I<u>Curves</u>

A. <u>Curves in R</u>
A parameterized <u>curve</u> is a continuous function
$\vec{x}: I \longrightarrow \mathbb{R}^n$ where
where I = (a,b) or [a,b]
the image (of a is called a curve
$\frac{example}{a} = (t, t) \qquad t \in [0, 1]$
$\overline{\beta}(t) = (\frac{1}{2}t, \frac{1}{2}t) t \in [0, \frac{1}{2}]$
$\vec{x}(t) = (t^2, t^2)$ $t \in [0, 1]$

<u>note</u>:

e.g.

- i) all 3 functions have the same image, so a given curve can be described by many different functions
- 2) we say that \$\vec{a}\$ (or \$\vec{b}\$ or \$\vec{b}\$...) parameterizes the curve C
- 3) We can think of Cas the path of a particle or a pièce of wire in Rⁿ
- 4) we frequently confuse C and Z but remember we are really interested in C, Z is just a convenient way to describe C mathematically
- 5) (noves do not need to be given by a parameterization

but of course we can parameterize it $\vec{x}(t) = (cost, smit) t \in [0, 2\pi]$

the image of 2 and 3 are the same but the order inwhich parts of the path are traversed is different so we will say these are different curves

So really we should think of a curve Cas the image of some $\vec{z}: [a, 6] \rightarrow \mathbb{R}^n$ together with the order in which the points on Care encountered

examples:

1) Straight lines
given points
$$\vec{p}$$
 and \vec{q} in \mathbb{R}^{n}
(think of them as vectors)
then $\vec{z}(t) = (1-t)\vec{p} + t\vec{q}$ $t \in Eo, 1]$
parameterizes the line from \vec{p} to \vec{q}
e.g.
 $\vec{z}(t) = (1-t)\begin{bmatrix} 1 \\ 1 \end{bmatrix} + t\begin{bmatrix} 3 \\ 2 \end{bmatrix}$
 $\vec{z}(t) = (1-t)\begin{bmatrix} 1 \\ 1 \end{bmatrix} + t\begin{bmatrix} 3 \\ 2 \end{bmatrix}$
 $\vec{z}(t) = (1-t)\begin{bmatrix} 1 \\ 0 \end{bmatrix} + t\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
 $= \begin{bmatrix} 1-t \\ -t \end{bmatrix}$
2) Circles
given $r \in \mathbb{R}, r > 0$
 $\vec{p} \in \mathbb{R}^{2}$
then $\vec{z}(t) = \vec{p} + (r \log t, r \sin t) \quad t \in [0, 2\pi]$
parameterizes the circle of radius r about \vec{p}
e.g. $\vec{z}(t) = \begin{bmatrix} 3 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \cos t \\ 2\sin t \end{bmatrix} = \begin{bmatrix} 3 + 2\cos t \\ 1 + 2\sin t \end{bmatrix}$

s) Helix
given r, h \in R, r > 0, h \ge 0
set
$$\vec{z}(t) = (r \cos t, r \sin t, h t) + \epsilon R$$

4) $\vec{z}(t) = (t^2, t^3)$
 $t \in R$
given a curve C, parameterized by a function
 $\vec{z}: I \longrightarrow R^n$
 $\vec{z}(t) = (\alpha_1(t), \alpha_2(t), \dots, \alpha_n(t))$
recall from calculus that at the point $\vec{z}(t_0) \in C$ a tangent
vector to C is given by
 $\vec{z}'(t_0) = (\alpha_1'(t_0), \dots, \alpha_n'(t_0))$
 $\vec{z}'(t_0) = (\alpha_1'(t_0), \dots, \alpha_n'(t_0))$

<u>Remarks</u>: 1) Actually $\overline{x}'(t_{\bullet})$ is a vector based at (0,0,...,0)When we say a vector \overline{v} is <u>based</u> at \overline{p} , then we

shift
$$\vec{v}$$
 so its "tail" is at \vec{p}
 \vec{v} \vec{p} \vec{v} based at \vec{p}

so we should say
$$\vec{a}'(t_0)$$
 based at $\vec{z}(t_0)$ is tangent to C
z) If $\vec{v} \neq 0$, then the line spanned by \vec{v} is
 $f_{\vec{v}} = \{r\vec{v} \mid r \in R\}$
if \vec{v} is based at \vec{p} then the line through \vec{p} in
the direction of \vec{v} is
 $\{r\vec{v} \neq \vec{p} \mid r \in R\}$
so the tangent line to the curve C at $\vec{p} = \vec{z}(t_0)$
 $\vec{r} = \{\vec{z}(t_0) + r \vec{z}'(t_0) \mid r \in R\}$
 $\vec{r} = \{\vec{z}(t_0) + r \vec{z}'(t_0) \mid r \in R\}$

