C. Geodesic Coordinates

We now prove a claim used many times so for Th m 10:
let Σ be a surface with Riemannian metric 9 any point $\vec{p} \in \Sigma$ is contained in a coordinate chart $\vec{f}: V \rightarrow \Sigma$
such that

$$
g=\left(\begin{array}{cc}
g_{11}(u) & 0 \\
0 & g_{22}(u, v)
\end{array}\right)
$$

moreover the curves $\vec{f}\left(u_{1} v_{0}\right)$ are geodesics
To prove this theorem we need a result from ODE's
Fundamental Theorem of $O D E_{s}$:
given $U \subset \mathbb{R}^{n}$ open set
$I \subset \mathbb{R}$ open interval contariing 0
$\vec{x}_{2} \in U \quad 1=0, \ldots, k-1$ and
$H: U^{k} \times I \rightarrow \mathbb{R}^{n}$ a continuous function
that is Lipschite in \vec{x}
note:
(ie. $\exists \mathrm{c}$ such that
Hedtferentrable on compact set \Rightarrow

$$
\begin{aligned}
& \|H(\vec{x}, t)-H(\vec{y}, t)\| \leq c\|\vec{x}-\vec{y}\| \\
& \forall \vec{x}, \vec{y} \in U \text { and } t \in I)
\end{aligned}
$$

Then the differential equation

$$
\begin{aligned}
& \frac{d^{h}}{d t^{k}} \vec{x}=H\left(\vec{x}, \vec{x}^{\prime}, \ldots, \vec{x}^{(k-1)}, t\right) \\
& \vec{x}(0)=\vec{x}_{0} \\
& \vdots \\
& \vec{x}^{(h-1)}(0)=\vec{x}_{k-1}
\end{aligned}
$$

has a unique solution $\vec{x}\left(t ; \vec{x}_{0}, \ldots, \vec{x}_{h-1}\right)$ defined on sum interval $I^{\prime} \subset I$ containing O
If H is differentiable then $\vec{x}\left(t ; \vec{x}_{0}, \ldots, \vec{x}_{k-1}\right)$ is differentiable in t and $\vec{x}_{0}, \ldots, \vec{x}_{h-1}$.
for a proof see any good book on ODE
Proof: let $\vec{\alpha}:(-\varepsilon, \varepsilon) \rightarrow \Sigma$ be any curve through $\vec{p}(\vec{\alpha}(0)=\vec{p})$
Idea: build words by taking geodesics perpendicular to $\vec{\alpha}$

let $\vec{x}_{1}(\vec{\alpha}(t))=J\left(\vec{\alpha}^{\prime}(t)\right) \frac{1}{\left\|\vec{\alpha}^{\prime}(t)\right\|_{9}}$
where $J=$ rotation by $\frac{\pi}{2}$ courtier clockwise in $\tau_{\vec{z}(t)} \Sigma$
note: \vec{x}_{1} is a unit vector field along $\vec{\alpha}(t)$ recall the geodesic equations are

$$
\begin{aligned}
& a^{\prime \prime}(s)=\underbrace{-\left(\Gamma_{11}^{\prime}\left(a^{\prime}\right)^{2}+2 \Gamma_{12}^{\prime} a^{\prime} b^{\prime}+\Gamma_{22}^{\prime}\left(b^{\prime}\right)^{2}\right)}_{H\left((a, b),\left(a^{\prime} b^{\prime}\right), s\right)} \\
& b^{\prime \prime}(s)=\underbrace{-\left(\Gamma_{11}^{2}\left(a^{\prime}\right)^{2}+2 \Gamma_{12}^{2} a^{\prime} b^{\prime}+\Gamma_{22}^{2}\left(b^{\prime}\right)^{2}\right)}
\end{aligned}
$$

note use variable s to avoid confusion with + from $\vec{\alpha}$
so we can use $T^{\underline{m}}$ on ODEs to get a sol ${ }^{h}$ to

$$
\begin{aligned}
& \vec{x}^{\prime \prime}(s)=H\left(\vec{x}_{1} \vec{x}^{\prime}, s\right) \\
& \vec{x}(0)=\vec{\alpha}(t) \\
& \vec{x}^{\prime}(0)=\vec{x}_{1}(\vec{\alpha}(t))
\end{aligned}
$$

