III Manifolds
A. Recollection From Calculus:
let $\vec{f}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function
if $\vec{v} \in \mathbb{R}^{m}$, then the directional derivative of \vec{f} in the direction \vec{v} at $\vec{p} \in \mathbb{R}^{m}$ is

$$
\vec{f}_{\vec{v}}(\vec{p})=\lim _{h \rightarrow 0} \frac{\vec{f}(\vec{p}+h \vec{v})-\vec{f}(\vec{p})}{h} \quad \begin{gathered}
\text { (if the limit } \\
\text { exists) }
\end{gathered}
$$

notation: if $\vec{v}=\frac{\partial}{\partial x_{i}}$ (a coordinate vector)
then we write $\frac{\partial \vec{f}}{\partial x_{i}}$ for $\overrightarrow{f_{\vec{v}}}$
\vec{f} is differentiable of \vec{P} if there is a linear map

$$
B: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}
$$

such that

$$
\begin{aligned}
& \frac{\vec{f}(\vec{p}+\vec{v})-\vec{f}(\vec{p})-B \vec{v}}{\|\vec{v}\|} \rightarrow \overrightarrow{0} \\
& \text { as } \vec{v} \rightarrow \overrightarrow{0}
\end{aligned}
$$

If B exist we say the (total) derivative of \vec{f} at \vec{p} is B and denote it $(D \vec{f})_{\vec{p}}=B$
Remark: $D \vec{f}_{\vec{p}}$ is the "best linear approximation" to \vec{f} af \vec{p}
Calculus The :

1) if $D \vec{f}_{\vec{p}}$ exist then for all $\vec{v} \in \mathbb{R}^{n}$

$$
\underbrace{\vec{f}_{\vec{v}}(\vec{p})}_{\begin{array}{c}
\text { directional } \\
\text { derivative }
\end{array}}=\underbrace{(\vec{D})_{\vec{p}}}_{\text {total derivative }}(v)
$$

2) if $\vec{f}(\vec{p})=\left(f_{1}(\vec{p}), \ldots, f_{n}(\vec{p})\right)$ where $f_{2}: \mathbb{R}^{m} \rightarrow \mathbb{R}$, then
a) if \vec{f} is differentiable at \vec{p}, then the lineor mop $D \vec{f}_{\vec{p}}$ expressed using the standard basis in \mathbb{R}^{m} and \mathbb{R}^{n} is given by the $n x m$ matrix

$$
\begin{aligned}
(D \vec{f})_{p}= & \left(\frac{\partial f_{i}}{\partial x_{j}}(\vec{p})\right) \\
& \left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(\vec{p}) & \cdots & \frac{\partial f_{1}}{\partial x_{m}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}}(\vec{p}) & \cdots & \frac{\partial f_{n}}{\partial x_{m}}
\end{array}\right)
\end{aligned}
$$

b) If $\frac{\partial f_{i}}{\partial x_{j}}(p)$ exist and are continuous at \vec{p} for all $1, j$, then \vec{f} is differentiable at \vec{p}
examples:

1) $g(x, y)=x^{2}+y^{2}$
so $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$
$\frac{\partial g}{\partial x}=2 x$
$\frac{\partial g}{\partial y}=2 y$$\left\{\begin{array}{r}\text { exist and are continuous } \\ \text { so } g \text { is differential }\end{array}\right.$ so g is differentiable

$$
D g_{(x, y)}=\left(\begin{array}{ll}
2 x & 2 y
\end{array}\right)
$$

a 1×2 matrix
2) $\vec{f}(x, y)=\left(x, y, x^{2}+y^{2}\right)$
so $\vec{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$

$$
D f_{(x, y)}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
2 x & 2 y
\end{array}\right)
$$

Chain Rule
If $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $\vec{g}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ are differentiable functions, then

$$
D(\vec{g} \circ \bar{f})_{\vec{p}}=\left[(D \vec{g})_{\vec{f}(\vec{p})}\right](D \vec{f})_{\vec{p}}
$$

total derivative total derivative of \vec{g} at $\vec{f}(\vec{p})$ of \vec{f} at \vec{p}

