B. Curves in \mathbb{R}^{2}

1. Local Theory: signed curvature
for plane curves we can refine our notion of curvature an orientation on a curve C is a direction
note a parametrization $\vec{\alpha}$ of C gives an orientation on C exercise: an oriented curve has a unique arc lenght parameterization inducing the given orientation (once starting pt fixed)
let C be an oriented curve and $\bar{\alpha}:[0, l] \rightarrow \mathbb{R}^{2}$ an arc length parameterization inducing the orientation
So $\vec{T}(s)=\vec{\alpha}^{\prime}(s)$ is the unit tangent vector to C at $\vec{\alpha}(s)$ set $\hat{N}(s)=$ vetor $\vec{T}(s)$ rotated 90° counterclockwise
(we denote "rotation by 90° counterdochwise" by
$i: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ "complex multiplication"
so $\hat{N}(s)=i \vec{T}(s)$
if $\vec{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ then $i \vec{v}=\left[\begin{array}{c}-v_{2} \\ v_{1}\end{array}\right]$)

Recall lemma 2 says $\vec{T}(s)$ is perpendicular to $\vec{T}(s)$ in \mathbb{R}^{2} this means that $\vec{T}^{\prime}(s)$ and $\hat{N}(s)$ are parallel that is there is some number $K_{\sigma}(s)$ such that

$$
\vec{\alpha}^{\prime \prime}(s)=\vec{T}^{\prime}(s)=\mathcal{K}_{\sigma}(s) \hat{N}(s)
$$

note: $\vec{N}(s)=\frac{\vec{T}^{\prime}(s)}{\left\|\vec{T}^{\prime}(s)\right\|} \quad$ is $\pm \hat{N}(s)$
(only 2 unit normal vectors to a line in \mathbb{R}^{2})
so $K(s)=\left|K_{\gamma}(s)\right| \quad\left(\right.$ recall $\left.K(s)=\left\|\vec{T}^{\prime}(s)\right\| \geq 0\right)$
so we call $K_{\sigma}(s)$ the signed curvature of the curve C (or $\vec{\alpha}$)
Remark: if $K_{\sigma}(s)>0$, thea C is "turning towards $\hat{N}(s)$ "
if $X_{\sigma}(s)<0$, then C is "turning away from $\hat{N}(s)$ "

Theorem 4:
an oriented curve C is part of a circle (line)

$$
\Leftarrow
$$

K_{σ} is a non-zero (zero) constant
moreover, if X_{σ} is a non-zero constant, then C is part of a circle of radius $\frac{1}{\left|k_{\sigma}\right|}$ and if $x_{\sigma}>0, C$ is oriented counterclockwise if $K_{\sigma}<0, C$ is oriented clockwise
exercise:

1) Show that a circle of radius R centered at $\vec{p}=\left[\begin{array}{l}p_{1} \\ p_{2}\end{array}\right]$ is parameterized by arc length by

$$
\vec{\alpha}(s)=\left[\begin{array}{l}
\rho_{1} \\
\rho_{2}
\end{array}\right]+\left[\begin{array}{l}
R \cos \frac{1}{R} s \\
R \sin \frac{1}{R} s
\end{array}\right] \quad s \in[0,2 \pi R]
$$

2) this parameterization is counterclockwise find the clockwise parameterization $\vec{\beta}(s)$
3) show $K_{\sigma}(s)=\frac{1}{R}$ for $\vec{\alpha}$ and $K_{\sigma}(s)=-\frac{1}{R}$ for $\vec{\beta}$
note: This completes (\Leftrightarrow) in the theorem for (\Leftarrow) we will use

Th ${ }^{m} 5$ (Fundamental theorem of plane curves):
given: 1) $I=[0, l] \subset \mathbb{R}$
2) $c: I \rightarrow \mathbb{R}$ a continuous function
3) $\vec{p}, \vec{v} \in \mathbb{R}^{2}$ with $\|\vec{v}\|=1$

Then there exists a unique curve C with a arc length parameterization $\vec{\alpha}: I \rightarrow \mathbb{R}^{2}$ such that

1) $\vec{\alpha}(0)=\vec{p}$
2) $\vec{\alpha}^{\prime}(0)=\vec{v}$
3) $K_{\sigma}(s)=c(s)$

Corollary 6:
If C_{1} and C_{2} are two regular oriented plane curves of length L and they have the same signed curvature then there is some isometry ("rigid motion")

$$
\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

such that

$$
\phi\left(c_{1}\right)=C_{2}
$$

Remark: 1) So signed curvature determines a plane curve upto rigid motion!
2) If two curves of the same lenght have the same signed curvature and are tangent at their starting point, then they are the same curve!