call sol $\vec{x}(s ; t)$

clearly $\vec{x}\left(s ; t_{0}\right)$ is a geodesic $\forall t_{0}$

$$
\begin{aligned}
\vec{x}(0,0) & =\vec{\alpha}(0)=\vec{p} \\
D \vec{x}_{(0,0)} & =\left[\begin{array}{ll}
\frac{\partial \bar{x}}{\partial s}(0,0) & \frac{\partial \vec{x}}{\partial t}(0,0)
\end{array}\right] \\
& =\left[\begin{array}{ll}
\vec{x}_{1}(0) & \vec{\alpha}^{\prime}(0)
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{J\left(\vec{\alpha}^{\prime}(0)\right)}{\left\|\vec{\alpha}^{\prime}(0)\right\|} & \vec{\alpha}^{\prime}(0)
\end{array}\right]
\end{aligned}
$$

Iriearly independent so $D \vec{x}_{(0,0)}$ rank 2
so $D \vec{x}_{\bar{q}}$ rank 2 for all \vec{q} near $(0,0)$
Inverse function theorem says \bar{x} is virantable near $\vec{x}(0,0)$ so \vec{x} is infective near $(0,0)$
$\therefore \vec{x}$ gives coordinates near \vec{p} (rename $\vec{f}(u, v)=\vec{x}(u, v)$ for standard notation) now consider

$$
\begin{gathered}
g_{12}=\vec{f}_{u} \cdot \vec{f}_{v} \\
\frac{\partial}{\partial u} g_{12}=\vec{f}_{u u} \cdot \vec{f}_{v}+\vec{f}_{u} \cdot \vec{f}_{v u} \\
\text { but } \vec{f}_{u} \cdot \vec{f}_{u}=\frac{\partial \vec{x}}{\partial s} \cdot \frac{\partial \vec{x}}{\partial s}=1
\end{gathered}
$$

$$
\begin{aligned}
& \text { so } \frac{\partial}{\partial v} \vec{f}_{u} \cdot \vec{f}_{u}=2 \vec{f}_{u v} \cdot \vec{f}_{u}=0 \\
& \therefore \frac{\partial}{\partial u} g_{u 2}=\vec{f}_{u u} \cdot \vec{f}_{v}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { now }\left(\vec{f}_{u u}\right)^{\top}=\left(\frac{\partial}{\partial u}\left(\vec{f}_{u}\right)\right)^{\top}=\left(\frac{\partial}{\partial s}\left(\frac{\partial \vec{x}}{\partial s}\right)^{\top}=\nabla_{\frac{\partial \vec{x}}{}}^{\partial s} \frac{\partial \vec{x}}{\partial s}=0\right. \\
\text { so } \vec{f}_{u u} \cdot \vec{f}_{v}=0 & \begin{array}{l}
\vec{x}\left(s, t_{0}\right) a \\
\text { and } \frac{\partial g_{u 2}}{\partial u}=0
\end{array} \\
\text { geodesic }
\end{array}
$$

thus $g_{12}(u, v)=g_{12}(0, v)=\frac{\partial \vec{x}}{\partial s}(0, v) \cdot \frac{\partial \vec{x}}{\partial t}(0, v)$

$$
=\frac{J \vec{\alpha}^{\prime}(v)}{\left\|\vec{\alpha}^{\prime}(v)\right\|} \cdot \vec{\alpha}^{\prime}(v)=0
$$

the fact g " only depends on v whas shown in proof of Theorem IV. 10
note we showed more!
Cor 11:
let Σ be a surface with Riemannian metric g any point $\vec{p} \in \Sigma$ is contained in a wordinate chart with

$$
g=\left(\begin{array}{cc}
1 & 0 \\
0 & g_{22}(u, v)
\end{array}\right)
$$

Remark: Th "nl gives

$$
\begin{aligned}
K & =-\frac{1}{2 \sqrt{g_{22}}}\left(\frac{\left(g_{22}\right)_{u}}{\sqrt{g_{22}}}\right)_{u} \\
& =-\frac{1}{\sqrt{g_{22}}} \frac{d^{2}}{d u^{2}} \sqrt{g_{22}}
\end{aligned}
$$