Th ${ }^{\text {m }} 1:$
given $\vec{f}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$
$\vec{v} \in \mathbb{R}^{m}$ a vector
$\vec{p} \in \mathbb{R}^{m}$ a point
let $\vec{\alpha}:[a, b] \rightarrow \mathbb{R}^{n}$ be a path such that

$$
\begin{aligned}
& \vec{\alpha}(c)=\vec{p} \quad \text { for some } \vec{p} \in(a, s) \\
& \vec{\alpha}^{\prime}(c)=\vec{v}
\end{aligned}
$$

then

$$
(D \vec{f})_{\vec{p}}(\vec{r})=\left.\frac{d}{d t}(\vec{f} \circ \vec{\alpha})\right|_{t=c}
$$

Proof:
Cham rule gives

$$
\begin{aligned}
\frac{d}{d t}(\vec{f} \circ \vec{\alpha})(c) & =(\vec{f} \circ \vec{\alpha})_{\frac{d}{d t}}(c) \\
& =D\left(\vec{f}_{\circ} \vec{\alpha}\right)_{c}\left(\frac{d}{d t}\right) \\
& =\left(D \vec{f}_{\vec{z}(c)}\right)\left(D \vec{\alpha}_{c}\right) \frac{d}{d t} \\
& =\left(D \vec{f}_{\vec{p}}\right)\left(\vec{\alpha}_{d x}(c)\right) \\
& =\left(D \vec{f}_{\vec{p}}\right)\left(\vec{\alpha}^{\prime}(c)\right) \\
& =\left(D \vec{f}_{\vec{p}}\right) \vec{v}
\end{aligned}
$$

B. Manifolds in \mathbb{R}^{n}
a (regular) k-manifold, or manifold of dimension k, M is a subset of \mathbb{R}^{n} (for some n) such that for each point $\vec{p} \in M$ there is

1) an open set U in \mathbb{R}^{n} about \vec{p},
2) an open set V in \mathbb{R}^{h}, and
3) a differentiable map
such that

$$
\vec{f}: V \rightarrow U
$$

a) \vec{f} is injective
b) image $(\vec{f})=M \cap U$
c) Rank $D \vec{f}_{\vec{q}}=k$ for all $\vec{q} \in V$
d) $\vec{f}^{-1}:(U \cap M) \rightarrow V$ is continuous
we will usually not worry about this too much frequently automatic

\vec{f} is called a local parametrization or a coordinate chart around \vec{P}
Idea: if you "live" in M then it seems like you are in \mathbb{R}^{k} (if you can't see too far!)
exercise: a simple regular closed curve C in \mathbb{R}^{n} is a l-manifold
a 2 -manifold is also called a surface
a manifold $M \subset \mathbb{R}^{n}$ is called closed if the set M is closed (zee. for every sequence $\left\{x_{u}\right\}$ in M that converges to some pornit $x_{n} \rightarrow x$ in \mathbb{R}^{n} we have $x \in M$) we say M is compact if it is closed and bounded in \mathbb{R}^{n} (this is equivalent to saying any sequence in M has a subsequence that converges to a point in M)
examples:

1) let P be a plane in \mathbb{R}^{n}

So there are vectors $\vec{v}_{1}, \vec{v}_{2} \in \mathbb{R}^{n}$ and a point $\vec{p} \in \mathbb{R}^{n}$ such that

$$
P=\left\{\vec{p}+a \vec{v}_{1}+b \vec{v}_{2} \mid a, b \in \mathbb{R}\right\}
$$

note:

$$
\stackrel{\rightharpoonup}{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{n}:(u, v) \longmapsto \vec{p}+u \vec{v}_{1}+v \vec{v}_{2}
$$

is a local parameterization for any posit in P since: \vec{f} clearly injective and onto P, and

$$
D \vec{f}_{\vec{q}}=\left[\vec{v}_{1} \vec{v}_{2}\right] \text { for all } \vec{q}
$$

