II Curves
A. Curves in \mathbb{R}^{n}

A parameterized curve is a contininuous function

$$
\vec{\alpha}: I \longrightarrow \mathbb{R}^{n}
$$

where

$$
I=(a, b) \text { or }[a, b]
$$

the in age C of $\vec{\alpha}$ is called a curve
example:

$$
\begin{array}{ll}
\vec{\alpha}(t)=(t, t) & t \in[0,1] \\
\vec{\beta}(t)=\left(\frac{1}{2} t, \frac{1}{2} t\right) & t \in[0,1 / 2] \\
\vec{\gamma}(t)=\left(t^{2}, t^{2}\right) & t \in[0,1]
\end{array}
$$

note:

1) all 3 functions have the same image, so a given curve can be described by many different functions
2) We say that $\vec{\alpha}$ (or $\vec{\beta}$ or $\vec{\gamma} \ldots$) parameterizes the curve C
3) We can think of C as the path of a particle or a piece of wire in \mathbb{R}^{n}
4) we frequently confuse C and $\vec{\alpha}$ but remember we are really interested in $C, \vec{\alpha}$ is just a convenient way to describe C mathematically
5) Curves do not need to be given by a parameterization egg.

but of course we can parameterize it

$$
\vec{\alpha}(t)=(\cos t, \sin t) \quad t \in[0,2 \pi]
$$

Remark: There is a subtlety in the definition of curve really it is not just the in age of $\vec{\alpha}$ but the "trajectory" of the particle traveling along C
example:

the image of $\vec{\alpha}$ and $\vec{\beta}$ are the same but the order inwhich parts of the path are traversed is different so we will say these are different curves

So really we should think of a curve C as the image of some $\vec{\alpha}:[a, b] \rightarrow \mathbb{R}^{n}$ together with the order in which the points on C are encountered
examples:

1) Straight lines
given points \vec{p} and \vec{q} in \mathbb{R}^{n}
(think of them as vectors)
then

$$
\vec{\alpha}(t)=(1-t) \vec{p}+t \vec{q} \quad t \in[0,1]
$$

parameterizes the line from \vec{p} to \vec{q}
egg.

$$
\begin{aligned}
\vec{\alpha}(t) & =(1-t)\left[\begin{array}{l}
1 \\
1
\end{array}\right]+t\left[\begin{array}{l}
3 \\
2
\end{array}\right] & x & \vec{\alpha}(t)
\end{aligned}=(1-t)\left[\begin{array}{c}
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

2) Circles
given $r \in \mathbb{R}, r>0$

$$
\vec{p} \in \mathbb{R}^{2}
$$

then $\vec{\alpha}(t)=\vec{p}+(r \cos t, r \sin t) \quad t \in[0,2 \pi]$
parameterizes the circle of radius r about \vec{p}
egg.

$$
\vec{\alpha}(t)=\left[\begin{array}{l}
3 \\
1
\end{array}\right]+\left[\begin{array}{l}
2 \cos t \\
2 \sin t
\end{array}\right]=\left[\begin{array}{l}
3+2 \cos t \\
1+2 \sin t
\end{array}\right]
$$

3) Helix
given $r, h \in \mathbb{R}, r>0, h \geq 0$
set $\vec{\alpha}(t)=(r \cos t, r \sin t, h t) \quad t \in \mathbb{R}$

4) $\vec{\alpha}(t)=\left(t^{2}, t^{3}\right)$
$t \in \mathbb{R}$

given a curve C, parameterized by a function

$$
\begin{aligned}
& \vec{\alpha}: I \longrightarrow \mathbb{R}^{n} \\
& \vec{\alpha}(t)=\left(\alpha_{1}(t), \alpha_{2}(t), \ldots, \alpha_{n}(t)\right)
\end{aligned}
$$

recall from calculus that at the point $\vec{\alpha}\left(t_{0}\right) \in C$ a tangent vector to C is given by

$$
\vec{\alpha}^{\prime}\left(t_{0}\right)=\left(\alpha_{1}^{\prime}\left(t_{0}\right), \ldots, \alpha_{n}^{\prime}\left(t_{0}\right)\right)
$$

Remarks: 1) Actually $\vec{\alpha}^{\prime}\left(t_{0}\right)$ is a vector based at $(0,0, \ldots, 0)$ When we say a vector \vec{v} is based at \vec{p}, then we