Ρ́

TipC

<u>Recall</u>: the tangent line to $(at \vec{p})$ is the "line that best approximates $(at \vec{p})$ "

a parameterized curve
$$\vec{z}(t)$$
 is called regular if $\vec{z}'(t)$
errists and is non-zero for all t
we need this to talk about tangent lines and
many other things
so we usually assume curves are regular
(encept maybe at a hinte number of points)
note: let $\vec{z}: \vec{I} \rightarrow \vec{R}'$ parameterize a curve
if $\vec{z}''(t)=0$ for all t, then \vec{z} parameterizes (part
of) a line
to see this note
 $\vec{z}''(t)=(\vec{a},''(t),...,\vec{a},''(t))=(0,...,0)$
⁵⁰
 $\alpha''_i(t)=0$ $\alpha_t: \vec{I} \rightarrow \vec{R}$
uitegrate to get
 $\alpha'_i(t)=\int \alpha''_i(t) dt + v_t = v_i$ for some constant v_i
 $\vec{z}(t)=\int \alpha''_i(t) dt + p_i = \vec{v}_i + p_i$
that is
 $\vec{z}(t)=\int \alpha''_i(t) dt + p_i = \vec{v}_i + p_i$
that is
 $\vec{z}(t)=\int \alpha''_i(t) dt + p_i = \vec{v}_i + p_i$
that is
 $\vec{z}(t)=\int \alpha''_i(t) dt + e^{(v_i)}_i = \vec{p} + \vec{v} + \vec{z}$
So the second derivative tells us how far \vec{a} is
from being a line.
Problem: \vec{a}'' is not a geometric quantity!
1.2. It depends on the parameterization not just C

e.g.
$$\vec{x}(t) = (t,t)$$
 $t \in [0,1]$
 $\vec{\beta}(t) = (t^2, t^2)$ $t \in [0,1]$
 $\vec{x}''(t) = (0,0) \neq \vec{\beta}''(t) = (2,2)$
 $also ||\vec{a}''|| = 0$ $||\vec{\beta}''|| = 2\sqrt{2}$
 $but both give$
so \vec{x}'' doesn't necessarily give us information
 $about the curve C$ it parameterizes
 $(e.g. can't tell example is o line from \vec{\beta}'')$
to fix this we need to consider arc length
Recall from calculus that if C is parameterized by
 $\vec{x}: [a.b] \rightarrow \mathbb{R}^n$
then the length of C is given by
 $length(c) = \int_a^b ||\vec{x}'(t)|| dt$
or more generally the length along C from
the endpoint $\vec{x}(a)$ to $\vec{x}(s)$ is
 $l(s) = \int_a^s ||\vec{x}'(t)|| dt$

Fuch we can reparameterize
$$C$$
 by undired in
 $\vec{\beta}: [o, l] \rightarrow \mathbb{R}^n$
such that $\|\vec{p}'(s)\| = 1$ for all s

<u>Remarks:</u>

i) if $\vec{z} : [a,b] \to \mathbb{R}^n$ parameterizes a curve \mathcal{L} and $\vec{\beta} : [c,d] \to \mathbb{R}^n$ is another parameterization of \mathcal{L} then we say $\vec{\beta}$ is a reparameterization of \mathcal{L} <u>note</u>: if \vec{z} is one-to-one (i.e. $\vec{x}(t_i) = \vec{x}(t_i)$) <u>then</u> $t_i = t_i$) then for each $s \in [c,d]$, there is a unique $t_s \in [a,b]$ such that $\vec{x}(t_s) = \vec{\beta}(s)$

so set
$$f: [c,d] \rightarrow [a,b]: s \mapsto t_s$$

and we see
 $\overline{B}(s) = \overline{Z}(f(s)) = \overline{Z} \circ f(s)$

Conversely, given any function
$$h: [k, l] \rightarrow [a, b]$$

 $\vec{z} \circ h: [k, l] \rightarrow \mathbb{R}^n$
is a reparameterization of \vec{z}

z) We say that
$$\vec{z}: [0, b] \rightarrow \mathbb{R}^n$$
 parameterizes C by arc length

$$if || \vec{x}'(s)|| = 1 \quad for all s \in [0, l]$$

$$note: given such an \vec{x} we have
$$l(s) = \int_{0}^{s} ||\vec{x}'(x)|| dx = s$$

$$1e. |ength of C from \vec{x}(0) \neq \vec{x}(s) is s$$

$$so |emma says regular curves can always$$

$$be parameterized by arc (ength)$$

$$Broof: given \vec{\lambda} : [a, b] \rightarrow \mathbb{R}^{n} parameterizing C$$