Proof of Corollary:
let $\vec{\alpha}:[0, L] \rightarrow \mathbb{R}^{2}$ be an arc length parameterization of C_{1}

$$
\vec{\beta}:[0, L] \rightarrow \mathbb{R}^{2}
$$

let $\vec{p}_{1}=\vec{\alpha}(0), \vec{v}_{1}=\vec{\alpha}^{\prime}(0)$

$$
\vec{P}_{2}=\vec{\beta}(0), \vec{v}_{2}=\vec{\beta}^{\prime}(0)
$$

earlier we saw that there was an isometry
$\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
\begin{aligned}
& \phi\left(\vec{p}_{1}\right)=\vec{p}_{2} \\
& D \phi_{\vec{p}_{1}}\left(\vec{v}_{1}\right)=\vec{v}_{2}
\end{aligned}
$$

set $\vec{\gamma}(s)=\phi \circ \vec{\alpha}(s)$
note: $\vec{\gamma}(0)=\phi\left(\vec{p}_{1}\right)=\vec{p}_{2}$

$$
\vec{\gamma}^{\prime}(0)=D \phi_{\vec{\alpha}(0)}\left(\vec{\alpha}^{\prime}(0)\right)=D \phi_{p_{1}}\left(\vec{v}_{1}\right)=\vec{v}_{2}
$$

recall $\phi(\vec{p})=A \vec{p}+\vec{a}$ show A can be taken to be a special orthogonal transform
signed curvature of $C_{3}=$ inge $\vec{\gamma}$ at $\vec{\gamma}(s)$ is the same as signed curvature of C_{1} at $\vec{\alpha}(s)$
exercise: Prove this if it is not clear to you
(ie. show that signed curvature does not change under isometry with A special orthog.)
Hint: $\vec{\gamma}(s)=A \cdot \vec{\alpha}(s)+\vec{a} \quad$ A special orthogonal transform now compute $K_{\sigma}(s) \quad$ and point \vec{a}
If A not special (re. def $A=-1$) show K_{v} changes sign
so $\vec{\beta}$ and $\vec{\gamma}$ start at same point with same tangent vector and same signed curvature so uniqueness in Th -5 gives $\vec{\gamma}(s)=\vec{\beta}(s)$ so $c_{2}=c_{3}=\phi\left(c_{1}\right)$
exercise: Complete the proof of $T^{m}{ }^{m} 4$ using $T^{m}{ }^{m} 5$ (or Cor 6)
Remark: In $T^{m} 5$ (unsigned) curvature is not enough to determine a curve egg.

Proof of Th ${ }^{m} 5:$
Suppose we are given an arc length parame terization

$$
\vec{\beta}:[0, \ell] \longrightarrow \mathbb{R}^{2}
$$

then $\left\|\vec{\beta}^{\prime}(s)\right\|=1$ so for each $s \in[0, l]$ there is a $\theta(s)$ such that

$$
\vec{\beta}^{\prime}(s)=(\cos \theta(s), \sin \theta(s))
$$

so

$$
\begin{equation*}
\vec{\beta}(s)=\left(a+\int_{0}^{s} \cos \theta(t) d t, b+\int_{0}^{s} \sin \theta(t) d t\right) \tag{1}
\end{equation*}
$$

where $\vec{\beta}(0)=(a, b)$
thus $\theta(s)$ and (a, b) completely determine $\vec{\beta}(s)$
note $\vec{\beta}^{\prime \prime}(s)=\left(-\theta^{\prime}(s) \sin \theta(s), \theta^{\prime}(s) \cos \theta(s)\right)$
and $\hat{N}(s)=i \vec{T}(s)=i \vec{\beta}^{\prime}(s)=(-\sin \theta(s), \cos \theta(s))$
the definition of $K_{\sigma}(s)$ is