Recall: given $\vec{v} \in T_{\vec{p}}(\Sigma)$
\exists ! geodesic $\vec{\gamma}:(-\varepsilon, \varepsilon) \rightarrow \Sigma$ such that

$$
\begin{aligned}
& \vec{\gamma}(0)=\vec{p} \\
& \vec{\gamma}^{\prime}(0)=\vec{v}
\end{aligned}
$$

denote it $\vec{\gamma}(t ; \vec{v})$
lemma 12:
If $\vec{\gamma}(t ; \vec{v})$ is defined on $(-\varepsilon, \varepsilon)$ then $\vec{\gamma}(t ; \lambda \vec{v}), \lambda \neq 0$, is defined on $(-\varepsilon / \lambda, \varepsilon / \lambda)$ and is given by $\vec{\gamma}(t ; \lambda \vec{v})=\vec{\gamma}(\lambda t ; \vec{v})$

Proof: let $\vec{\alpha}(t)=\vec{\gamma}(\lambda t ; \vec{v})$
$\vec{\alpha}:(-\varepsilon / \lambda, \varepsilon / \lambda) \rightarrow \sum$ is a parameterized curve $\vec{\alpha}(0)=\vec{p}$
$\vec{\alpha}^{\prime}(0)=\lambda \vec{\gamma}^{\prime}(0 ; \vec{v})=\lambda \vec{v}$
$\nabla_{\vec{\alpha}^{\prime}(f)} \vec{\alpha}^{\prime}(t)=\nabla_{\lambda \gamma^{\prime}(0 ; \vec{v})} \lambda \gamma^{\prime}(0 ; \vec{v})=\lambda^{2} \nabla_{\gamma^{\prime}(t ; v)} \gamma^{\prime}(t ; v)=0$
so $\vec{\alpha}$ is a geodesic and by uniqueness in $T^{m} \underline{V} .9$
we have $\vec{\gamma}(\lambda t ; \vec{v})=\vec{\alpha}(t)=\vec{\gamma}(t ; \lambda \vec{v})$
now let U be the set of vectors \vec{v} in $T_{\vec{p}} \sum$ such that $\vec{\gamma}(1 ; \vec{v})$ is defined
note: lemma says U is star shaped

the exponential map is defined as

$$
\begin{aligned}
& V_{\vec{p}} \Sigma \\
& \exp _{\vec{p}}: U \longrightarrow \sum \\
& \vec{v} \longrightarrow \begin{cases}\vec{\gamma}(1 ; \vec{v}) & \vec{v} \neq 0 \\
\vec{p} & \vec{v}=0\end{cases}
\end{aligned}
$$

example:

lemma 13:
for all $\vec{p} \in \sum$ there is some $\varepsilon>0$ such that expp is defined and differentiable on a ball of radius ε about O in $\tau_{\vec{p}} \sum$

Proof: let C be the unit circle in $T_{\vec{p}} \Sigma$ fix some $R \gg 0$
if $\vec{v} \in C$ let $\varepsilon(\vec{v})$ be the largest $\varepsilon<R$ such that $\vec{\gamma}(t ; \vec{v})$ is defined on $(-\xi, \varepsilon)$

Th$\underline{m} \mathbb{I} .9 \Rightarrow \varepsilon(\vec{v})>0 \quad \forall \vec{v}$
Fundamental T^{m} of $O D E \Rightarrow \varepsilon: C \rightarrow \mathbb{R}$ is continuous since C is compact, ε takes on ifs global min ε_{0} let $B=$ Ball of radius ε_{0} in $T_{\bar{p}} \Sigma$
$\vec{v} \in B, \vec{v} \neq 0 \Rightarrow \frac{\vec{v}}{\|\vec{\sigma}\|} \in C$ so $\vec{\gamma}($ ti $\|\vec{r} \mid \vec{v}\|)$ defined on $\left(-\varepsilon_{0}, \varepsilon_{0}\right)$ and $\|\vec{r}\|<\varepsilon_{0}$ so $\vec{\gamma}(\|\vec{v}\| ; \vec{v})=\vec{\gamma}(1 ; \vec{v})$ is defined so $\exp _{\vec{p}}(\vec{r})$ well-dehined
$\exp _{\vec{p}}(\vec{r})$ is differentiable by the Fundamental Theorems of ODE
lemma 14:
for $\vec{p} \in \sum$, there is some $\varepsilon>0$ such that

