C. Curves in \mathbb{R}^{3}
let $\vec{\alpha}:[0, \ell] \rightarrow \mathbb{R}^{3}$ be an arc length parameterization of some curve C

Recall: 1) $\left\|\vec{\alpha}^{\prime}(s)\right\|=1$
2) $\vec{\alpha}^{\prime \prime}(s)$ is perpendicular to $\vec{\alpha}^{\prime}(s)$ (lemma 2)
3) we set

$$
\vec{N}(s)=\frac{\vec{\alpha}^{\prime \prime}(s)}{\left\|\vec{\alpha}^{\prime \prime}(s)\right\|} \quad\left(1 f\left\|\vec{\alpha}^{\prime \prime}(s)\right\| \neq 0\right)
$$

and called it the normal vector
4) $K(s)=\|\left(\vec{\alpha}^{\prime \prime}(s) \|\right.$ is the curvature of C and measures how for C is from being a line segment
5) $\vec{T}^{\prime}(s)=\vec{\alpha}^{\prime}(s)$ and $\vec{N}(s)$ span a plane we call this plane the osculating plane this plane is the plane C comes closest to lying in
6) given two vectors

$$
\vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] \text { and } \vec{w}=\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]
$$

their cross product is

$$
\begin{array}{r}
\vec{v} \times \vec{w}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{j} & \vec{k} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|=\begin{array}{r}
\left(v_{2} w_{3}-v_{3} w_{2}\right) \vec{\imath}-\left(v_{1} w_{3}-v_{1} v_{3}\right) \vec{\jmath} \\
\\
+\left(v_{1} w_{2}-v_{2} w_{1}\right) \vec{k}
\end{array} \\
\text { where } \vec{\imath}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \vec{J}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \vec{k}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{array}
$$

so

$$
\vec{v} \times \vec{w}=\left[\begin{array}{l}
v_{2} w_{3}-v_{3} w_{2} \\
v_{3} w_{1}-v_{1} w_{3} \\
v_{1} w_{2}-v_{2} w_{1}
\end{array}\right]
$$

and $\vec{v} \times \vec{w}$ is perpendicular to \vec{v} and \vec{w}

and

$$
\|\vec{v} \times \vec{w}\|=\|\vec{v}\|\|\vec{w}\| \sin \theta
$$

now define

$$
\vec{B}(s)=\vec{T}(s) \times \vec{N}(s)
$$

this is the binormal vector to C
note: $\|\vec{B}(s)\|=\|\vec{F}(s)\|\|\vec{N}(s)\| \sin \frac{\pi}{2}=1$
so $\vec{B}(s)$ is a unit vector perpendicular to $\vec{T}(s)$ and $\vec{N}(s)$
We define the torsion of C at $\vec{\alpha}\left(s_{0}\right)$ to be

$$
\tau(s)=-\vec{B}^{\prime}(s) \cdot \vec{N}(s)
$$

examples:

$$
\text { 1) } \begin{aligned}
& \vec{\alpha}(s)=(\cos s, \sin s, 0) \\
& \vec{F}(s)=\vec{\alpha}^{\prime}(s)=(-\sin s, \cos s, 0) \\
& \vec{\alpha}^{\prime \prime}(s)=(-\cos s,-\sin s, 0) \\
& \vec{N}(s)=\frac{\vec{\alpha}^{\prime \prime}(s)}{\left\|\vec{\alpha}^{\prime \prime}(s)\right\|}=(-\cos s,-\sin s, 0)
\end{aligned}
$$

so

$$
\begin{aligned}
\vec{B}(s)=\vec{T}(s) \times \vec{N}(s) & =\left[\begin{array}{ccc}
\vec{\imath} & \vec{j} & \vec{k} \\
-\sin s & \cos s & 0 \\
-\cos s & -\sin s & 0
\end{array}\right] \\
& =0 \vec{\imath}-0 \vec{j}+\left(\sin ^{2} s+\cos ^{2} s\right) \vec{k}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

and

$$
\vec{B}^{\prime}(s)=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text { so } \tau(s)=0
$$

2) Earlier we computed the arc length parameterizatonn of a helix as

$$
\begin{aligned}
& \vec{\alpha}(s)=\left(r \cos \frac{1}{\sqrt{r^{2}+b^{2}}} s, r \sin \frac{1}{\sqrt{r^{2}+b^{2}}} s, \frac{b s}{\sqrt{r^{2}+b^{2}}}\right) \\
& \vec{T}(s)=\left(\frac{-r}{\sqrt{r^{2}+b^{2}}} \sin \frac{s}{\sqrt{r^{2}+b^{2}}}, \frac{r}{\sqrt{r^{2}+b^{2}}} \cos \frac{s}{\sqrt{r^{2}+b^{2}}}, \frac{b}{\sqrt{r^{2}+b^{2}}}\right) \\
& \vec{T}^{\prime}(s)= \frac{r}{r^{2}+b^{2}}\left(-\cos \frac{s}{\sqrt{r^{2}+b^{2}}},-\sin \frac{s}{\sqrt{r^{2}+b^{2}}}, 0\right) \\
& \text { so } K(s)=\frac{|r|}{r^{2}+b^{2}} \quad \text { constant }
\end{aligned}
$$

