3. Convexity and Curvature
we will begin with an "obvious" statement that takes some time to prove (and we will not prove (t)
Th ㅍ (Jordan curve theorem):
let C be a simple closed plane curve
Then $\mathbb{R}^{2}-C$ has two components U_{1} and U_{2} one, say U_{1}, is bounded and the other is not
example:

we say U_{1} is the region of \mathbb{R}^{2} bounded by C
Remarks:
1) Jordan curve theorem is easier to prove if C is regular but still difficult Tap's book
2) Schoentlies theorem says U_{1} "is" a 2-disk (more precisely U, is homeomorphic to D^{2} this means $\exists f: U_{1} \rightarrow D^{2}$ a continuous bijection with continuous inverse)

Definition: a region R in \mathbb{R}^{n} is convex if for each pair of points $\vec{p}, \vec{q} \in R$ the line segment between then is also in R
examples:

not convex
we call a regular plane curve C convex if it lies on one side of each of its tangent lines
examples:

convex

not convex
given a regular curve C of length l the total curvature is

$$
\tau k(C)=\int_{0}^{l} K(s) d s=\int_{0}^{l}\left|X_{\sigma}(s)\right| d s
$$

Theorem 12:
For a simple closed regular curve C in \mathbb{R}^{2} The following are equivalent:

1) signed curvature of C doesn't change sign polit wise
2) $\tau k(c)=2 \pi$
3) C is a convex curve
4) the region bounded by C is convex integral into tangent lines region bounded
by curve

Proof:

1) $\Rightarrow 2$): Since K_{σ} has constant sign $K(s)=\left\{\begin{array}{l}K_{\sigma}(s) \\ -K_{\sigma}(s)\end{array}\right.$ for all s thus $\tau k(c)=\int_{0}^{l \leftarrow \text { length of } C} K(s) d s=\left\{\begin{array}{cc}\int_{0}^{l} K_{\sigma}(s) d x & \text { if } K_{\sigma}(s) \geq 0 \\ -\int_{0}^{l} x_{\sigma}(s) d s & \text { if } K_{\sigma}(s) \leq 0\end{array}\right.$ $=|T K(c)|=2 \pi$
corollary ll
2) $\Rightarrow 1$):

$$
\begin{aligned}
2 \pi=\tau k(c) & =\int_{0}^{l} K(s) d s=\int_{0}^{l}\left|X_{\sigma}(s)\right| d s \\
& \geq\left|\int_{0}^{l} K_{\sigma}(s) d s\right|=2 \pi \\
& =\text { corollary \| }
\end{aligned}
$$

$*\left|\int_{a}^{b} f(x) d x\right| \leqslant \int_{a}^{b}|f(x)| d x$ with equality $\Leftrightarrow f$ doesn't change sign
$\therefore K_{\sigma}(s)$ doesn't change sign

1) \Rightarrow 3): by 1) we know $X_{\sigma}(s)$ has constant sign to show 3) we assume it is false and derive a contradiction so let \vec{P} be a point on C such that C doesnot lie on one side of $T_{\vec{p}} C$ we can move C by a rigid motion so \vec{p} is (0.0) and $T_{\vec{p}} C=x$-axis

(recall this follows from an exercise from I.B) so we have

now let $\vec{\beta}:[0, l] \rightarrow \mathbb{R}^{2}$ be an arc length
parametenization of C
note: there is some $s_{0} \in[0,0]$ such that

$$
\begin{aligned}
& \vec{\beta}\left(s_{0}\right)=(0.0) \\
& \vec{\beta}^{\prime}\left(s_{0}\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { or }\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
\end{aligned}
$$

let $\pi: \mathbb{R}^{2} \rightarrow \mathbb{R}:(x, y) \mapsto y$ be projection to y-axis