$$
\vec{\beta}^{\prime \prime}(s)=K_{\sigma}(s) \hat{N}(s)
$$

so we see

$$
K_{\sigma}(s)=\theta^{\prime}(s)
$$

thus

$$
\begin{equation*}
\theta(s)=\phi+\int_{0}^{s} X_{\sigma}(t) d t \tag{2}
\end{equation*}
$$

where

note: $\vec{\beta}^{\prime}(0)$ is a unit vector so is determuied by an angle ϕ
so $\vec{\beta}(s)$ is determined by $X_{\sigma}(s), \vec{\beta}(0)$, and $\vec{\beta}^{\prime}(0)$ by (1) and (2) this proves the uniqueness statement in the theorem but now existance easy too!
given $c:[0, l] \rightarrow \mathbb{R}$ continuous
$\vec{p}, \vec{v} \in \mathbb{R}^{2}$ with $\|\vec{v}\|=1$
let ϕ be the angle \vec{v} forms w / x-axis and $\vec{p}=(a, b)$

now set

$$
\theta(s)=\int_{0}^{s} c(t) d t+\phi
$$

and

$$
\vec{\alpha}(s)=\left(a+\int_{0}^{s} \cos \theta(t) d t, b+\int_{0}^{s} \sin \theta(t) d t\right)
$$

we clearly have

$$
\begin{aligned}
& \vec{\alpha}(0)=(a, b) \\
& \vec{\alpha}^{\prime}(0)=(\cos \phi, \sin \phi)=\vec{v}
\end{aligned}
$$

and

$$
\begin{aligned}
\vec{\alpha}^{\prime \prime}(s) & =\left(-c^{\prime}(s) \sin c(s), c^{\prime}(s) \cos c(s)\right)=c(s)(-\sin c(s), \cos c(s)) \\
& =c(s)\left(i \vec{\alpha}^{\prime}(s)\right)=c(s) \hat{N}(s)
\end{aligned}
$$

so $X_{\sigma}(s)=c(s)$
2. Rotation number, total curvature, and regular homotopy

If $\vec{\alpha}:[0, l] \longrightarrow \mathbb{R}^{2}$ is a unit speed parameterization of a curve C then $\vec{T}(s)=\vec{\alpha}^{\prime}(s)$ is also a curve

$$
\vec{T}:[0, \ell] \rightarrow \mathbb{R}^{2}
$$

the image of \vec{F} is on the unit circle and the curve is called the tantrix of C

just like before, since $\vec{T}(s)$ is a unit vector there is an angle $\theta(s)$ st. $\vec{T}(s)=(\cos \theta(s), \sin \theta(s))$
note: $\vec{T}^{\prime}(s)=\left(-\theta^{\prime}(s) \sin \theta(s), \theta^{\prime}(s) \cos \theta(s)\right)$

$$
\hat{N}(s)=i \vec{T}(s)=(-\sin \theta(s), \cos \theta(s))
$$

so the signed curvature is

$$
K_{\sigma}(s)=\vec{T}^{\prime}(s) \cdot(i \vec{T}(s))=\theta^{\prime}(s)
$$

sivice $\theta(s)$ is an angle it is only well-defined modulo 2π but $\theta^{\prime}(s)$ is a well-defined number and so we can define the number

$$
\theta(s)=\theta(0)+\int_{0}^{s} \theta^{\prime}(t) d t
$$

some number in $[0,2 \pi)$
corresponding to inititial angle
this gives a number for all s and $\theta(s) \bmod 2 \pi$ represents the angle
example:

"angle" always between 0 and 2π
but can define $\theta(s) \in \mathbb{R}$

we define the rotation number (or index) of a curve C with its arc length parameterization

$$
\vec{\alpha}:[0, l] \rightarrow \mathbb{R}^{2}
$$

by

$$
R(c)=\frac{1}{2 \pi}(\theta(l)-\theta(0))
$$

where
$\theta:[0, l] \rightarrow \mathbb{R}$ is such that

$$
\vec{\alpha}^{\prime}(s)=(\cos \theta(s), \sin \theta(s))
$$

examples:

so $\theta(0)$ starts at $\pi / 2$ and decreases to $\frac{-3 \pi}{2}$
so $R(c)=\frac{1}{2 \pi}\left(-\frac{3 \pi}{2}-\frac{\pi}{2}\right)=-1$

so $\theta(0)$ starts at $\pi / 2$ and increases to $\frac{5 \pi}{2}$
so $R(c)=\frac{1}{2 \pi}\left(\frac{5 \pi}{2}-\frac{\pi}{2}\right)=1$