$$let \quad f(t) = \int_{a}^{t} ||\vec{x}'(x)|| dx$$
the fundamental theorem of calculus says
$$\frac{df}{dt} = ||\vec{x}'(t)|| = 0 \quad since \vec{x}$$

$$so f is increasing on [a, b]$$

$$\therefore f is one-to-one$$

$$if l = f(b) = length of C then f also onto [0, l]$$

$$if (e)$$$$

enercise: f(t) has an inverse (recall this is a function $g: [0, 2] \rightarrow [a, b]$ st. fog(s) = s and gof(t) = tchain rule gives $\frac{dg}{ds}(f(t))\frac{df}{dt}(t) = \frac{d}{dt}(gof)(t) = \frac{d}{dt}t = 1$

So
$$\frac{dg}{d\xi}(s) = \frac{1}{dt}(t)$$
 where $s = f(t)$ and $t = g(s)$
now set $\vec{\beta}(s) = \vec{\lambda}(g(t))$
so $\vec{\beta}: [o, e] \rightarrow \mathbb{R}^{n}$ parameter ites C
and
 $\|\vec{\beta}'\| = \|\vec{\lambda}'(g(s))g'(s)\| = \|\vec{\lambda}'(s)\frac{1}{dt}(t)\| = \|\vec{\lambda}'(t)\| \frac{1}{|\frac{dt}{dt}(t)|}$
 $= \|\vec{\lambda}'(t)\| \frac{1}{\|\vec{\lambda}'(t)\|} = 1$

Example: Helix

$$\vec{x}(t) = (r \cos t, r \sin t, bt)$$
 $t \in [0, \infty)$
 $\vec{x}'(t) = (-r \sin t, r \cos t, b)$
 $\|\vec{x}'(t)\| = \sqrt{r^2 \sin^2 t + r^2 \cos^2 t + b^2} = \sqrt{r^2 + b^2}$
So $f(t) = \int_0^t \sqrt{r^2 t b^2} dx = \sqrt{r^2 + b^2} t$
the morese of f is
 $f^{-1}(s) = \frac{1}{\sqrt{r^2 t b^2}} s$, $r \sin \frac{1}{1 r t b^2} s$, $\frac{bs}{\sqrt{r^2 t b^2}}$)
is a parameterization by are length
Notation: When we use the variable s in a parameterization of
a curve we will always mean we have parameterization of
a curve we will always mean we have parameterization
now given a parameterization $\vec{\beta}: [0, 2] \rightarrow R^n$ of a curve C by
 $arc (ength we say$
 $\vec{T}(s) = \beta'(s)$
is the unit tangent vector

lemma L: $\vec{\tau}'(s)$ is perpendicular to $\vec{\tau}(s)$

Proof: $\vec{T}(s) \cdot \vec{T}(s) = \| \vec{T}(s) \|^2 = 1$ the product rule gives $0 = \frac{1}{3} =$ = 2 デ(ら). テ(5) 50 〒(.〒=0 We call N(s) = 1/7'(s) I T's the unit normal vector to C at B(s) ₹(s) **N**(S) 7/15) We call K(s) = IT'(s) I the <u>curvature</u> of C at p(s)

note: X(s)= || I "(s) || is the acelleration of a particle moving on C with unit speed so you feel the curvature of a road while driving!

exercise:

15 10

quantity Relling how

INR

1) Show the curvature of a curve L'is independent of param. 15 Say 2) Show if I: R" -> R" is an isometry then the curvature of (at p is the same as the curvature of I (c) at I(p)

s) If
$$\exists : [ab] \rightarrow R^n$$
 is any regular parameterization of C
then show you can calculate the curvature of C at $\vec{z}(t)$
by
 $X(t) = \left\| \left(\frac{\vec{z}(t)}{||\vec{z}'(t)||} \right)^{\prime} \frac{1}{||\vec{z}'(t)||} \right\|$
't) Show directly that the formula in 3) is independent of
parameterization
 $Th^{\frac{e+3}{2}}$:
a regular curve C is (part of) a line
iff
curvature of C is 0 at all points
Remark: So curvature is precisely the measure of how
far a curve is from being a line!
Proof: (=>) If C is a line from \vec{p} to \vec{q} then
 $\vec{b}(s) = \frac{p-s}{R}\vec{p} + \frac{s}{R}\vec{7}$
for $s \in [0, R]$ $l = l|\vec{p} \cdot \vec{7}|l$
is an arc length parameterization of C
 $\vec{p}'(s) = -\frac{1}{R}\vec{p} + \frac{1}{R}\vec{7}$
So
 $X(s) = l|\vec{B}'(s)|l = l|\vec{v}|l| = 0$
(\notin) let $\vec{B}(s)$ be an arc length parameterization of C
assume $X(s) = 0$ so $\vec{\beta}'(s) = \vec{0}$
then we say earlier that $\vec{B}(s)$ parameterization of C
 $a line$ aff