$$
\exp _{\vec{p}}: B_{\varepsilon} \rightarrow \Sigma
$$

ball of radius ε in $T_{p} \Sigma$
is injective and
$D\left(\exp _{\vec{p}}\right)_{\vec{q}}$
is rake 2 for all $\vec{q} \in B_{\varepsilon}$
Proof: consider $\vec{\gamma}(t ; \vec{v})=\vec{\gamma}(1 ; t \vec{v})=\exp _{\vec{p}}(t \vec{v})=\exp \cdot \vec{\alpha}(t)$
where $\vec{\alpha}(t)=t \vec{v}$
Th ${ }^{m}$ III. 1 says

$$
\begin{aligned}
D\left(\exp _{\vec{p}}\right)_{(0,0)}(\vec{v}) & =\left.\frac{d}{d t}\left(\exp _{\vec{p}} \circ \vec{\alpha}(t)\right)\right|_{t=0} \\
& =\left.\frac{d}{d t} \vec{\gamma}(t ; \vec{v})\right|_{t=0}=\vec{v}
\end{aligned}
$$

so $D\left(\exp _{\vec{p}}\right)_{(0,0)}(\vec{v})=\vec{v}$
ie. $D\left(\exp _{\vec{p}}\right)=T_{\vec{p}} \Sigma \rightarrow T_{\vec{p}} \Sigma$ is the identity map
\therefore rank 2
The Inverse function Theorem says expp is inventable near $(0,0)$
so it is injective
note: The lemma says

$$
\exp _{p}: B_{\varepsilon} \rightarrow \Sigma
$$

is a coordinate chart about \vec{p}
if we fix $\left\{\vec{w}_{1}, \vec{w}_{2}\right\}$ an orthonormal basis for $\bar{T}_{\vec{p}} \Sigma$, then

$$
\vec{f}(u, v)=\exp _{\vec{p}}\left(u \vec{w}_{1}+v \vec{w}_{2}\right)
$$

is called a normal coordinate chart
Lemma 15:
In normal coordinates we have

1) $g(0,0)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
2) first derivatives of $\left\{g_{i j}(u, v)\right\}$ at $(0,0)$ vanish
3) $\Gamma_{i j}^{k}(0,0)=0$

Proof: $\quad \vec{f}_{u}(0,0)=\left.\frac{d}{d u} \exp _{\vec{p}}\left(u \vec{w}_{1}\right)\right|_{u=0}=\vec{w}_{1}$

$$
\vec{f}_{w}(0,0)=\vec{w}_{2}
$$

so $g(0,0)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ since \vec{w}_{1}, \vec{w}_{2} orthonormal
note: $\vec{\gamma}(t)=\exp _{\vec{p}}\left(t\left(r \vec{w}_{1}+s \vec{w}_{2}\right)\right)$ is a geodesic for fixed $r_{1} s$ ie. if $a(t)=r t$ and $b(t)=s t$
then $F(a(t), b(t))$ is a geodesic
$\vec{\gamma}$ a geodesic iff
(1) $a^{\prime \prime}+\Gamma_{11}^{\prime}\left(a^{\prime}\right)^{2}+2 \Gamma_{12}^{\prime} a^{\prime} b^{\prime}+\Gamma_{22}^{\prime}\left(b^{\prime}\right)^{2}=0$
(2) $b^{\prime \prime}+\Gamma_{11}^{2}\left(a^{\prime}\right)^{2}+2 \Gamma_{12}^{2} a^{\prime} b^{\prime}+\Gamma_{22}^{2}\left(b^{\prime}\right)^{2}=0$
but $a^{\prime}=r \quad a^{\prime \prime}=0$