So $\theta(0)$ starts at $\frac{\pi}{2}$ and in creases to $\frac{9 \pi}{2}$
so $R(c)=\frac{1}{2 \pi}\left(\frac{9 \pi}{2}-\frac{\pi}{2}\right)=2$
we now define the total signed curvature of C to be

$$
T K(c)=\int_{0}^{l} K_{\sigma}(s) d s
$$

where C is a regular curve of length l
Lemma 7:
for a regular curve C we have

$$
\begin{array}{cc}
T K(c)=2 \pi & R(c) \\
\text { rotation signed } & \\
\text { coition }
\end{array}
$$

Proof: given an arc length parameterization

$$
\vec{\alpha}:[0, l] \rightarrow \mathbb{R}^{2}
$$

of C
we have a function $\theta:[0, l] \rightarrow \mathbb{R}$ such that

$$
\vec{\alpha}^{\prime}(s)=(\cos \theta(s), \sin \theta(s))
$$

as above we know

$$
\theta^{\prime}(s)=K_{g}(s)
$$

so

$$
\begin{aligned}
R(c) & =\frac{1}{2 \pi}(\theta(l)-\theta(0)) \\
& =\frac{1}{2 \pi} \int_{0}^{l} \theta^{\prime}(s) d s \\
& =\frac{1}{2 \pi} \int_{0}^{l} K_{g}(s) d s=\frac{1}{2 \pi} \operatorname{TK}(c)
\end{aligned}
$$

a curve C is called a closed curve if it can be parameterized by a function $\vec{\alpha}:[0, l] \rightarrow \mathbb{R}^{2}$ suck that $\vec{\alpha}(0)=\vec{\alpha}(l)$

It is a regular closed curve if $\vec{\alpha}^{\prime}(t) \neq 0$ for $t \in[0, l]$ and $\vec{\alpha}^{\prime}(0)=\vec{\alpha}^{\prime}(\ell)$

lemma 8:
If C is a regular closed curve, then $R(C)$ is an integer (and $T K(c)$ is an integral multiple of 2π)

Remark: Surprising! By asking for a curve to close up you are restricting its curvature!
Proof: if $\vec{\alpha}:[0, l] \rightarrow \mathbb{R}^{2}$ is an arc length parameterization of C and $\theta:[0, l] \rightarrow \mathbb{R}$ a function st. $\vec{\alpha}^{\prime}(s)=(\cos \theta(s), \sin \theta(s))$ then $\vec{\alpha}^{\prime}(0)=\vec{\alpha}(l)$ means $\theta(0)=\theta(l) \bmod 2 \pi$ ne $\theta(\ell)$ and $\theta(0)$ differ by a integral multiple of 2π

Normally we think of curves as being "equivalent" "f there is a rigid motion (isometry) of \mathbb{R}^{2} taking one to the other
intuition: C is an unbendable wire so you can move it around but that is all
there is another way to think of closed curves as being equivalent
intuition: C is a flexible and stretchy wire so it can be bent and pulled into other shapes
example:

definition: let C_{0} and C_{1} be regular closed curves given by regular parameterizations

$$
\begin{aligned}
& \vec{\alpha}_{0}:[0,1] \rightarrow \mathbb{R}^{2} \\
& \vec{\alpha}_{1}:[0,1] \rightarrow \mathbb{R}^{2}
\end{aligned}
$$

we say C_{0} and C_{1} are regularly homotopic if there is a continuous function

$$
H(f, x):[0,1] \times[0,1] \rightarrow \mathbb{R}^{2}
$$

such that

1) $H(t, 0)=\vec{\alpha}_{0}(t)$
2) $H(t, 1)=\vec{\alpha}_{1}(t)$
3) for each fixed x_{0} the function