so $\operatorname{Rank} D \vec{f}_{g}=2$

note: 1) P is a closed surface
2) any k-space in \mathbb{R}^{n} is a k-manifold
2) let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ be smooth function

$$
\Gamma_{g}=\left\{\left(\vec{p}, g(\vec{p}) \mid \vec{p} \in \mathbb{R}^{2}\right\} \text { graph of } g\right.
$$

is a surface in \mathbb{R}^{3} because

$$
\vec{f}(u, v)=(u, v, g(u, v))
$$

gives a local param. since it is clearly injective and onto, and
$D f=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ g_{4} & g_{v}\end{array}\right]$ has $\operatorname{rank} 2$

$$
\text { e.g. } g(x, y)=x^{2}+y^{2}
$$

note: $\vec{g}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n-h}$ a smooth function gives a k-manifold in \mathbb{R}^{n}

$$
\Gamma_{\vec{g}}=\left\{(\stackrel{\rightharpoonup}{p}, \vec{g}(\stackrel{\rightharpoonup}{p})) \mid \vec{p} \in \mathbb{R}^{k}\right\}
$$

3) let $S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$ 2-sphere

Claim: S^{2} is a compact surface to see this suppose $\vec{p} \in S^{2}$
 and z-coord of $\vec{p}>0$
then let $B^{2}=\left\{(u, v) \in \mathbb{R}^{2} \mid u^{2}+v^{2}<1\right\}$

$$
\vec{f}: B^{2} \rightarrow \mathbb{R}^{3}:(u, v) \mapsto\left(u, v, \sqrt{1-u^{2}-v^{2}}\right)
$$

if x-coord $\vec{p}>0$ then use

$$
\vec{f}(u, v)=\left(\sqrt{1-u^{2}-v^{2}}, u, v\right)
$$

you can find 6 such local parom. That cover every point in S^{2}
exercise: 1) s^{2} is compact
2) $S^{n}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1} \mid \sum x_{1}^{2}=1\right\}$ is a compact n-manifold
4) Surfaces of revolution
given a graph $f:(a, b) \rightarrow \mathbb{R}$ in the $x z$-plane rotate it about the x-axis

$$
\begin{array}{rlr}
\Gamma_{f} & =\left\{(x, f(x) \mid x \in(a, b)\} \subset \mathbb{R}^{2}\right. \\
& =\{(x, 0, f(x)) \mid x \in(a, b)\} \subset \mathbb{R}^{3} & \text { surface of } \\
\Sigma_{f} & =\{(x, f(x) \cos \theta, f(x) \sin \theta) \mid x \in(a, b), \theta \in[0,2 \pi]\}
\end{array}
$$

define $g:(a, 6) \times \mathbb{R} \rightarrow \mathbb{R}^{3}$

$$
(x, \theta) \longmapsto(x, f(x) \cos \theta, f(x) \sin \theta)
$$

exercise: Show g restricted to subsets of $(a, b) \times \mathbb{R}$ give local parameterizations of Σ_{f}
let $M \subset \mathbb{R}^{n}$ be a k-manifold and $\vec{g}: M \rightarrow \mathbb{R}^{m}$ be a function
we say \vec{g} is differentiable (or smooth) at $\vec{p} \in M$ if there is a coordinate chart

$$
\vec{f}: V \rightarrow U
$$

$$
\hat{R}^{n} \quad \mathbb{R}^{n}
$$

such that $\vec{p} \in U \cap M$ (so $\exists \vec{q} \in V$ st. $\vec{f}(\vec{q})=\vec{p}$) and

$$
\vec{g} \circ \stackrel{\rightharpoonup}{f}: v \rightarrow \mathbb{R}^{m}
$$

is differentiable at \vec{q}
we say \vec{g} is differentiable if it is differentiable af all points of M
if $M^{\prime} \subset \mathbb{R}^{n \prime}$ is a k^{\prime}-manifold and
$g: M \rightarrow M^{\prime}$ a function
we say g is differentiable if $g: M \rightarrow \mathbb{R}^{n^{\prime}}$ is

