II Manifolds

A. <u>Recollection From Calculus:</u> let $\overline{f}: \mathbb{R}^m \longrightarrow \mathbb{R}^n$ be a function if TER, then the directional derivative of f in the direction vat permis $\vec{f}_{=}(\vec{p}) = \lim_{h \to 0} \frac{\vec{f}(\vec{p} + h\vec{v}) - \vec{f}(\vec{p})}{h} \quad (if the limit$ exists)<u>notation</u>: if $\vec{v} = \frac{\partial}{\partial x}$; (a coordinate vector) then we write $\frac{\partial f}{\partial x}$ for $\overline{f}_{\overline{y}}$ F is differentiable at p if there is a linear map B: $\mathbb{R}^{M} \to \mathbb{R}^{n}$ such that $\frac{\overline{f}(\overline{\rho}+\overline{r})-\overline{f}(\overline{\rho})-\overline{B}\overline{r}}{\|\overline{r}\|} \rightarrow \overline{O}$ as ガーガ If B exist we say the (total) derivative of \overline{f} at \overline{p} is B and denote it $(D\vec{f})_{\vec{p}} = B$ <u>Remark</u>: $D\overline{f}_{\overline{p}}$ is the "best linear approximation" to \overline{f} at \overline{p} Calculus Thm: 1) if $D\overline{f}_{\overline{p}}$ exist then for all $\overline{\sigma} \in \mathbb{R}^{m}$ $\overline{f}_{\overline{n}}(\overline{p}) = (D\overline{f})_{\overline{p}}(\sigma)$ directional total derivative 2) if $f(p) = (f_1(p), \dots, f_n(p))$ where $f_1: \mathbb{R}^m \to \mathbb{R}$, then

examples:

1)
$$g(x,y) = x^{2}+y^{2}$$

so $g: \mathbb{R}^{2} \to \mathbb{R}$
 $\frac{\partial g}{\partial x} = 2x$
 $\frac{\partial g}{\partial y} = 2y$) exist and are continuous
so g is differentiable
 $Dg_{(x,y)} = (2x - 2y)$
 $a + x^{2} - 3R^{3}$
 $Df_{(x,y)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2x & 2y \end{pmatrix}$

Chain Rule
If
$$\overline{f}: \mathbb{R}^n \to \mathbb{R}^m$$
 and $\overline{g}: \mathbb{R}^m \to \mathbb{R}^k$ are differentiable
functions, then
 $D(\overline{g} \circ \overline{f})_{\overline{p}} = [(D\overline{g})_{\overline{f}(\overline{p})}] (D\overline{f})_{\overline{p}}$
total derivative total derivative
of \overline{g} at $\overline{f}(\overline{p})$ of \overline{f} at \overline{p}

$$Th^{m} 1:$$

$$given \vec{f}: \mathbb{R}^{m} \to \mathbb{R}^{n}$$

$$\vec{r} \in \mathbb{R}^{m} \quad a \text{ vector}$$

$$\vec{p} \in \mathbb{R}^{m} \quad a \text{ point}$$

$$let \vec{a}: [a,b] \to \mathbb{R}^{n} \quad be \ a \text{ path such that}$$

$$\vec{a}(c) = \vec{p} \quad \text{for some } \vec{p} \in (a, 6)$$

$$\vec{a}'(c) = \vec{v}$$

$$Hhen \quad (D\vec{f})_{\vec{p}}(\vec{\tau}) = \frac{d}{dt} (\vec{f} \circ \vec{a}) \Big|_{t=c}$$