So $f=\pi_{0} \vec{\beta}:[0,1] \rightarrow \mathbb{R}$ has graph

$$
\begin{aligned}
f\left(s_{0}\right) & =0 \quad \text { chain rule } \\
f^{\prime}\left(s_{0}\right) & =\left(D \pi_{\vec{\beta}(0)}\right) \vec{\beta}^{\prime}\left(s_{0}\right) \\
& =[0,1]\left[\begin{array}{c}
\pm 1 \\
0
\end{array}\right]=0
\end{aligned}
$$

recall: since f is continuous if takes on a a maximum at some point M and a minimum 411 m and $f^{\prime}(M)=0=f^{\prime}(m)$
exercise: if m, M are on interior of $[0, l]$ this last statement clear from calculus if not, then show this is still true hint: $\vec{\beta}^{\prime}(0)=\vec{\beta}^{\prime}(\ell)$
also note $f(n)<0<f(M)$ or else C would be above or below the x-axis $=T_{\vec{p}} C$
so $T_{B(M)} C \neq T_{\vec{p}} C \neq T_{\beta(m)} C$

note: at least two of $\vec{\beta}^{\prime}(m), \vec{\beta}^{\prime}(M), \vec{\beta}^{\prime}\left(s_{0}\right)$ most be the same (only 2 unit vectors on x-axis)
suppose $\vec{\beta}^{\prime}(m)=\vec{\beta}^{\prime}(M)$ (you can check other cases work the same) recall there is a function $\theta:[0, l] \rightarrow \mathbb{R}$
such that

$$
\vec{\beta}^{\prime}(s)=(\cos \theta(s), \sin \theta(s))
$$

note: a) C a simple curve implies (by Corollary II) that

$$
\begin{aligned}
R(c) & =\frac{1}{2 \pi}(\theta(e)-\theta(0)) \\
& = \pm 1
\end{aligned}
$$

by choice of orientation we can assume +1 (note when you change or ${ }^{n}$ you change signed curvature)
so

$$
\theta(l)=\theta(0)+2 \pi
$$

b) We know $\theta^{\prime}(s)=x_{0}(s)$
so θ^{\prime} doesn't change sign (with or above it will be non-negative)

$$
\theta^{\prime}(s) \geq 0
$$

c) Since we have $\vec{\beta}^{\prime}(m)=\vec{\beta}^{\prime}(M)$ we know

$$
\theta(m)=\theta(M)+n 2 \pi
$$

for some integer n
a) and $b) \Rightarrow \theta$ is non-decreasing going from

$$
\text { (0) to } \theta(0)+2 \pi
$$

so for all $s \in[0, l]$ we have $\theta(s) \in[\theta(0), \theta(0)+2 \pi]$ thus either $\theta(M)=\theta(m)$ or $\theta(\mu)=\theta(m) \pm 2 \pi$
for (I)

$$
\text { so } \theta(s)=\theta(m) \text { for all } s \text { between } m \text { and } M
$$

so $\vec{\beta}^{\prime}(s)$ is constant for all s between m and M that means all points on C "between" $\beta(m)$ and $\beta(M)$ lie on a line in \mathbb{R}^{2}
and thus $T_{\bar{\beta}(m)} C=T_{\beta(m)} C$
contradicting our observation above!
for (II) you can make an argument as above that the graph of θ is

so still get $T_{\vec{\beta}(m)} C=T_{\vec{\beta}(m)} C$ a contradiction
thus 3) must be true
3) $\Rightarrow 4$):
exercise:

1) If $\left\{R_{\alpha}\right\}_{\alpha \in A}$ is a collection of convex regions indexed by A, then $\bigcap_{\alpha \in A} R_{\alpha}$ is convex
2) let l be a line in \mathbb{R}^{2} and $H_{l, 0}$ and $H_{l, 1}$ the "half-spaces" l divides \mathbb{R}^{2} into show $H_{l, 0}, H_{l, 1}$ are convex

now let D be the region C bounds in \mathbb{R}^{2} for each $\vec{\rho} \in C$ the hypothesis 3) says C is contained in one of the half spaces given by $T_{\vec{p}} C$
denote it $H_{\vec{p}}$

note: $D \subset H_{\vec{p}}$ too
indeed if $\vec{q} \notin H_{\vec{p}}$
then let \vec{r}_{q} be the ray (half- $\left.\ln \dot{e}\right)$ through \vec{q} and perpendicular to $T_{\vec{p}} C$
$\vec{r}_{\vec{q}}$ gives $a^{\prime \prime}$ path to ∞ " for \vec{q} in the complement of C so \vec{q} is in the unbounded component of $\mathbb{R}^{2}-C$
thus not in D