If $M \subset \mathbb{R}^{n}$ is a k-manifold, then we say a rector $\vec{v} \in \mathbb{R}^{n}$ is tangent to M at $\vec{p} \in M$ if there is a regular curve

$$
\vec{\alpha}:[a, b] \rightarrow \mathbb{R}^{n}
$$

such that

1) $\operatorname{lm} \vec{\alpha} \subset M$
2) $\vec{\alpha}(c)=\vec{p}$
some $c \in(a, b)$
3) $\vec{\alpha}^{\prime}(c)=\vec{v}$

The tangent space to M at \vec{p} is

$$
T_{\vec{p}} M=\left\{\vec{v} \in \mathbb{R}^{n} \mid \vec{v} \text { is tangent to } M \text { at } \vec{p}\right\}
$$

example: $S^{2} \subset \mathbb{R}^{3}$

$$
\vec{p}=(0,0,1)
$$

$\vec{f}(u, v)=\left(u, v, \sqrt{1-u^{2}-v^{2}}\right)$ gives coordinate chart near $\vec{p}=\vec{f}(0,0)$

$$
D \overrightarrow{F_{\vec{p}}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

if $\vec{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ vector in \mathbb{R}^{2} then
$\vec{\beta}(t)=t \vec{v}$ a path in \mathbb{R}^{2}
$\vec{\alpha}=\vec{f} \circ \vec{\beta}$ a path in \mathbb{R}^{3} suck that visage $(\vec{\alpha}) \subset S^{2}$

$$
\vec{\alpha}^{\prime}(0)=\left(D \vec{f}_{\vec{\beta}(0)}\right) \vec{\beta}^{\prime}(0)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)\binom{v_{1}}{v_{2}}=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
0
\end{array}\right)
$$

So we see that any vector in the xy-plane is "tangent to S^{2} at $(0,0,1)$ "
that is $x y$-plane $c T_{(0,0,1)} s^{2}$
to see the other inclusion let $\vec{v} \in T_{(0,0,1)} S^{2}$ by definition there is some path

$$
\vec{\gamma}:(-\varepsilon, \varepsilon) \rightarrow s^{2}
$$

such that $\vec{\gamma}(0)=(0,0,1)$ and $\vec{\gamma}^{\prime}(0)=\vec{v}$ if ε is small enough, then in $\vec{\gamma} \subset \operatorname{im} \vec{f}$ if $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}:(x, y, z) \mapsto(x, y)$ is projection then $\vec{\alpha}=\pi \circ \vec{\gamma}$ is a curve in \mathbb{R}^{2} such that $\vec{\gamma}=\vec{f} \circ \vec{\alpha}$
thus if $\vec{v}^{\prime}=\vec{\alpha}^{\prime}(0)$ we see

$$
D \vec{f}_{(0,0)}\left(\vec{v}^{\prime}\right)=\vec{v}
$$

so $\vec{v} \in$ image $D \vec{f}_{(0, s)}=x y$-plane and $T_{(0,0,1)} S^{2}=$ "xy-plane"
exercise: 1) if $\vec{f}: V \rightarrow U$ is a coordinate chart $\left(V \subset \mathbb{R}^{k}\right)$ for $M \subset \mathbb{R}^{n}$ about $\vec{p} \in M$
then

$$
\begin{aligned}
T_{\vec{p}} M & =\operatorname{lmage}\left(D \vec{f}_{\vec{q}}\right) \\
& =\operatorname{span}\left\{\vec{f}_{\vec{e}_{1}}(\vec{q}), \ldots,{\overrightarrow{\vec{e}_{e}}}_{k}(\vec{q})\right\}
\end{aligned}
$$

where $\vec{e}_{1}, \ldots, \vec{e}_{k}$ is a basis for \mathbb{R}^{k} and $\vec{q} \in V$ such that $\vec{f}(\vec{q})=\vec{p}$
2) M a k-manifold, then $T_{\vec{p}} M$ a k-dim'l vector space