$$\overline{\beta}(s) = \left(r\cos\frac{3}{\sqrt{r^{2}4b^{2}}}, r\sin\frac{5}{\sqrt{r^{2}4b^{2}}}, \frac{b^{3}}{\sqrt{r^{2}4b^{2}}}\right)$$
So
$$\overline{\beta}^{-1}(5) = \left(\frac{1}{\sqrt{r^{2}4b^{2}}}\cos\frac{5}{\sqrt{r^{2}4b^{2}}}, \frac{c}{\sqrt{r^{2}4b^{2}}}\cos\frac{5}{\sqrt{r^{2}4b^{2}}}, \frac{b}{\sqrt{r^{2}4b^{2}}}\right)$$
and
$$\overline{\beta}^{-1}(5) = \left(-\frac{1}{r^{2}4b^{2}}\cos\frac{5}{\sqrt{r^{2}4b^{2}}}, \frac{c}{r^{2}4b^{2}}\sin\frac{5}{\sqrt{r^{2}4b^{2}}}, 0\right)$$
Hus
$$\chi(s) = \|\overline{\beta}^{-1}(s)\| = \frac{|r|}{r^{2}+b^{2}}$$
Again let
$$\overline{\beta}^{-1}(5) = \overline{\beta}^{-1}(5) = R^{n}$$
be an arc length parameterization of some curve C
recall $\overline{T}(5) = \overline{\beta}^{-1}(5)$ and $\overline{N}(s) = \frac{1}{N(s)}\overline{T}(5)$ are unit
orthonormal vectors in R^{n}
So they span a plane in R^{n}

$$P = \{\overline{a}, \overline{T}(5) + b, \overline{N}(5)\} = \overline{a}b \in R\}$$
translate P so that it goes through $\overline{\beta}(s) = \overline{p}$

$$P_{\overline{p}} C = \{p(s_{0}) + \overline{a}, \overline{T}(s_{0}) + 6, \overline{N}(s_{0})\} = A \in R\}$$
this is called the osculating plane to C at $\overline{p} = \overline{\beta}(s_{0})$

$$\overline{p}$$
note: $P_{\overline{p}}C$

$$\overline{p}$$

$$rote: P_{\overline{p}}C contains the tangent line $T_{\overline{p}}C$

$$\overline{p}(c)$$

$$\overline{p}(c)$$

$$\overline{p}(c)$$

$$\overline{p}(c)$$$$

comes closest to lying in at p (later we will see precisely when C lies in Pp () <u>Recall</u>: given 3 points \$7, \$2, \$3 in R" that do not lie on a line then they () determine a unique plane $P(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}) = \vec{x}_{1} + span \{\vec{x}_{2} - \vec{x}_{1}, \vec{x}_{3} - \vec{x}_{1}\}$ 2 determin a unique circle ((x, x2, x3) in P(x1, x2, x3) $\left| \begin{array}{c} \overline{x_{s}} \\ \overline{y_{s}} \\ \overline{y_{s}} \\ \overline{y_{s}} \\ \overline{y_{s}} \end{array} \right| \left| \begin{array}{c} P(\overline{x_{1}}, \overline{x_{2}}, \overline{x_{3}}) \\ \overline{y_{s}} \\ \overline{y_{s}} \\ \overline{y_{s}} \end{array} \right|$ <u>Facts</u>: let \overline{B} : $[o, R] \rightarrow \mathbb{R}^n$ be a regular parameter ization of C suppose Sof[0,1] St. X(So) to I) for points 5, 5, 5, 6 [0, 1] sufficiently close to so B(s,), B(s,1, B(s,) donat lie on a line I) the osculating plane is $P(\underline{z} (s_0)) = \lim_{s_1, s_2, s_3 \to 0} P(\underline{\beta}(s_1), \underline{\beta}(s_2), \underline{\beta}(s_3))$ II) The limit is a circle (B(S) in PB(S)) it is called the <u>osculating circle</u> and can be parameterized by $\vec{\mathcal{Z}}(t) = \vec{\beta}(s_0) + \frac{1}{\chi(s_0)} \vec{N}(s_0) + \frac{1}{\chi(s_0)} \left[(\sin t) \vec{\tau}(s_0) + (\cos t) \vec{N}(s_0) \right]$

so the circle has radius I X(s.)

note: 1) osculating circle is tangent to C at \hat{p} (has "order 2" contact with C) 2) If X is close to O then C is almost straight If X is large then C curves a lot.