$$
\therefore D \subset H_{\vec{q}}
$$

so we see $D \subset \bigcap_{\vec{p} \in C} H_{\bar{p}}$
denote this R
note R is convex by exercise 1) and 2)
Claim: $R \subset D$ (note this establishes 4) since $D=R$ is convex)
in deed, if $\vec{q} \notin D$ then let

$$
f(\vec{x})=\|\vec{q}-\vec{x}\|^{2}=\text { square of distance from } \vec{x} \text { to } \vec{q}
$$

f is a differentiable function and hence contriuous
thus there is a $\vec{p} \in C$ st.

$$
f(\vec{p}) \leq f(\vec{r}) \text { for all } \vec{r} \in C
$$

note: $\nabla f(\vec{p}) \perp T_{\dot{p}} C$ since if not

- ∇f is direction of steepest decent
so $\vec{f} \vec{v}$ tanget to C, at \vec{p} then $-\nabla f \cdot \vec{v} \neq 0$ and f can decreace as you move along C in direction of $\vec{v} \otimes \vec{p}$ being a min now $\vec{q} \notin H_{\vec{p}}$
thus $\overrightarrow{9} \notin R$

4) $\Rightarrow 1$): It is clear that for some orientation on C we can arc length parameterize C by

$$
\vec{\alpha}:\{0, l] \rightarrow \mathbb{R}^{2}
$$

such that $i \vec{\alpha}^{\prime}(s)$ points in to the region D bounded by C

Clam: $K_{\sigma}(s) \geq 0$ for all $s(\therefore 1)$ is tries) to see this suppose $K_{\sigma}\left(s_{0}\right)<0$ for some s_{0} we can move $($ by a rigid motion so that

$$
\vec{\alpha}\left(s_{0}\right)=(0.0) \text { and } \vec{\alpha}^{\prime}\left(s_{0}\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

(note: this does not change curvature or convexity of D) prove this!
so we see near $(0,0)$

Claim: near $(0,0) C$ is the graph of a function

$$
f:\left(-\varepsilon_{1}, \varepsilon_{2}\right) \longrightarrow \mathbb{R}
$$

with $f(0)=0, f^{\prime}(0)=0$ and $K_{\sigma}(0)=f^{\prime \prime}\left(S_{0}\right)$
given claim we see f is concave down at so $\left(f^{\prime \prime}(0)<0\right)$
so C looks like

and we see D is not convex! \otimes
$\therefore K_{\sigma}(s) \geq 0$ for all 2.e. 1) true
Proof of Claim:
let $g:[0, l] \rightarrow \mathbb{R}$ be given by $g(s)=\pi_{x}(\vec{\alpha}(s))$

$$
\text { where } \pi_{x}: \mathbb{R}^{2} \rightarrow \mathbb{R}:(x, y) \mapsto x
$$

then

$$
\begin{aligned}
g^{\prime}\left(s_{0}\right) & =D\left(\pi_{x}\right)_{\vec{\alpha}\left(s_{0}\right)} \cdot \vec{\alpha}^{\prime}\left(s_{0}\right) \\
& =[1,0]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=1
\end{aligned}
$$

so the inverse function theorem says there are intervals $I=\left(-\varepsilon_{1}, \varepsilon_{2}\right) \subset \mathbb{R} \quad \varepsilon_{1}>0$

$$
J=\left(s_{0}-\delta, s_{0}+\delta\right) \subset[0, l] \quad \delta>0
$$

such that \exists an inverse $g^{-1}: J \rightarrow I$
now set $f: J \rightarrow \mathbb{R}: x \longmapsto \pi_{y}\left(\vec{\alpha}\left(g^{-1}(x)\right)\right)$ where $\pi_{y}: \mathbb{R}^{2} \rightarrow \mathbb{R}:(x, y) \mapsto y$