$$
b^{\prime}=5 \quad b^{\prime \prime}=0
$$

$\forall r, s, \vec{\gamma}(0)=\vec{\rho}$ so we get for $s=0$ and $r=1$, (1) becomes

$$
\Gamma_{11}^{1}=0
$$

so (1) is $2 \Gamma_{12}^{\prime} r s+\Gamma_{22}^{\prime} s^{2}=0$
now $r=0, s=1 \Rightarrow \Gamma_{22}^{1}=0$
ard $r=1=s \Rightarrow r_{12}^{\prime}=0$
similarly $\Gamma_{11}^{2}=\Gamma_{22}^{2}=\Gamma_{12}^{2}=0$ using (2)
finally

$$
\begin{gathered}
0=\Gamma_{11}^{\prime}=\left(g_{11}\right)_{u}+\left(g_{11}\right)_{u}-\left(g_{11}\right)_{u} \\
\text { so }\left(g_{11}\right)_{u}=0 \\
0=\Gamma_{12}^{\prime}=\left(g_{21}\right)_{u}+\left(g_{11}\right)_{v}-\left(g_{12}\right)_{u} \\
\text { so }\left(g_{11}\right)_{v}=0
\end{gathered}
$$

similarly for other $g_{i j}$
Using $\exp \vec{p}: B_{\varepsilon} \xrightarrow{c_{\bar{p}} \Sigma=\mathbb{R}^{2}}$ we also get geodesic polar coordinates by taking polar words (r, θ) on \mathbb{R}^{2} and defining

$$
\left.\vec{f}(r, \theta)=\exp _{\vec{p}}(l r \cos \theta) \vec{w}_{1}+(r \sin \theta) \vec{w}_{2}\right)
$$

where $\left\{\vec{w}_{1}, \vec{w}_{2}\right\}$ is an orthonormal basis for ${T_{\vec{p}}}_{\Sigma}$
we call the curve C_{R} parameterized by

$$
\vec{\gamma}(t)=\exp _{\vec{p}}\left((R \cos t) \vec{w}_{1}+(R \sin t) \vec{w}_{2}\right) \quad t \in[0,2 \pi]
$$

the geodesic circle of radius R
(note C_{R} is not a geodesci and might not be a circle!)

lemma 16:
In geodesic polar coordinates (away from $r=0$) we have

$$
g=\left(\begin{array}{cc}
1 & 0 \\
0 & G(r, \theta)
\end{array}\right)
$$

where

$$
\sqrt{G(r, \theta)}=r-\frac{1}{6} K(\vec{p}) r^{3}+R(r, \theta)
$$

and $\lim _{r \rightarrow 0} \frac{R(r, \theta)}{r^{3}}=0$
(2.e. up to order $3 \sqrt{G}=r-\frac{1}{6} K(\vec{p}) r^{3}$)

Proof: Proof of lemma 14 says that

$$
\vec{\gamma}(t)=\exp _{\vec{p}}(t \vec{v}) \text { is a geodesic }
$$

so $\vec{\gamma}(r)=\vec{f}\left(r, \theta_{0}\right)$ is a geodesic
and $\vec{f}_{r}=\vec{\gamma}^{\prime}(r)=\left((\cos \theta) \vec{w}_{1}+(\sin \theta) \vec{v}_{2}\right)$
has unit length
so $\vec{f}_{r} \cdot \vec{f}_{r}=1$
since $\vec{f}(a(t), b(t))$ for $a(t)=t, b(t)=\theta_{0}$ is a geodesic, the geodesic equations give

$$
\begin{aligned}
& a^{\prime \prime}(t)+\Gamma_{11}^{\prime}\left(a^{\prime}\right)^{2}+2 \Gamma_{12}^{\prime} a^{\prime} b^{\prime}+\Gamma_{22}^{\prime}\left(b^{\prime}\right)^{2}=0 \\
& b^{\prime \prime}(t)+\Gamma_{11}^{2}\left(a^{\prime}\right)^{2}+2 \Gamma_{12}^{2} a^{\prime} b^{\prime}+\Gamma_{22}^{2}\left(b^{\prime}\right)^{2}=0
\end{aligned}
$$

