
Differential Geometry
- curves and surfaces -

I
.

Introduction

it
.

What is

DifferentialGeometry

How can you tell if you
"

live
"

on the surface of a ball

-
-

- -
-

.

.

§
called a sphere

-
or 2- sphere

or the plane

I?one way is to look at
"

straight lines
' '

in the plane of it two people walk in the

✓
"

same direction
"

from different

points they stay a fixed

distance app art

( parallel lines don't intersect )

but on the sphere

µ the distances get

..
closer together

that is
,

the
"

geometry
" of

"

lines
"

on the sphere is different

from the geometry of the plane .

SO we see the
"

curvature
" of the sphere by looking at

straight lines in the space



True scion : What about the 3 - dimensional space in which we live ?

isit' ' flat Euclidean space
" ?

is it a

"

3 - dimensional sphere
" ?

something else ?

General Relativity postulates that gravity can be understood as

a

"

curvature "
in space lain e)

.

The language to study all these ideas is RiemannianGeometry

or more generally DifferentGeometry

and it all starts with studying curvesandstraightlines

This course is an introduction to Riemann coin Geometry

through curves and surfaces in Euclidean space
C see list of topics on the web page )

B
.

The geometry of Euclidean Space

IR "
= { I p, , . . . , p n ) I pi a real number

,
i.e

. p ,
E IR }

we can think of D= Ip , , . . .

, Pn ) as a pointin IR
"

or atech ai IR
"

• F

when thinking of B as a vector we will frequently write it as a

column vector

op

given pig EIR"

then their dot product is

F.9- = pig ,
t pzgze . .  . t paan = ⇐

,

Pi 9 i



we sometimes write 48,97 for F.5 and thisgives an inner

product on IR
"

,
that is l .

,
. ) satisfies

D 4 pig ) = II. p )
symmetric

2) tap , g) = a sp. 97=48 , af )

I Ft9- if ftp.ry-sg.ry ) linear

'

3) I F, p ) Z O

I F , p > = o ⇒ p } positive definite

geometry is about lengthsandangles ,
with a dot product we

can define the length of F to be

lip H - LEFT
and the angle between B and of to be

cos a  = CBI it

1181111911 €
p

note for this to be well-defined
,

we need

lemma I ( Cauchy - Schwartz inequality)

for all F. g- E IR
"

KpiIHe 1101111511

with equality it and only if I and g- are linearly dependent

Proof nice trick : compute the length of a linear combination

Of Hap tbg IE tap tbg , apt bop )

= a 'll pl ft b 'll g H 't Zab 9.5 )

so it a = Hghand b = I HFH
,

then we have

0 I 2118112119712IZHPTIH-gtkp.gl
= 21181111911 ( lip 1111911 I 6,5I ) } ④



so if Hp Ht OF KIK,
then

± trig > E 11,51111511 ( if either HRH -

- o or Hgh - O

then E is obvious )
and lip 1111942 max ftp.TY-tp.gl )

= thrill
thus the E is the lemma is true

note : assuming HFIH of 11911 then

spit 7 = Itp1111911
⇐

we have equality in ④

⇐

Http49 I

HgYpH
" on -

degeneracy

⇒
of

Inner
product

krillg- I Hgtlp = O

-
tie

. p and g- are

linear
- ly dependent #

The standard distance between points in
' IR

"

is .

d I pig ) = Itp - g- It

a metric on a set X is a function

( metrics describegli stance
d : X x X → IR

between points
such that

i ) dlp ,g) Z O with equality ⇒ p
= q

a ) dip . 9) =D l 9, P )

triangle inequality
3) dcp , g) E d Cp .

rt t dlr
, 9 )

forexercise . Show that d (pig ) above is a
p #

qmetric on IR "



given two metric spaces I M
,

,d , ) and ( Mr ,
da ) an isometry

is a surjective function

to : M
,

→ Me

such that
dip ha

,
fly ) ) = d. I x

, y) for all X. y EM
,

Isometries identify points of M
, with points of Mz so that

distances are preserved . They are
" symmetries " of

spaces with metric 's

We are interested in isometries from DR
"

,
d ) to itself

Notice any
"

geometric quantity
" should not change

under isometries leg length of a curve . . . )

An orthogonal transform is a linear map

A : IR
"

→ pin
such that

ftp.Agl-hp.gl for all pig

Theorem 2 :

If f : IR
"

→ IR
"

is an isometry ,
then there is

some I E IR
"

and orthogonal transform A

such that tip ) = a- t Ap

Proof let I (B) = fcp ) - f- CE )

it we show Iis ① linear and
n ~

② satisfies Lf IF)
,

f ta ) ) =L pig 7
?

then we are done since we can set A  = t and I = flot
to get

tipi
' Atta



note LI - I , I -77=115114117112-245,77

So
245

,
7--115112+117112 - HI-FIT

thus
z C

ftp.FGD-xfiptlftHFGTH-HFirst
-

Fight
= Http ) - f- CEN HI f Cgt - f IoTH

'