<u>Proof</u>: C

Chain rule gives

$$\frac{d}{dt}(\vec{f} \circ \vec{a})(c) = (\vec{f} \circ \vec{a})_{dt}(c)$$

$$= D(\vec{f} \circ \vec{a})_{c}(\frac{d}{dt})$$

$$= (D\vec{f}_{\vec{a}(c)})(D\vec{a}_{c})_{dt}^{dt}$$

$$= (D\vec{f}_{\vec{p}})(\vec{a}_{t}(c))$$

$$= (D\vec{f}_{\vec{p}})(\vec{a}'(c))$$

B. Manifolds in Rⁿ

a (regular) k-manifold, or manifold of dimension k, M is a subset of R" (for some n) such that for each point p & M there is i) an open set U in Rⁿ about p, 2) an open set V in IRh, and 3) a differentiable map F: V->U such that a) f is injective b) $image(\overline{f}) = M \cap U$ c) Rank Dfg=k for all q EV d) F -: (U/M) →V is continuous we will usually not worry about this too much frequently automatic F is called a local parameterization or a wordinate chart around p Idea: if you live in M then it seems like you are in RK

(if you can't see too far!)

exercise: a simple regular closed curve C in Rⁿ is a l-manifold

a Z-manifold is also called a <u>surface</u> a manifold M ⊂ Rⁿ is called <u>closed</u> if the set M is closed (i.e. for every sequence {x_n} in M that converges to some point x_n→x in Rⁿ we have x ∈ M) we say M is <u>compact</u> if it is closed and bounded in IRⁿ (this is equivalent to saying any sequence in M has a subsequence that converges to a point in M) <u>examples</u>:

1) let
$$P$$
 be a plane in \mathbb{R}^{n}
So there are vectors $\vec{v}_{1}, \vec{v}_{2} \in \mathbb{R}^{n}$
and a point $\vec{p} \in \mathbb{R}^{n}$ such that
 $P = \{\vec{p} + a\vec{v}_{1} + b\vec{v}_{2} \mid a_{1}b \in \mathbb{R}\}$
Note:
 $\vec{f} : \mathbb{R}^{2} \rightarrow \mathbb{R}^{n} : (u,v) \mapsto \vec{p} + u\vec{v}_{1} + v\vec{v}_{2}$
is a local parameterization for any point in P
since: \vec{f} clearly injective and onto P , and
 $D\vec{f}_{\vec{p}} = [\vec{v}_{1}, \vec{v}_{2}]$ for all \vec{p}
so Rank $D\vec{f}_{q} = 2$
 $v = \vec{f}$

note: 1) *L* is a closed surface
2) any k-space in Rⁿ is a k-manifold
2) let g:
$$\mathbb{R}^2 \rightarrow \mathbb{R}^1$$
 be smooth function
 $\Gamma_g = \{ (\vec{p}, g(\vec{p})) \mid \vec{p} \in \mathbb{R}^2 \} graph of g$
is a surface in \mathbb{R}^3 because
 $\vec{f}(u,v) = (u, v, g(u,v))$
gives a local param. since it is clearly injective
and onto, and
 $Df = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ has rank 2
 $eg. g(x,y) = x^2 + y^2$
note: $\vec{g} : \mathbb{R}^k \rightarrow \mathbb{R}^{n-k}$ a smooth function
gives a k-manifold in \mathbb{R}^n
 $\Gamma_g = \{ (\vec{p}, \vec{g}(\vec{p})) \mid \vec{p} \in \mathbb{R}^k \}$
3) let $S^2 = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$
 $2-sphere$
 $Claim: S^2$ is a compact surface
to see this suppose $\vec{p} \in S^2$
and \vec{z} -coord of $\vec{p} > 0$
then let $B^2 = \{(u,v) \in \mathbb{R}^2 : [u,v) \mapsto ((u,v), \sqrt{1-v^2-v^2})$

if x-coord $\vec{p} > 0$ then use $\vec{f}(u, \sigma) = (\sqrt{1-u^2-\sigma^2}, u, \sigma)$

you can find 6 such local parom. that cover every point in S²

exercise: 1)
$$5^2$$
 is compact
2) $5^n = \{(x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid \Sigma \mid x_1^2 = 1\}$
is a compact n-manifold