so $\Gamma_{11}^{2}=0$

$$
\begin{aligned}
0=\Gamma_{11}^{2}=g^{21} & \left.\frac{1}{2}\left(g_{11}\right)_{r}+\left(g_{11}\right)_{r}-\left(g_{11}\right)_{r}\right) \\
& +g^{22} \frac{1}{2}\left(\left(g_{12}\right)_{r}+\left(g_{12}\right)_{r}-\left(g_{11}\right)_{\theta}^{7}\right)^{0}
\end{aligned}
$$

we know $g^{22} \neq 0(i f r \neq 0)$ so

$$
\left(g_{12}\right)_{r}=0
$$

and g_{12} only depends on θ
let $\vec{\alpha}_{r_{0}}(\theta)=\vec{f}\left(r_{0}, \theta\right)$ so

$$
g_{12}(r, \theta)=\vec{f}_{r} \cdot \vec{f}_{\theta}=\vec{\gamma}_{\theta_{0}}^{\prime}\left(r_{0}\right) \cdot \vec{\alpha}_{r_{0}}^{\prime}\left(\theta_{0}\right)
$$

note $\vec{\alpha}_{0}(\theta)=\vec{p} \quad \forall \theta$ so $\vec{\alpha}_{0}^{\prime}(\theta)=0$
thus $\lim _{r_{0} \rightarrow 0} g_{12}\left(r_{0}, \theta_{0}\right)=\lim _{r_{0} \rightarrow 0} \vec{\gamma}_{\theta_{0}}^{\prime}\left(r_{0}\right) \cdot \vec{\alpha}_{0}\left(\theta_{0}\right)=0$
so $g_{12}=0$
and $\quad g=\left(\begin{array}{cc}1 & 0 \\ 0 & G(r, \theta)\end{array}\right)$
now consider the Taylor expansion of \sqrt{G} note from above we have $\sqrt{G(0, \theta)}=0$

from lemma $15 \quad\left(\bar{g}_{i j}(0,0)\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
note:

$$
\begin{aligned}
\vec{v}^{\star} g \vec{\omega} & =g(\vec{v}, \vec{w})=\bar{g}(D h(\vec{v}), D h(\vec{v})) \\
& =(D h(\vec{v}))^{\top} \bar{g}(D h(\vec{w})) \\
& =\vec{v}^{\top} D h^{\top} \bar{g} D h \vec{w}
\end{aligned}
$$

so $g=D h^{\top} \bar{g} D h$
and $D h=\left(\begin{array}{cc}\cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta\end{array}\right)$

$$
\sqrt{G}=\sqrt{g_{22}}=\sqrt{\operatorname{det} g}=\sqrt{\operatorname{det} \operatorname{Du} u^{\top} \operatorname{det} \bar{g} \operatorname{det} D u}=r \sqrt{\operatorname{det} \bar{g}}
$$

So $\lim _{r \rightarrow 0} \frac{\partial}{\partial r} \sqrt{G}=\lim _{r \rightarrow 0}\left(\sqrt{\operatorname{det} \bar{g}}+r \frac{\partial}{\partial r} \sqrt{\operatorname{det} \bar{g}}\right)$

$$
=\sqrt{\operatorname{det} \bar{g}(0,0)}=1
$$

and

$$
\begin{aligned}
\lim _{r \rightarrow 0} \frac{\partial^{2}}{\partial r^{2}} \sqrt{G=}= & \lim _{r \rightarrow 0}\left(\frac{\partial}{\partial r} \sqrt{\operatorname{det} \bar{g}}+\frac{\partial}{\partial r} \sqrt{\operatorname{det} \bar{g}}+r \frac{\partial^{2}}{\partial r} \sqrt{\operatorname{det} \bar{g}}\right) \\
= & \lim _{r \rightarrow 0} 2 \frac{\partial}{\partial r} \sqrt{\operatorname{detg}}=0 \\
& =0 \\
& \text { of }{ }^{\text {this } \bar{g}_{i j} \text { af } 1 \text { af }(0.0)} \\
& \text { by lemma } 15 \text { these }=0
\end{aligned}
$$

by the remark after for Il we have

$$
K(r, \theta)=-\frac{1}{\sqrt{G(r, \theta)}}(\sqrt{G(r, \theta)})_{r r} \text { for } r \neq 0
$$