$$
\begin{aligned}
h_{x_{0}}:[0,1] & \longrightarrow \mathbb{R}^{2} \\
+ & H\left(t, x_{0}\right)
\end{aligned}
$$

is a regular closed curve
intuition: You can continuously deform one curve into another through regular curves
examples:

$$
\begin{aligned}
& 0-8-8-8 \rightarrow 母 \\
& \text { regular } \\
& \text { nomotory } \\
& 8 \rightarrow 8 \rightarrow 8 \rightarrow 0^{\circ} \rightarrow 0 \frac{\text { att }}{\text { data }}
\end{aligned}
$$

lemma 9:
If C_{0} and C_{1} are regular homotopic closed curves then $R\left(c_{0}\right)=R\left(c_{1}\right)$

Proof: Using the function $H:[0,1] \times[0,1] \rightarrow \mathbb{R}^{2}$ from the definition of regular homotopy we get

$$
\begin{aligned}
R:[0,1] & \longrightarrow \mathbb{R} \\
x & \longmapsto
\end{aligned} \underbrace{R\left(h_{x}\right)}_{\text {rotation number of }} \begin{aligned}
\text { closed curve } h_{x}
\end{aligned}
$$

exercise: R is continuous
recall $R(x)=R\left(h_{x}\right)$ is an integer for each x by lemma 8 if $R\left(C_{0}\right)=n \neq m=R\left(C_{1}\right)$ the let r be a non-integer between n and m
by the intermediate value theorem for continuous functions there is some $x_{0} \in[0.1]$ such that $R\left(x_{0}\right)=r$ this contradicts $R\left(x_{0}\right)$ an integer
\therefore must have $n=m$
Th $\cong 10$ (Whitney-Graustein Th M):
two regular closed curves C_{0}, C_{2} are regularly homotopic

$$
\begin{gathered}
\Leftrightarrow \\
R\left(c_{0}\right)=R\left(c_{1}\right)
\end{gathered}
$$

Remark: 1) "Cant furn a circle inside out"

2) Amazing theorem, says regular homotopy type completely determined by a number!
3) by lemma 7 this says
two regular closed curves are reglar homotopic \Leftrightarrow
they have the same total signed curvature

K_{σ} positive and negative

K_{σ} always positive
but integrals same!
Cor 11:
a regular closed curve C is regularly homotopic to a simple curve

$$
\Leftrightarrow
$$

$$
T K(C)= \pm 2 \pi
$$

Proof: $(\Rightarrow$) simple curve is regular homotopic toc^{\prime}
exercise: "prove this!"
Hint: Hard look if up
so $R\left(c^{\prime}\right)= \pm 1$
(F) if $T K(c)= \pm 2 \pi$ then last the ${ }^{m}$ gives C regular homotopic to C^{\prime}

Proof of Thm 10 :
\Leftrightarrow this is exactly lemma 9
(\Leftarrow) given C_{0} and C_{1} with $R\left(C_{0}\right)=R\left(C_{1}\right)$
let $\vec{\alpha}_{0}$ and $\vec{\alpha}_{1}$ be arc length parameterizations of C_{0} and c_{1},
below we will show that after regular homotopy we can assume
(A) $\vec{\alpha}_{0}(0)=\vec{\alpha}_{1}(0)$ and $\vec{\alpha}_{0}^{\prime}(0)=\vec{\alpha}_{1}^{\prime}(0)$
(B) length $\vec{\alpha}_{0}=$ length $\vec{\alpha}_{1}$
in particular
(C) sign of signed curvatures of C_{0}, C_{1}
not zero same at 0
given this let $l=\operatorname{longth} C_{0}=$ length C_{1}
and $\vec{\alpha}_{0}(0)=(a, b)$
recall there exist functions

$$
\theta_{2}:[0, e] \rightarrow \mathbb{R} \quad 2=0,1
$$

such that

$$
\vec{\alpha}_{2}^{\prime}(s)=\left(\cos \theta_{2}(s), \sin \theta_{2}(s)\right) \quad \imath=0,1
$$

and since $\vec{\alpha}_{0}^{\prime}(0)=\vec{\alpha}_{1}^{\prime}(0)$ we can assume $\theta_{0}(0)=\theta_{1}(0)$
and