and

$$
\vec{N}(s)=\left(-\cos \frac{s}{\sqrt{r^{2}+b^{2}}},-\sin \frac{s}{\sqrt{r^{2}+b^{2}}}, 0\right)
$$

so

$$
\vec{B}(s)=\vec{T}(s) \times \vec{N}(s)=\left(\frac{b}{\sqrt{r^{2}+b^{2}}} \sin \frac{s}{\sqrt{r^{2}+b^{2}}}, \frac{-b}{\sqrt{r^{2}+b^{2}}} \cos \frac{s}{\sqrt{r^{2}+b^{2}}}, \frac{r}{\sqrt{r^{2}+b^{2}}}\right)
$$

and

$$
\vec{B}^{\prime}(s)=\frac{b}{r^{2}+b^{2}}\left(\cos \frac{s}{\sqrt{r^{2}+b^{2}}}, \sin \frac{s}{\sqrt{r^{2}+b^{2}}}, 0\right)
$$

so
$\tau(s)=-\vec{B}^{\prime}(s) \cdot \vec{N}(s)=\frac{-b}{r^{2}+b^{2}}$ constant

exercise: given any two constants $k>0, \tau$ there is some choice of r and b s.t.

$$
k=\frac{|r|}{r^{2}+b^{2}}
$$

and

$$
\tau=\frac{-6}{r^{2}+b^{2}}
$$

Thㅡㅡㅇ(Frenet Formula):
let $\vec{\alpha}:[0, l] \rightarrow \mathbb{R}^{3}$ be an arc length parametrization of C assume $K(s)>0$. Then

$$
\begin{aligned}
& \vec{T}^{\prime}(s)=\chi(s) \vec{N}(s) \\
& \vec{N}^{\prime}(s)=-K(s) \vec{T}(s)+\tau(s) \vec{B}(s) \\
& \vec{B}^{\prime}(s)=-\tau(s) \vec{N}(s)
\end{aligned}
$$

Proof: the first equation is the definition of $\vec{N}(s)$ and $K(s)$ note: for each $s, \vec{T}(s), \vec{N}(s), \vec{B}(s)$ is an orthonormal basis for \mathbb{R}^{3} so any vector is a linear commination

$$
\text { e.g. } \vec{B}^{\prime}(s)=a \vec{T}(s)+6 \vec{N}(s)+c \vec{B}(s)
$$

by the definition of torsion

$$
\begin{aligned}
-\tau(s) & =\vec{B}^{\prime}(s) \cdot \vec{N}(s) \\
& =(a \vec{T}(s)+b \vec{N}(s)+c \vec{B}(s)) \cdot \vec{N}(s) \\
& =6
\end{aligned}
$$

recall $\vec{B} \cdot \vec{T}=0$ so

$$
\vec{B}^{\prime} \cdot \vec{T}+\vec{B} \cdot \vec{T}^{\prime}=0
$$

and

$$
a=\vec{B}^{\prime} \cdot \vec{T}=-\vec{B} \cdot \vec{T}^{\prime}=-\vec{B} \cdot X(s) \vec{N}(s)=0
$$

also $\vec{B} \cdot \vec{B}=1$ so

$$
\vec{B}^{\prime} \cdot \bar{B}+\vec{B} \cdot \vec{B}^{\prime}=0
$$

and

$$
c=\vec{B} \cdot \vec{B}^{\prime}=0
$$

thus we see $\vec{B}^{\prime}(s)=-\tau(s) \vec{N}(s)$
similarly $\vec{N}^{\prime}(s)=a \vec{T}(s)+b \vec{N}(s)+c \vec{B}(s)$

$$
\vec{N} \cdot \vec{N}=1 \Rightarrow \vec{N} \cdot \vec{N}^{\prime}=0 \text { so as above } b=0
$$

$$
\begin{aligned}
& \vec{N} \cdot \vec{T}=0 \Rightarrow \vec{N} \cdot \vec{T}+\vec{N} \cdot \vec{T}^{\prime}=0 \\
& \text { so } a=\vec{N} \cdot \vec{T}=-\vec{N} \cdot \vec{T}^{\prime}=-\vec{N} \cdot x(s) \vec{N}=-x(s) \\
& \vec{B} \cdot \vec{N}=0 \Rightarrow c=\vec{B} \cdot \vec{N}^{\prime}=-\vec{B}^{\prime} \cdot \vec{N}=\tau(s) \\
& \text { so } \quad \vec{N}^{\prime}(s)=-x(s) \vec{T}(s)+\tau(s) \vec{N}(s)
\end{aligned}
$$

Th ${ }^{\text {m }} 19$:
If C is a biregulor curve (2.e. $X(s) \neq 0$) then $($ lies in a plane $\Leftrightarrow \tau(s)=0$