Shift \vec{v} so its "tail" is at \vec{p}

$$
\underbrace{\vec{v}}_{C} \quad \vec{p}_{\vec{p}} c_{\bar{v}} \text { based at } \vec{p}
$$

so we should say $\vec{\alpha}^{\prime}\left(t_{0}\right)$ based at $\vec{\alpha}\left(t_{0}\right)$ is tangent to C
2) If $\vec{v} \neq 0$, then the line spanned by \vec{v} is

$$
l_{\vec{v}}=\{r \vec{v} \mid r \in \mathbb{R}\}
$$

if \vec{v} is based at \vec{p} then the line through \vec{p} in the direction of \vec{v} is

$$
\{r \vec{v}+\vec{p} \mid r \in \mathbb{R}\}
$$

so the tangent line to the curve C at $\vec{p}=\vec{\alpha}\left(t_{0}\right)$ is given by

$$
T_{\vec{p}} C=\left\{\vec{\alpha}\left(t_{0}\right)+r \vec{\alpha}^{\prime}\left(t_{0}\right) \mid r \in \mathbb{R}\right\}
$$

Recall: the tangent line to C at \vec{p} is the "line that best approximates C at $\vec{p}^{\prime \prime}$
a parameterized curve $\vec{\alpha}(t)$ is called regular if $\vec{\alpha}^{\prime}(t)$ exists and is non-zero for all t
we need this to talk about tangent lines and many other things
so we usually assume curves are regular (except maybe at a finite number of points)
note: let $\vec{\alpha}: I \rightarrow \mathbb{R}^{n}$ parameterize a curve if $\vec{\alpha}^{\prime \prime}(t)=0$ for all t, then $\vec{\alpha}$ parameterizes (part of) a line
to see this note

$$
\vec{\alpha}^{\prime \prime}(t)=\left(\vec{\alpha}_{1}^{\prime \prime}(t), \ldots, \vec{\alpha}_{n}^{\prime \prime}(t)\right)=(0, \ldots, 0)
$$

so

$$
\alpha_{i}^{\prime \prime}(t)=0 \quad \alpha_{1}: I \rightarrow \mathbb{R}
$$

integrate to get

$$
\alpha_{i}^{\prime}(t)=\int \alpha_{2}^{\prime \prime}(t) d t+v_{2}=v_{i} \quad \text { for some constant } v_{i}
$$

so

$$
\alpha_{2}(t)=\int \alpha_{i}^{\prime}(t) d t+p_{i}=v_{1} t+p_{i}
$$

that is

$$
\vec{\alpha}(t)=\left[\begin{array}{c}
\alpha_{1}(t) \\
\vdots \\
\alpha_{n}(t)
\end{array}\right]=\left[\begin{array}{c}
\rho_{1} \\
\vdots \\
\rho_{n}
\end{array}\right]+t\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]=\vec{p}+\vec{v} t
$$

so the second derivative tells us how far $\vec{\alpha}$ is from being a line
Problem: $\vec{\alpha}^{\prime \prime}$ is not a geometric quantity!
1.e it depends on the parametrization not just C
e.g.

$$
\begin{array}{ll}
\vec{\alpha}(t)=(t, t) & t \in[0,1] \\
\vec{\beta}(t)=\left(t^{2}, t^{2}\right) & t \in[0,1] \\
\vec{\alpha}^{\prime \prime}(t)=(0.0) \neq \vec{\beta}^{\prime \prime}(t)=(2,2)
\end{array}
$$

also $\left\|\vec{\alpha}^{\prime \prime}\right\|=0 \quad\left\|\vec{\beta}^{\prime \prime}\right\|=2 \sqrt{2}$
but both give

so $\vec{\alpha}^{\prime \prime}$ doesn't necessarily give us information about the curve C it parameterizes (e.g. Cant tell example is a line from $\vec{\beta}^{\prime \prime}$)
to fix this we need to consider arc length
Recall from calculus that if C is parameterized by

$$
\vec{\alpha}:[a, b] \rightarrow \mathbb{R}^{n}
$$

then the length of C is given by

$$
\operatorname{length}(c)=\int_{a}^{b}\left\|\vec{\alpha}^{\prime}(t)\right\| d t
$$

or more generally the length along C from the endpoint $\vec{\alpha}(a)$ to $\vec{\alpha}(s)$ is

$$
\ell(s)=\int_{a}^{s}\left\|\vec{\alpha}^{\prime}(t)\right\| d t
$$

lemma 1: \qquad
If $\vec{\alpha}$ is a regular parametrization of a curve C, then we can reparameterize C by another function

$$
\vec{\beta}:[0, l] \rightarrow \mathbb{R}^{n}
$$

such that

$$
\left\|\vec{\beta}^{\prime}(s)\right\|=1 \quad \text { for all } s
$$

Remarks:

1) If $\vec{\alpha}:[a, b] \rightarrow \mathbb{R}^{n}$ parameterizes a curve C and $\vec{\beta}:[c, d] \rightarrow \mathbb{R}^{n}$ is another parameterization of C then we say $\vec{\beta}$ is a reparameterization of C
note: if $\vec{\alpha}$ is one-to-one (re. $\vec{\alpha}\left(\epsilon_{1}\right)=\vec{\alpha}\left(t_{2}\right)$ then $t_{1}=t_{2}$)
then for each $s \in[c, d]$, there is a unique $t_{s} \in[a, b]$ such that $\vec{\alpha}\left(t_{s}\right)=\vec{\beta}(s)$

so set $f:[c, d] \rightarrow[a, b]: s \longmapsto t_{s}$ and we see

$$
\vec{\beta}(s)=\vec{\alpha}(f(s))=\vec{\alpha} \circ f(s)
$$

Conversely, given any function $h:\left[k_{1} l\right] \rightarrow[a, b]$

$$
\vec{Q} \circ h:[k, l] \rightarrow \mathbb{R}^{n}
$$

is a reparameterization of $\vec{\alpha}$
2) We say that $\vec{\alpha}:[a, b] \rightarrow \mathbb{R}^{n}$ parameterizes C by arc length
if $\left\|\vec{\alpha}^{\prime}(s)\right\|=1$ for all $s \in[0, l]$
note: given such an $\vec{\alpha}$ we have

$$
l(s)=\int_{0}^{s}\left\|\left.\right|^{\prime}(x)\right\| d x=s
$$

ie. length of C from $\vec{\alpha}(0)$ to $\vec{\alpha}(s)$ is s so lemma says regular curves can always be parameterized by arc length
Proof: given $\vec{\alpha}:\{a, b] \rightarrow \mathbb{R}^{n}$ parameteriting C
let $f(t)=\int_{a}^{t}\left\|\vec{\alpha}^{\prime}(x)\right\| d x$
the fundamental theorem of calculus says

$$
\frac{d f}{d t}=\left\|\vec{\alpha}^{\prime}(t)\right\|>0 \text { since } \vec{\alpha}
$$

so f is increasing on $[a, b]$
$\therefore f$ is one-to-one
if $l=f(b)=$ length of C then f also onto $[0, l]$

exercise: $f(t)$ has an universe
(recall this is a function

$$
g:[0, l] \rightarrow[a, b]
$$

st. $f \circ g(s)=s$ and $g \circ f(t)=t)$
chain rule gives

$$
\frac{d g}{d s}(f(t)) \frac{d f}{d t}(t)=\frac{d}{d t}(g \circ f)(t)=\frac{d}{d t} t=1
$$

so $\frac{d g}{d s}(s)=\frac{1}{\frac{d f}{d t}(t)}$ where $s=f(t)$ and $t=g(s)$
now set $\vec{\beta}(s)=\vec{\alpha}(g(t))$
so $\vec{\beta}:[0, l] \rightarrow \mathbb{R}^{n}$ parameterizes C
and

$$
\begin{gathered}
\left\|\vec{\beta}^{\prime}\right\|=\left\|\vec{\alpha}^{\prime}(g(s)) g^{\prime}(s)\right\|=\left\|\vec{\alpha}^{\prime}(s) \frac{1}{\frac{d f}{d t}(t)}\right\|=\left\|\vec{\alpha}^{\prime}(t)\right\| \frac{1}{\left|\frac{d t}{d x}(t)\right|} \\
=\left\|\vec{\alpha}^{\prime}(t)\right\| \frac{1}{\left\|\vec{\alpha}^{\prime}(t)\right\|}=1
\end{gathered}
$$

example: Helix

$$
\begin{aligned}
& \vec{\alpha}(t)=(r \cos t, r \sin t, b t) \quad t \in[0, \infty) \\
& \vec{\alpha}^{\prime}(t)=(-r \sin t, r \cos t, b) \\
& \left\|\vec{\alpha}^{\prime}(t)\right\|=\sqrt{r^{2} \sin ^{2} t+r^{2} \cos ^{2} t+b^{2}}=\sqrt{r^{2}+b^{2}}
\end{aligned}
$$