50

$$
\vec{\alpha}\left(g^{-1}(x)\right)=(x, f(x))
$$

and so C near (0.0) is the grapf of a function f

$$
\begin{aligned}
& f^{\prime}(x)=D\left(\pi_{y}\right)_{\left.\vec{\alpha}\left(g^{-1}(x)\right)^{\left(\vec{\alpha}^{\prime}\right.}\left(g^{-1}(x)\right)\right)\left(g^{-1}\right)^{\prime}(x) \quad \text { chain rule }} \\
& =\left[\begin{array}{lll}
0 & 1
\end{array}\right]\left(\vec{\alpha}^{\prime}\left(g^{-1}(x)\right)\right) \frac{1}{g^{\prime}\left(g^{-1}(x)\right)} \quad \begin{array}{l}
\text { inverse function } \\
\text { theorem }
\end{array} \\
& =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left(\dot{\alpha}^{\prime}\left(g^{-1}(x)\right)\right) \frac{1}{D\left(\pi_{x}\right)_{\partial\left(g^{-1}(x)\right)} \vec{\alpha}^{\prime}\left(g^{-1}(x)\right)} \text { chain } \\
& \left.=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \vec{\alpha}^{\prime}\left(g^{-1}(x)\right)\right]\left[\frac{1}{\left[\begin{array}{ll}
1 & 0
\end{array}\right] \vec{\alpha}^{\prime}\left(g^{-1}(x)\right)}\right] \\
& \left.f^{\prime \prime}(x)=\left[\begin{array}{lll}
0 & 1
\end{array}\right] \vec{\alpha}^{\prime \prime}\left(g^{-2}(x)\right)\left(g^{-1}\right)^{\prime}(x)\right]\left[\frac{1}{\left[\begin{array}{lll}
1 & 0
\end{array} \vec{\alpha}^{\prime}\left(g^{-1}(x)\right)\right.}\right] \begin{array}{c}
\text { product } \\
\text { chain } \\
\text { cure }
\end{array} \\
& +\left[\left[\begin{array}{lll}
0 & 1
\end{array}\right] \vec{\alpha}^{\prime}\left(g^{-1}(x)\right)\right]\left[\frac{1}{\left[\begin{array}{ll}
1 & 0
\end{array} \vec{\alpha}^{\prime \prime}\left(g^{-1}(x)\right)\left(g^{-1}\right)^{\prime}(x)\right.}\right] \\
& \left.f^{\prime \prime}(0)=\left[\begin{array}{lll}
0 & 1
\end{array}\right] \vec{\alpha}^{\prime \prime}\left(s_{0}\right)\left(g^{-1}\right)^{\prime}(0)\right] \frac{1}{\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]} \\
& +\underbrace{\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]}_{0}][m] \\
& =[\underbrace{i \vec{\alpha}^{\prime}\left(s_{0}\right)}_{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}] \cdot \vec{\alpha}^{\prime \prime}\left(s_{0}\right)\left(g^{-1}\right)^{\prime}(0)=K_{\sigma}\left(s_{0}\right) \frac{1}{g^{\prime}\left(s_{0}\right)} \\
& =K_{\sigma}\left(s_{0}\right)
\end{aligned}
$$

Th -13 (Fenchel in \mathbb{R}^{2}):
for any regular simple closed curve in \mathbb{R}^{2}

$$
\tau K(C) \geq 2 \pi
$$

with equality of C is convex

Proof:

$$
\begin{gathered}
\tau K(c)=\int_{0}^{l} K(s) d s=\int_{0}^{l}\left|K_{\sigma}(s)\right| d s \geq\left|\int_{0}^{l} K_{\sigma}(s) d s\right| \\
=2 \pi|R(c)|=2 \pi
\end{gathered}
$$

and we have equality $\Leftrightarrow K_{\sigma}(s)$ does not change sign thus we are done by $T^{m}{ }^{m} / 2$

Given any function $f:[0, l] \rightarrow \mathbb{R}$ is it the signed curvature function of a closed convex curve?