$$
\begin{aligned}
& \theta_{0}(l)-\theta_{0}(0)=2 \pi R\left(c_{0}\right)=2 \pi R\left(c_{1}\right)=\theta_{1}(l)-\theta_{1}(0) \\
& \therefore \theta_{1}(l)=\theta_{0}(l)
\end{aligned}
$$

let $\theta:[0, \ell] \times[0,1] \rightarrow \mathbb{R}$

$$
(s, x) \longmapsto x \theta_{1}(s)+(1-x) \theta_{0}(s)
$$

and $\vec{H}:[0, l] \times[0,1] \longrightarrow \mathbb{R}^{2}$ be defined by

$$
\begin{aligned}
& \vec{H}(s, x)=(a, b)+\left(\int_{0}^{s} \cos \theta(t, x) d t, \int_{0}^{s} \sin \theta(t, x) d t\right) \\
&-\frac{s}{l}\left(\int_{0}^{l} \cos \theta(t, x) d t, \int_{0}^{l} \sin \theta(t, x) d t\right)
\end{aligned}
$$

note: 1) $\vec{\alpha}_{0}(s)=\left(a+\int_{0}^{s} \cos \theta_{0}(t) d t, b+\int_{0}^{s} \sin \theta_{0}(t) d t\right)$

$$
\begin{aligned}
& \vec{\alpha}_{0}(l)=\vec{\alpha}_{0}(0)=(a, b) \\
& \text { so } \int_{0}^{l} \cos \theta_{0}(t) d t=0=\int_{0}^{l} \sin \theta_{0}(t) d t
\end{aligned}
$$

and similarly for $\theta_{1}(t)$
2) $\vec{H}(s, 0)=\vec{\alpha}_{0}(s)$ and $\vec{H}(s, 1)=\vec{\alpha}_{1}(s)$
3) for a fixed x_{0} in $(0,1), \quad \vec{h}_{x_{0}}(s)=\vec{H}\left(s, x_{0}\right):[0, l] \rightarrow \mathbb{R}^{2}$ is a curve and

$$
\left.\begin{array}{l}
\vec{h}_{x_{0}}(0)=(a, b) \\
\vec{h}_{x_{0}}(b)=(a, b)
\end{array}\right\} \text { closed curve }
$$

we now check it is regular

$$
\begin{aligned}
\vec{h}_{x_{0}}^{\prime}(t) & =\underbrace{\left(\cos \theta\left(t, x_{0}\right), \sin \theta\left(t, x_{0}\right)\right)}_{\vec{A}}-\underbrace{\frac{1}{l}\left(\int_{0}^{l} \cos \theta\left(t, x_{0}\right) d t, \int_{0}^{l} \sin \theta\left(t, x_{0}\right) d t\right)}_{\vec{B}} \\
\|\vec{A}\| & =\sqrt{\cos ^{2} \theta\left(t, x_{0}\right)+\sin ^{2} \theta\left(t, x_{0}\right)}=\sqrt{1}=1 \\
\|\vec{B}\| & =\left\|\frac{1}{l} \int_{0}^{l}\left(\cos \theta\left(t, x_{0}\right), \sin \theta\left(t, x_{0}\right)\right) d t\right\| \\
& \leq \frac{1}{l} \int_{0}^{l}\left\|\left(\cos \theta\left(t, x_{0}\right), \sin \theta\left(t, x_{0}\right)\right)\right\| d t \\
& =\frac{1}{l} \int_{0}^{l} 1 d t=1 \\
\text { get } & =\operatorname{li} \otimes \Leftrightarrow\left(\cos \theta\left(t, x_{0}\right), \sin \theta\left(t, x_{0}\right)\right) \text { is a multiple }
\end{aligned}
$$ of a fixed vector $\Leftrightarrow\left(\cos \theta\left(t, x_{0}\right), \sin \theta\left(t, x_{0}\right)\right)$ is constant in t $\Leftrightarrow \theta\left(t, x_{0}\right)$ constant in t

but $\theta\left(t, x_{0}\right)=x_{0} \theta_{1}(t)+\left(1-x_{0}\right) \theta_{0}(t)$
so if $\theta\left(t, x_{0}\right)$ constant in t, then