4) Surfaces of revolution
given a graph
$$f:(a,b) \rightarrow \mathbb{R}$$
 in the $x \ge -plane$
rotate it about the x-axis
 $\Gamma_{f} = \{ [x, f(x)] | x \in (a, b) \} \subset \mathbb{R}^{2}$
 $\Gamma_{f} = \{ (x, f(x) \cos \phi, f(x) \sin \phi) | x \in (a, b), \phi \in [0, 2\pi] \}$

define
$$g: (q, 6) \times \mathbb{R} \to \mathbb{R}^{3}$$

 $(x, 0) \mapsto (x, f(x) \cos 0, f(x) \sin 0)$
erectise: Show g restricted to subsets of $(q, 6) \times \mathbb{R}$
give local parameterizations of Σ_{f}
let $M \in \mathbb{R}^{n}$ be a k-manifold and
 $\tilde{g}: M \to \mathbb{R}^{n}$ be a function
we say \tilde{g} is differentiable (or smooth) at $\tilde{p} \in \mathbb{M}$
if there is a coordinate chart
 $\tilde{f}: V \to U$
 \mathbb{R}^{k} \mathbb{R}^{n}
such that $\tilde{p} \in U \cap M$ (so $\exists \tilde{q} \in V$ st. $\tilde{f}(\tilde{q}) = \tilde{p}$)
and $\tilde{g} \circ \tilde{f}: V \to \mathbb{R}^{m}$
is differentiable at \tilde{q}
we say \tilde{g} is differentiable if it is differentiable at
all points of M
if $M' \in \mathbb{R}^{n'}$ is a k-manifold and
 $g: M \to M'$ a functiom
we say g is differentiable if $g: M \to \mathbb{R}^{n'}$ is
H $M \in \mathbb{R}^{n}$ is a k-manifold, then we say a vector $\tilde{v} \in \mathbb{R}^{n}$

is tangent to M at
$$\vec{p} \in M$$
 if there is a regular curve
 $\vec{\lambda} : [a,b] \to \mathbb{R}^n$

So we see that any vector in the xy-plane is
"tangent to
$$S^{2}$$
 at $(0,0,1)$ "
that is xy -plane $\subset \overline{f_{(0,0,1)}} S^{2}$
to see the other inclusion let $\overrightarrow{v} \in \overline{f_{(0,0,1)}} S^{2}$
by definition there is some path
 $\overrightarrow{Y}:(-5,5) \rightarrow S^{2}$
such that $\overrightarrow{T}(0):(0,0,1)$ and $\overrightarrow{T}(0)=\overrightarrow{v}$
if ε is small enough, then in $\overrightarrow{T} \subset in$ \overrightarrow{T}
if $\tau: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}: (K, y, z) \mapsto (K, y)$ is pojection
then $\overrightarrow{z} = \pi \circ \overrightarrow{T}$ is a curve in \mathbb{R}^{2} such that
 $\overrightarrow{T} = \overrightarrow{F} \circ \overrightarrow{z}$
to $\overrightarrow{v} \in intage D\overrightarrow{f}_{(0,0)} = xy - plane$
and $\overline{f_{(0,0,1)}} S^{2} = "xy - plane"$
exercise: i) if $\overrightarrow{F}: V \rightarrow U$ is a loordinate chart $(V \in \mathbb{R}^{k})$
for $M \subset \mathbb{R}^{n}$ about $\overrightarrow{p} \in M$
then $T_{\overrightarrow{p}} M = lmage (D\overrightarrow{F}_{\overrightarrow{p}})$
 $= span \{\overrightarrow{F}_{0}(\overrightarrow{T}), ..., \overrightarrow{F}_{0}(\overrightarrow{T})\}$
where $\overrightarrow{e}_{1}, ..., \overrightarrow{e}_{k}$ is a basis for \mathbb{R}^{k} and
 $\overrightarrow{q} \in V$ such that $\overrightarrow{F}(\overrightarrow{T}) = \overrightarrow{p}$
2) M a k-manifold, then $T_{\overrightarrow{p}} M$ a h-dimil vector space