so

$$
f(t)=\int_{0}^{t} \sqrt{r^{2}+b^{2}} d x=\sqrt{r^{2}+b^{2}} t
$$

the inverse of f is

$$
f^{-1}(s)=\frac{1}{\sqrt{r^{2}+b^{2}}} s
$$

so

$$
\vec{\beta}(s)=\vec{\alpha}\left(f^{-1}(s)\right)=\left(r \cos \frac{1}{\sqrt{r^{2}+b^{2}}} s, r \sin \frac{1}{\sqrt{r^{2}+b^{2}}} s, \frac{b s}{\sqrt{r^{2}+b^{2}}}\right)
$$

is a parameteritation by arc length
Notation: When we use the variables in a parametrization of a curve we will always mean we have parameterized by arc length, where t is used for any parameterization
now given a parametrization $\vec{\beta}:[0, l] \rightarrow \mathbb{R}^{n}$ of a curve C by arc length we say

$$
\vec{T}(s)=\beta^{\prime}(s)
$$

is the unit tangent vector
lemma 2:
$\vec{T}^{\prime}(s)$ is perpendicular to $\vec{T}(s)$
Proof:

$$
\vec{T}(s) \cdot \vec{T}(s)=\|\vec{T}(s)\|^{2}=1
$$

the product rule gives

$$
\begin{aligned}
0=\frac{d}{d s} 1 & =\frac{d}{d s} \vec{T} \cdot \vec{T}=\left(\frac{d}{d s} \vec{T}\right) \cdot \vec{T}+\vec{T} \cdot\left(\frac{d}{d s} \vec{T}\right) \\
& =2 \vec{T}^{\prime}(s) \cdot \vec{T}(s) \\
\text { so } \vec{T}^{\prime} \cdot \vec{T} & =0
\end{aligned}
$$

We call $N \overrightarrow{(s)}=\frac{1}{\| \vec{T}(s) \mid} \vec{T}^{\prime}(s)$ the unit normal vector to c at $\vec{\beta}(s)$

We call $K(s)=\left\|\vec{T}^{\prime}(s)\right\|$ the curvature of C at $\beta(s)$
note: $K(s)=\left\|Z^{\prime \prime}(s)\right\|$ is the acelleration of a particle moving on C with unit speed
so you feel the curvature of a road while driving!
exercise:

3) If $\bar{\alpha}:[a, b] \rightarrow \mathbb{R}^{n}$ is any regular parameterization of C then show you can calculate the curvature of C at $\vec{\alpha}(t)$ by

$$
x(t)=\left\|\left(\frac{\vec{\alpha}^{\prime}(t)}{\left\|\vec{\alpha}^{\prime}(t)\right\|}\right)^{\prime} \frac{1}{\left\|\vec{\alpha}^{\prime}(t)\right\|}\right\|
$$

4) Show directly that the formula in 3) is vidependent of parameterization
Th ${ }^{m}$ 3:
a regular curve C is (part of) a line
Af
curvature of C is 0 at all points

Remark: So curvature is precisely the measure of how far a curve is from being a line!
Proof: \Leftrightarrow If C is a line from \vec{p} to \vec{q} then

$$
\vec{\beta}(s)=\frac{l-s}{l} \vec{p}+\frac{s}{l} \vec{q}
$$

for $s \in[0, \ell] \quad l=\|\vec{p}-\vec{q}\|$
is an arc length parametrization of C

$$
\vec{\beta}^{\prime}(s)=-\frac{1}{l} \vec{p}+\frac{1}{l} \vec{q}
$$

so

$$
x(s)=\left\|\vec{\beta}^{\prime \prime}(s)\right\|=\|\stackrel{\rightharpoonup}{0}\|=0
$$

(\Leftarrow) let $\vec{\beta}(s)$ be an arc length parameterization of C assume $X(s)=0$ so $\vec{\beta}^{\prime \prime}(s)=\overrightarrow{0}$
then we saw earlier that $\bar{\beta}(s)$ parameterizes part of a line
example: recall an arc length parameteritation of the Helix is

$$
\vec{\beta}(s)=\left(r \cos \frac{s}{\sqrt{r^{2}+b^{2}}}, r \sin \frac{s}{\sqrt{r^{2}+b^{2}}}, \frac{b s}{\sqrt{r^{2}+b^{2}}}\right)
$$