No! need 1) f does not change sign
2) $\int_{0}^{l} f(s) d s= \pm 2 \pi$

It turns out there is another restriction too
we call a point \vec{p} on a closed curve C a vertex if $K_{\sigma}^{\prime}(\vec{p})=0$
example:

4 vertices

Th ${ }^{m} 14$ (Four-Vertex Theorem):
Every simple closed regular convex curve in \mathbb{R}^{2} has at least 4 verticies
for a proof see any book
4. Length, width, and Area

Th m 15 (Isoparametric Inequality):
let C be a simple closed regular curve in \mathbb{R}^{2}
D be the region in \mathbb{R}^{2} bounded by C
Then

$$
\text { Area }(D) \leq \frac{1}{4 \pi}(\text { length }(C))^{2}
$$

with equality $\Leftrightarrow C$ a circle
Interpretation: If you have a fixed amount of fencing and you want to enclose as much area as possible then build a circular fence!
Proof: lots of different proof of this we give one based on Fourier Series
"Recall": if $f:[0, l] \rightarrow \mathbb{R}$ is a smooth function

$$
\text { (with } \left.f^{(n)}(0)=f^{(n)}(l) \quad n=0,1,2\right)
$$

then set

$$
\left.\begin{array}{l}
a_{n}=\frac{2}{l} \int_{0}^{l} f(x) \cos \frac{n 2 \pi}{l} x d x \\
b_{n}=\frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n 2 \pi}{l} x d x
\end{array}\right\} \begin{aligned}
& \text { Fourier } \\
& \text { Loefficiants }
\end{aligned}
$$

then

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{2 \pi n}{l} x+b_{n} \sin \frac{2 \pi n}{l} x\right)
$$

exercise: the coefficients a_{n}^{\prime} and $b_{n}{ }^{\prime}$ of f^{\prime} are

$$
a_{n}^{\prime}=\frac{2 \pi n}{l} b_{n} \quad \text { and } \quad b_{n}^{\prime}=-\frac{2 \pi n}{l} a_{n}
$$

if c_{n} and d_{n} are the coefficients of g, then

$$
\int_{0}^{l} f(x) g(x) d x=\frac{l}{2}\left(\frac{a_{0} c_{0}}{2}+\sum_{n=1}^{\infty} a_{n} c_{n}+b_{n} d_{n}\right)
$$

now suppose $\vec{\alpha}:[0, l] \rightarrow \mathbb{R}^{2}$ is an arc length
parameterization of C (oriented counterclockwise)
let $\vec{\alpha}(s)=(f(s), g(s))$
and a_{n}, b_{n} be the Fourier coif of f and $c_{n}, d_{n} 1$ " 9 by translation we can assume $a_{0}=0=C_{0}$
then

$$
\begin{aligned}
\underbrace{\operatorname{length}(c)}_{l} & =\int_{0}^{l}\left\|\vec{\alpha}^{\prime}(s)\right\| d s=\int_{0}^{l} \sqrt{\left(f^{\prime}(s)\right)^{2}+\left(g^{\prime}(s)\right)^{2}} d s \\
& \left.=\int_{0}^{l}\left(f^{\prime}(s)\right)^{2}+\left(g^{\prime}(s)\right)^{2} d s\right) \|=1 \\
& =\frac{l}{2}\left[\left(\frac{2 \pi}{l}\right)^{2} \sum_{n=1}^{\infty} n^{2}\left\{\left(a_{n}^{2}+b_{n}^{2}\right)+\left(c_{n}^{2}+d_{n}^{2}\right)\right\}\right] \\
\text { so } & \frac{\ell^{2}}{2 \pi^{2}}=\sum_{n=1}^{\infty} n^{2}\left(a_{n}^{2}+b_{n}^{2}+c_{n}^{2}+d_{n}^{2}\right)
\end{aligned}
$$

now

$$
\begin{aligned}
\text { Area }(D) & =\int_{D} d A=\int_{D} d x d y \stackrel{\text { Green's } T^{m} \text { talc III }}{=} \int_{c} x d y \\
& =\int_{0}^{l} f(s) g^{\prime}(s) d s \\
& =\frac{l}{2}\left[\frac{2 \pi}{l} \sum_{n=1}^{\infty} n\left(a_{n} d_{n}-b_{n} c_{n}\right)\right] \\
& =\pi\left|\sum_{n=1}^{\infty} n\left(a_{n} d_{n}-b_{n} c_{n}\right)\right| \quad \text { since area } \\
& \leq \pi \sum_{n=1}^{\infty} n\left(\left|a_{n}\right|\left|d_{n}\right|+\left|b_{n}\right|\left|c_{n}\right|\right)
\end{aligned}
$$