- It f Cpt - f GT IT
isometry? ftp.olf-illq-olf-llp -9112

-

= 110112+119112 - lip - g- If = up . I >

so f satisfies ②

now let E
,

. . . ,
En be an orthonormal basis for R

"

leg
. It:o) , E = LI:o) ,

.  -
. )

- -

exercise : f let)
, . . . ,

f ten ) isalso an orthonormal basis

for IR
" because of ②

so for an

c peg ,
,Ice, > = Lptg, = IF .-9745.57-  ~  ~  ~

= http )
,

f ( Edt Hlf )
,

f let ) )
~  a

~

= ( f (f) tf Cg- )
,

f (Ed ) for all i

~  ~
~

and thus f ( ptg ) = ftF)t f CE)

exercise . Prove this it it is not clear to you

Hint : To
,

. . . In an orthonormal basis ,
then

E = I ⇐ 48,5
;
> stew ,Ii > for all i←

~

scimitar ly I flop )
,

flea ) ) = top ,
Ez > = Csp , -97

-  -  -  ~

= ch f ( p )
,

f (Ee ) ) = L of IF )
,

f IED
-  -

so t ( c p ) = c f CF )
~

and thus f is linear
#



So any isometry of IR
"

( also called a rigidmotion ) is

a composition of

① an orthogonal transformation

f- C p ) = Af and

② a translation
f- I ft F ta

we understand ②
.

let 's explore ①

Recall : given a linear
map A : IR "

→ IR
"

we can express it as an nxn matrix

e. g .
let I ,

. . . En bethe standardbasis for IR
"

AE,
= a

, f-it . . .

t an ien

I et
ma .

. laid
a

:

any vector can be written

I = Viet . . . then =

then AT corresponds to the vector MAL ?;)
from now on we will think of A as the matrix above

that rep resets it in this basis

now with Tr and I =

" te

L f
,
-w , = f. in = Ftw where IT means the transposeof v

re
.

switch rows and columns



for any matrix A

( Atv
,

I > = LATE) = TEA'T tu = E' AT = to
,

AE >

if A is an orthogonal transform
,

then

IT
,

AT ) = LATE
,

I ) - LA Atv
,

AT )

SO

( T . A ATF
,

AT
) = O = L 8

,
AT ) for a1

wi
. if we let I run through an orthonormal basis I

,
. . .

Ten

we see
J - AAT F =D

fun identity
matrix

so
A ATF = I = I dnt

and

A AT = Id
n

this implies 1- - detlldn ) = det ( AA
' ) - (detA)

'

SO
def A  =

 I 1

it def A  = I
,

we call A a special orthogonal transform

A side . Old = I orthogonal transforms of IR "

}

SO In = I special " " }

are examples of Liegroups_ ,
the study of these is

a beautiful and deep area of math

Isometries of IR ?

If A  = ( Edb) is a special orthogonal transformation

then I  
= det A -

- ad - be

and too .tl :ballscat %a



so we have a 2+5=1
at d 2=1

.
( d. c)

act bd -

- O
no

ad - be = I

← unit circle
F unique angle 0 set

.

D= cos o

( = sin
'

0

now [ ba) . Idc) = O so [ ba ) is a unit vector

orthogonal to [ I ]

f- sure , lose )
• .

I cost
,

Sino )
b a µ

d
c

•

(

cost
,

- Sino )

b a

finally ad - be = 1 ⇒ a = co so

b =
- Sino

so A  = ( cost - sin a

Sino cost
)

and A corresponds to arotationabout the origin by angle 0

exercise it A not special, but just orthogonal, then

A  = (
'

o
? , ) . ( cos o - since

~
sin cos o

) some a

reflect about x - axis

so rigid motions of 1122 are compositions of :

rotations
translations

,

and

reflectionsaboutx-axis



exercise . Isometries of IR
'

are compositions of

rotations about some line
,

translations
,

reflections about xy - plane
reflections through the origin

exercise . let E . . . En be any
orthonormal basisfor IR

"
based

at a point p E IR
"

and I . . . In be another orthonormal basis for IR
"

based

at a point g- E IR
"

Then there is an isometry to : IR
"

→ IR
"

suchthat

e-a lol p ) =

gi
f -HE

,
I Dotplez ) -

-
f

,%I we total derivative of 4 at I
£

Recall . given a function

F : IR
"

→ Mm

we can write it

FIX, , . . . Xn ) = ( f
,

I x
, . . .Xu )

,
. . .

, fmlx, , . .  . xn ))
then

D Ep : IR
"

→ IR
m

r a
vectors based actors based
at p at g-

Hint . consider the case

where E, . . .
En is the is a linear map

that can be expressed
standard basis and f -

- O as the mxn matrix

then consider 2 f - ,1- I p
- ( p

¢ to) = g- t AT

me . nai:÷s÷i÷÷
.

. . . . .

÷÷÷÷÷÷¥⇐÷m