Proof:
let $P_{s}=$ plane spanned by $\vec{N}(s)$ and $\vec{\tau}(s)$
(osculating plane)
since $\vec{B}(s)=\vec{T}(s) \times \vec{N}(s), \vec{B}(s)$ is perpendicular to P_{s}
so if $\vec{B}(s)$ is consthant then the osculating plane is constant
$\vec{B}^{\prime}(s)=-\tau(s) \vec{N}(s)$ so osculating plane is constant

$$
\tau(s)=0
$$

now $(\Rightarrow$) if (lies in a plane then \vec{T} and \vec{N} are always span this fixed plane so $\vec{B}(s)$ is constant
$\therefore \bar{B}^{\prime}(s)=0$ and so $\tau(s)=0$
(\Leftrightarrow) if $\tau(s)=0$ then $\vec{B}^{\prime}(s)=0$ so the plane spanned by $\vec{N}(s)$ and $\vec{T}(s)$ is constant
exercise: if $\vec{T}(s)$ is always in a fixed plane then so is C.

Hint use isometry to make plane $x y$-plane then consider the z-coordinate of a parametrization

Th m 20 (Fundamental Theorem of space curves): given: 1) $I=[0, l] \subset \mathbb{R}$
2) $c: I \rightarrow \mathbb{R} \quad c(s)>0$ and differentiable
3) $t: I \rightarrow \mathbb{R}$
4) $\vec{p}, \vec{v} \in \mathbb{R}^{3} \quad$ with $\|\vec{v}\|=1$
then there exists a unique curve C in \mathbb{R}^{3} with an arc length paramefentation

$$
\vec{\alpha}: I \rightarrow \mathbb{R}^{3}
$$

such that 1) $\vec{\alpha}(0)=\vec{p}$
2) $\vec{\alpha}^{\prime}(0)=\vec{v}$
3) $X(s)=c(s)$
4) $\tau(s)=t(s)$

Proof: Uniqueness is an exercise
the existence uses differential equations so we ship it for now (see Do Carmo's Book)

Cor $21:$
a biregular curve in \mathbb{R}^{3} is a helix

$$
\Leftrightarrow
$$

τ and X are constant
Proof: exercise

We know for a biregular curve K and τ essentially determine the curve, but let's see what they really say about the curve
let $\overrightarrow{\mathcal{L}}:[0, l] \rightarrow \mathbb{R}^{3}$ be an arc length parameterization recall: $\quad \vec{\alpha}^{\prime}(s)=\vec{T}(s)$

$$
\begin{aligned}
& \vec{\alpha}^{\prime \prime}(s)=K(s) \vec{N}(s) \quad \vec{N}^{\prime} \text { by } T T^{m} 18 \\
& \vec{\alpha}^{\prime \prime \prime \prime}(s)=(X(s) \vec{N}(s))^{\prime}=K^{\prime}(s) \vec{N}(s)+K(s)(-K(s) \vec{T}(s)+\tau(s) \vec{B}(s))
\end{aligned}
$$

so the Taylor expansion of $\vec{\alpha}(s)$ about $s=0$ is

$$
\begin{aligned}
& \vec{\alpha}(s)=\vec{\alpha}(0)+\vec{T}(0) s+\frac{k(0)}{2} \vec{N} s^{2} \\
& +\frac{1}{6}\left[X^{\prime}(0) \vec{N}(0)-(K(0))^{2} \vec{T}(0)+X(0) \tau(0) \vec{B}(0)\right] s^{3}+\text { higher } \\
& =\vec{\alpha}(0)+\left(s-\frac{(x(0))^{2}}{6} s^{3}\right) \vec{T}(0) \\
& +\left(\frac{X(0)}{2} s^{2}+\frac{X^{\prime}(0)}{6} s^{3}\right) \vec{N}(0) \\
& +\left(\frac{\lambda(0) Y(0)}{6} s^{3}\right) \vec{B}(0)+\text { h.0.t. } \\
& \text { order } \\
& \text { terms } \\
& \text { (1) } \begin{array}{l}
\text { project to } \\
\bar{T} \vec{N} \\
\text { plane }
\end{array}
\end{aligned}
$$

exercise:

1) You can think of these projections as shadows take twigs from a tree or bent up paperclips and see you can (almost) always find these three projections/shadows
2) think about what this means about curvature and torsion!

Now for a few global theorems
Fenchel's Theorem:
The total curvature of a regular closed curve in \mathbb{R}^{3} is $\geq 2 \pi$
if is $2 \pi \Leftrightarrow$ if lies in a plane and is simple and convex
see Taps's book for a proof
What about other closed curves
a closed curve C is called a knot if it has an injective parameterization

knots
(1) not a knot
wo knots are isotopic (or equivalent) if you can get from one to the other through a continuous family of knots
K is called the unknot if it is isotopic to

Fary-Milnor Th ${ }^{m}$:
let K be a knot in \mathbb{R}^{3}
If the total curvature is $<4 \pi$ then K is the unknot