note: $0 \leq(a-b)^{2}=a^{2}+b^{2}-2 a b$
so $a b \leq \frac{1}{2}\left(a^{2}+b^{2}\right)$
with equality $\Leftrightarrow a=b$
thus
Area $D \leq \frac{\pi}{2} \sum_{n=1}^{\infty} n\left(a_{n}^{2}+b_{n}^{2}+c_{n}^{2}+d_{n}^{2}\right)$

$$
\begin{aligned}
& \frac{\leq}{x+\infty} \frac{\pi}{2} \sum_{n=1}^{\infty} n^{2}\left(a_{n}^{2}+b_{n}^{2}+c_{n}^{2}+d_{n}^{2}\right) \\
& n \leq n^{2}(\text { with }=\Leftrightarrow n=1) \\
& =\frac{\pi}{2} \frac{l^{2}}{2 \pi^{2}}=\frac{l^{2}}{4 \pi} \text { as claimed! }
\end{aligned}
$$

If we have equality then $(*, * *$, and $\because * *$ must all be equalities
(***) an equality $\Leftrightarrow a_{n}=b_{n}=c_{n}=d_{n}=0 \quad \forall n>1$
*** an equality $\Leftrightarrow\left|a_{1}\right|=\left|d_{1}\right|,\left|b_{1}\right|=\left|c_{1}\right|$

* an equality $\Leftrightarrow \operatorname{sgn}\left(a_{1} d_{1}\right)=-\operatorname{sgn}\left(b_{1} c_{1}\right)$
\therefore either $a_{1}=d_{1}$ and $b_{1}=-c_{1}$
or $a_{1}=-d_{1}$ and $b_{1}=c_{1}$
we consider first case and leave second case as exercise
so

$$
\begin{aligned}
& f(s)=a_{1} \cos \frac{2 \pi}{l} s+b_{1} \sin \frac{2 \pi}{l} s \\
& g(s)=-b_{1} \cos \frac{2 \pi}{l} s+a_{1} \sin \frac{2 \pi}{l} s
\end{aligned}
$$

we want to show this parameterizes a circle
note $l=\int_{0}^{l}\left\|\vec{\alpha}^{\prime}(s)\right\| d s=\sqrt{2} \pi 2 \sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}}$
so $a_{1}{ }^{2}+b_{1}{ }^{2}=\frac{\ell^{2}}{8 \pi^{2}}$

$$
\begin{array}{r}
\therefore \exists \theta \text { st. } a_{1}=\underbrace{\frac{l^{2}}{8 \pi^{2}}}_{\text {denote by } K} \sin \theta \quad b_{1}=\frac{l^{2}}{8 \pi^{2}} \cos \theta \\
\text { so } f(s)=K\left(\sin \theta \cos \frac{2 \pi}{l} s+\cos \theta \sin \frac{2 \pi}{l} s\right)=K \sin \left(\frac{2 \pi}{l} s+\theta\right) \\
\text { and } g(s)=K\left(-\cos \theta \cos \frac{2 \pi}{l} s+\sin \theta \sin \frac{2 \pi}{l} s\right)=-K \cos \left(\frac{2 \pi s}{l}+\theta\right)
\end{array}
$$

so clearly $\|\bar{\alpha}(s)\|=f^{2}(s)+g^{2}(s)=K$ and $\vec{\alpha}$ paras. a circle
let θ be an angle and to the oriented lane through the origin making an angle θ with the positive x-axis

projection to lo is the map
$P_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}$
$\vec{v} \mapsto \vec{v}_{\theta} \cdot \vec{v} \quad$ where $\vec{v}_{\theta}=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$ spans l_{θ}
 for a curve C the projection $p_{\theta}(c)$ to l_{θ} is the "shadow" of C on l_{θ}
note: $p_{\theta}(c)$ is some interval on l_{θ}
Tḧㅢ/6 (Cauchy-Crofton formula):
let C be a curve in \mathbb{R}^{2}
Then

$$
\text { length }(c)=\frac{1}{4} \int_{0}^{2 \pi} \text { length }\left(P_{\theta}(c)\right) d \theta
$$

this says the length of a curve is the average length of its projections onto all lines through origin x a constant factor
example: 1)

for circle of radius r all projections have length $2 r$ but $P_{\text {O }}(c)$ has length $4 r$ since goes across shadow twice

$$
\text { So length } \begin{aligned}
C & \left.=\frac{1}{4} \int_{0}^{2 \pi} 4 r\right) d \theta \\
& =\frac{1}{4} 4 r(2 \pi-0)=2 \pi r
\end{aligned}
$$