$$
\underbrace{\theta_{1}^{\prime}(t)}_{\lambda}=\underbrace{\frac{x_{0}-1}{x_{0}}}_{<0} \underbrace{\theta_{0}^{\prime}(t)}_{c_{c u}}
$$

curvature of $C_{1}<0$ © curvature of C_{0} since signed curvatures same near 0 this cant be true so $\left\|\vec{h}_{x_{0}}(s)\right\|=\|\vec{A}-\vec{B}\| \geq\|\vec{A}\|-\|\vec{B}\|>0$ and $\vec{h}_{x_{0}}(s)$ a regular porameterization of a curve
finally $\quad \Theta\left(l, x_{0}\right)-\theta\left(0, x_{0}\right)=x_{0} \theta_{1}(l)+\left(1-x_{0}\right) \theta_{0}(l)$

$$
\begin{aligned}
& \quad-x_{0} \theta_{1}(0)-\left(1-x_{0}\right) \theta_{0}(l) \\
&= x_{0} 2 \pi R\left(C_{1}\right)+\left(1-x_{0}\right) 2 \pi \underbrace{R\left(C_{0}\right)}_{R\left(C_{1}\right)} \\
&= 2 \pi R\left(C_{1}\right) \\
& \text { so } \cos \theta\left(l, x_{0}\right)=\cos \theta\left(0, x_{0}\right) \\
& \sin \theta\left(l, x_{0}\right)=\sin \theta\left(0, x_{0}\right)
\end{aligned}
$$

and hence,

$$
\begin{aligned}
\vec{h}_{x_{0}}^{\prime}(l) & =\left(\cos \theta\left(l, x_{0}\right), \sin \theta\left(l, x_{0}\right)-\frac{1}{l}\left(\int_{0}^{l}-, \int_{0}^{l}\right)\right. \\
& =\left(\cos \theta\left(0, x_{0}\right), \sin \theta\left(0, x_{0}\right)\right)-\frac{1}{l}\left(\int_{0}^{l}-, \int_{0}^{l}-\right) \\
& =\vec{h}_{x_{0}}^{\prime}(0)
\end{aligned}
$$

so $\vec{h}_{x_{0}}$ is a regular closed curve and \vec{H} is a regular homotopy from $\vec{\alpha}_{0}$ to $\vec{\alpha}_{1}$
we are left to check (A), (B), and (C)
(B) if $\vec{\alpha}_{0}$ has length l then

$$
\vec{\beta}_{x}(t)=\frac{1}{x l+(1-x)} \vec{\alpha}_{0}(t)
$$

is a regular homotopy of $\vec{\alpha}_{0}$ to $\vec{\beta}_{1}$ with length 1 (now, reparameterite by arc length)
do same for $\vec{\alpha}$ to get same length
(4) and (C) since signed curvature not O (since not a live) and total signed curvature same there must be a point \vec{p} on C_{0} and \vec{q} on C_{1} with same sign of signed curvature now choose parametenizations st.

$$
\vec{\alpha}_{0}(0)=\vec{p} \text { and } \vec{\alpha}_{1}(0)=\vec{q}
$$

exercise: prove you can do this
so $\vec{\alpha}_{0}$ and $\vec{\alpha}_{1}$ have same sign of curvature at 0

given any point \vec{p} on C_{0}

$$
\beta_{x}(s)=\vec{\alpha}_{0}(s)-x \vec{p}
$$

is a regular homotopy from $\vec{\alpha}_{0}$ to $\vec{\beta}_{1}$ that parameterites a curve through \vec{O}
(since translation doesn't change curvature we have curvature of $\vec{\alpha}_{0}$ and $\vec{\beta}_{1}$ same)
similarly we can rotate curve so that

$$
\vec{\alpha}_{0}^{\prime}(\theta)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

(also does not change curvature)
so after regular homotopy can assume

$$
\begin{aligned}
& \vec{\alpha}_{0}(0)=\vec{\alpha}_{1}(0)=(0,0) \\
& \vec{\alpha}_{0}^{\prime}(0)=\vec{\alpha}_{1}^{\prime}(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

and signed curvatures have same sign near 0