so

$$
\vec{\beta}^{\prime}(s)=\left(\frac{-r}{\sqrt{r^{2}+6^{2}}} \sin \frac{s}{\sqrt{r^{2}+6^{2}}}, \frac{r}{\sqrt{r^{2}+6^{2}}} \cos \frac{s}{\sqrt{r^{2}+b^{2}}}, \frac{b}{\sqrt{r^{2}+b^{2}}}\right)
$$

and

$$
\bar{\beta}^{\prime \prime}(s)=\left(-\frac{r}{r^{2}+b^{2}} \cos \frac{s}{\sqrt{r^{2}+b^{2}}}, \frac{-r}{r^{2}+b^{2}} \sin \frac{s}{\sqrt{r^{2}+b^{2}}}, 0\right)
$$

thus

$$
X(s)=\left\|\vec{\beta}^{\prime \prime}(s)\right\|=\frac{|r|}{r^{2}+b^{2}}
$$

Again let

$$
\vec{\beta}:[0, l] \rightarrow \mathbb{R}^{n}
$$

be an arc length parametrization of some curve C recall $\vec{T}(s)=\vec{\beta}^{\prime}(s)$ and $\vec{N}(s)=\frac{1}{K(s)} \vec{T}(s)$ are unit orthonormal vectors in \mathbb{R}^{n}
so they span a plane in \mathbb{R}^{n}

$$
P=\{a \vec{T}(s)+b \vec{N}(s) \mid a, b \in \mathbb{R}\}
$$

translate P so that if goes through $\vec{\beta}\left(s_{0}\right)=\vec{P}$

$$
P_{\vec{p}} c=\left\{\rho\left(s_{0}\right)+a \vec{T}\left(s_{0}\right)+b \vec{N}\left(s_{0}\right) \mid a, b \in \mathbb{R}\right\}
$$

this is called the osculating plane to C at $\vec{p}=\vec{\beta}\left(s_{0}\right)$

note: $P_{\vec{p}} C$ contains the tangent line $T_{\vec{p}} C$
exercise: Convince yourself that $P_{p} C$ is the plane that C
comes closest to lying in at \vec{P}
(later we will see precisely when C lies in $P_{\vec{p}} C$)
Recall: given 3 points $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}$ in \mathbb{R}^{n} that do not lie on a line then they
(1) determine a unique plane

$$
P\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right)=\vec{x}_{1}+\text { span }\left\{\vec{x}_{2}-\vec{x}_{1}, \vec{x}_{3}-\vec{x}_{1}\right\}
$$

(2) determin a unique circle $C\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right)$ in $P\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right)$

Facts: let $\vec{\beta}:[0, l] \rightarrow \mathbb{R}^{n}$ be a regular porameterization of C suppose $s_{0} \in[0, l]$ st. $X\left(s_{0}\right) \neq 0$
I) for points $s_{1}, s_{2}, s_{3} \in[0, l]$ sufficiently close to s_{0} $\vec{\beta}\left(s_{1}\right), \vec{\beta}\left(s_{2}\right), \bar{\beta}\left(s_{3}\right)$ donot lie on a live
II) the osculating plane is

$$
P_{\vec{\beta}\left(s_{0}\right)} C=\lim _{s_{1}, s_{2} s_{3} \rightarrow 0} P\left(\bar{\beta}\left(s_{1}\right), \vec{\beta}\left(s_{2}\right), \vec{\beta}\left(s_{3}\right)\right)
$$

III) The limit

$$
\left.\lim _{s_{1}, s_{2}, s_{3} \rightarrow s_{0}} C\left(\bar{\beta}\left(s_{1}\right), \vec{\beta}\left(s_{2}\right), \vec{\beta} s_{3}\right)\right)
$$

is a circle $C_{\vec{\beta}\left(s_{0}\right)}$ in $P_{\vec{\beta}\left(s_{0}\right)} C$
it is called the osculating circle and can be parameterized by

$$
\vec{\alpha}(t)=\vec{\beta}\left(s_{0}\right)+\frac{1}{\chi\left(s_{0}\right)} \vec{N}\left(s_{0}\right)+\frac{1}{X\left(s_{0}\right)}\left[(\sin t) \vec{T}\left(s_{0}\right)+(\cos t) \vec{N}\left(s_{0}\right)\right]
$$

so the circle has radius $\frac{1}{K\left(s_{0}\right)}$

note: 1) Osculating circle is tangent to C at \vec{p} (has "order 2 " contact with C)
2) If K is close to O then C is almost straight if k is large then C curves a lot.