2)

but notice all projections have length $\geq 2 b$

$$
\begin{aligned}
\text { so length }(c) & =\frac{1}{4} \int_{0}^{2 \pi} \text { length } P_{\theta}(c) d \theta \\
& \geq \frac{1}{4} \int_{0}^{2 \pi} 2 b d \theta \\
& =6 \pi
\end{aligned}
$$

so we can estimate length!
Corollary 17:
for any closed curve C

$$
\text { width }(C) \leq \frac{\text { length } C}{\pi}
$$

the width of C is the minimal distance between parallel lines that contain C
example:

Proof: all projections have length ≥ 2 width
Proof of Th m 16:
let $\vec{\alpha}:[0, l] \rightarrow \mathbb{R}^{2}$ be an arc length parametrization of C recall $p_{\theta} \circ \vec{\alpha}(s)=\vec{v}_{\theta} \cdot \vec{\alpha}(s)$ where $\vec{v}_{\theta}=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$ spans l_{θ}

So length $\left(P_{\theta}(c)\right)=\operatorname{length}\left(\rho_{\theta} \circ \vec{\alpha}\right)$

$$
\begin{aligned}
& =\int_{0}^{l}\left\|\left(\vec{v}_{\theta} \cdot \vec{\alpha}(s)\right)^{\prime}\right\| d s \\
& =\int_{0}^{l}\left\|\vec{v}_{\theta} \cdot \vec{\alpha}^{\prime}(s)\right\| d s \\
& =\int_{0}^{l} \underbrace{\| \vec{v}_{\theta}}_{1}\|\underbrace{\left\|\vec{\alpha}^{\prime}(s)\right\|}_{1}\| \cos \psi_{s} \mid d s
\end{aligned}
$$

$=\int_{0}^{l}\left|\cos \psi_{s}\right| d s \quad$ where ψ_{s} is the angle between \vec{v}_{θ} and $\vec{\alpha}^{\prime}(s)$
note: for a fixed s_{0} as θ goes from 0 to 2π, $\psi_{s_{0}}$ varies between 0 and 2π

and

$$
\psi_{s_{0}}(\theta)=\theta+\theta_{s_{0}}
$$

some fixed $\theta_{s_{0}}$
so $\int_{0}^{2 \pi} \operatorname{length}\left(\rho_{\theta}(s)\right) d \theta=\int_{0}^{2 \pi}\left(\int_{0}^{l}\left|\cos \psi_{s}(\theta)\right| d s\right) d \theta$

$$
\begin{aligned}
& =\int_{0}^{l}\left(\int_{0}^{2 \pi}\left|\cos \psi_{s}(\theta)\right| d \theta\right) d s \\
& =\int_{0}^{l}\left(\int_{0}^{2 \pi}\left|\cos \left(\theta_{s_{0}}+\theta\right)\right| d \theta\right) d s \\
& \left.=\int_{0}^{l}\left(\int_{-\frac{\pi}{2}-\theta_{s_{0}}}^{\frac{\pi}{2}-\theta_{s_{0}}} \cos \left(\theta_{s_{0}}+\theta\right) d \theta-\int_{\frac{\pi}{2}-\theta_{s_{0}}}^{\frac{3 \pi}{2}-\theta_{s_{0}}}+\theta\right) d \theta\right) d s \\
& =\int_{0}^{l}\left(\sin \frac{\pi}{2}-\sin -\frac{\pi}{2}-\sin \frac{3 \pi}{2}+\sin \frac{\pi}{2}\right) d s \\
& =\int_{0}^{l} 4 d s=4 l
\end{aligned}
$$

