} A=1$, we call A a special orthogonal transform
Aside: $O(n)=\left\{\right.$ or thogonal transforms of $\left.\mathbb{R}^{n}\right\}$
so $(n)=\{$ special " " $\}$
are examples of Lie groups, the study of these is a beautiful and deep area of math
Isometries of \mathbb{R}^{2} :
If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a special orthogonal transformation then $1=\operatorname{det} A=a d-b c$
and $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)=\left(\begin{array}{cc}a^{2}+b^{2} & a c+b d \\ a c+b d & c^{2}+d^{2}\end{array}\right)$
so we have $a^{2}+b^{2}=1$

$$
\begin{aligned}
& c^{2}+d^{2}=1 \\
& a c+b d=0 \\
& a d-b c=1
\end{aligned}
$$

Junigue angle θ st.

$$
\begin{aligned}
& d=\cos \theta \\
& c=\sin \theta
\end{aligned}
$$

now $\left[\begin{array}{l}b \\ a\end{array}\right] \cdot\left[\begin{array}{l}d \\ c\end{array}\right]=0$ so $\left[\begin{array}{l}b \\ a\end{array}\right]$ is a unit vector orthogonal to $\left[\begin{array}{l}d \\ c\end{array}\right]$

finally $a d-b c=1 \Rightarrow a=\cos \theta$

$$
b=-\sin \theta
$$

so $A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
and A corresponds to a rotation about the origin by angle θ
exercise: if A not special, but just orthogonal, then

$$
A=\underbrace{\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)}_{\text {reflect about } x \text {-axis }} \cdot\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \quad \text { some } \theta
$$

so rigid motions of \mathbb{R}^{2} are compositions of:
rotations,
translations, and
reflections about x-axis
exercise: Isometries of \mathbb{R}^{3} are compositions of rotations about some line, translations,
reflections about $x y$-plane reflections through the origin
exercise: let $\vec{e}_{1} \ldots \vec{e}_{n}$ be any orthonormal basis for \mathbb{R}^{n} based at a point $\bar{p} \in \mathbb{R}^{n}$
and $\vec{f}_{1} \ldots \vec{f}_{n}$ be another orthonormal basis for \mathbb{R}^{n} based at a polit $\vec{q} \in \mathbb{R}^{n}$
Then there is an isometry $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that

Hint: consider the case where $\vec{e}_{1} \ldots \vec{e}_{n}$ is the standard basis and $\vec{p}=0$ then consider

$$
\phi(\vec{v})=\vec{q}+A \vec{v}
$$

where $A=\left(\vec{f}_{1}, \ldots, \vec{f}_{n}\right)$ expressed in $\vec{e}_{1}, \ldots, \vec{e}_{n}$

$$
\begin{aligned}
& \phi(\vec{p})=\vec{q} \\
& D \phi_{\vec{p}}\left(\vec{e}_{2}\right)=\vec{f}_{1}
\end{aligned}
$$

total derivative of ϕ at \vec{p}
Recall: given a function

$$
\vec{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

we can write it

$$
\vec{F}\left(x_{1}, \ldots x_{n}\right)=\left(f_{1}\left(x_{1}, \ldots x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots x_{n}\right)\right)
$$

then

$$
\underset{\substack{\text { vectors based } \\
\text { at } \vec{p}}}{\underset{\mathcal{F}_{\vec{p}}}{ }: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}} \begin{aligned}
& \text { vectors based } \\
& \text { at } \vec{q}
\end{aligned}
$$

is a linear map that can be expressed as the man matrix

$$
\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(\vec{p}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\vec{p}) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(\vec{p}) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(\vec{p})
\end{array}\right)=\left(\frac{\partial f_{i}}{\partial x_{j}}(\vec{p})\right)
$$