So $(\sqrt{G})_{r r}=-\sqrt{G(r, \theta)} K(r, \theta)$

$$
\text { (note: } a\left(s 0 \Rightarrow \lim _{r \rightarrow 0}(\sqrt{6})_{r r}=0\right)
$$

$$
\begin{aligned}
& \text { and } \quad(\sqrt{G})_{r r r}=-(\sqrt{G(r, \theta)})_{r} K(r, \theta)-\sqrt{G(r, \theta)}(K(r, \theta))_{r} \\
& \therefore \lim _{r \rightarrow 0}(\sqrt{G})_{r r r}=-K(\vec{p})
\end{aligned}
$$

Thus Taylor's th ${ }^{\underline{m}}$ gives

$$
\begin{aligned}
\sqrt{G} & =0+1 r+\frac{1}{2} 0 r^{2}+\frac{1}{6}(-K(\vec{p})) r^{3}+\text { h.o.t. } \\
& =r-\frac{1}{6} K(\vec{p}) r^{3}+\text { hot. }
\end{aligned}
$$

Th ${ }^{\mathrm{m}} 17$:
let Σ be a surface with Riemannian metric g recall for $\vec{p} \in \sum$ the geodesic circle of radius R is $C_{R}=\left\{\exp _{\vec{p}}\left((R \cos \theta) \vec{\omega}_{1}+(R \sin \theta) \vec{w}_{2}\right): \theta \in[0,2 \pi]\right\}$ where \vec{w}_{1}, \vec{w}_{2} orthonormal basis for $\vec{T}_{\vec{p}} \Sigma$ let $L(R)=$ length C_{R} and $A(R)=$ area of dish C_{R} bounds

Then the Gauss curvature is

$$
\begin{aligned}
& K(\vec{p})=\lim _{R \rightarrow 0} \frac{3}{\pi}\left(\frac{2 \pi R-L(R)}{R^{3}}\right) \\
& K(\vec{p})=\lim _{R \rightarrow 0} \frac{12}{\pi}\left(\frac{\pi R^{2}-A(R)}{R^{4}}\right)
\end{aligned}
$$

Remark: So if $K(\vec{p})>0$, then circles of small radius about \vec{p} are shorter and enclose less area than Euclidean circles
and similar comments apply to $K(\vec{p})<0$
Proof: Parameterize C_{R} by

$$
\begin{aligned}
\vec{\alpha}_{R}(t) & =\exp _{\vec{p}}\left((R \cos t) \vec{w}_{1}+(R \sin t) \vec{w}_{2}\right) \\
& =\vec{f}\left(R_{1} t\right)
\end{aligned}
$$

geodesic polar coords
So $\quad \vec{\alpha}_{R}^{\prime}=\vec{f}_{\theta}(R, t)$
and $\left\|\vec{\alpha}_{R}^{\prime}\right\|=\sqrt{f_{\theta} \cdot f_{\theta}}=\sqrt{G}=R-\frac{1}{6} K(\vec{p}) R^{3}+$ h.o.t

$$
\text { so } \begin{aligned}
L(R) & =\int_{0}^{2 \pi}\left\|\vec{\alpha}_{R}^{\prime}(t)\right\|_{g} d t=\int_{0}^{2 \pi}\left(R-\frac{1}{6} R(\vec{p}) R^{3}+\text { h.at. }\right) d t \\
& =\left.\left(R-\frac{1}{6} K(\vec{p}) R^{3}\right) t\right|_{0} ^{2 \pi}+\text { hoot in } R \\
& =2 \pi R-\frac{1}{6} K(\vec{p}) R^{3} 2 \pi+\text { hot. in } R \\
\therefore \quad K(\vec{p}) & =\frac{3}{\pi} \frac{2 \pi R-C(R)}{R^{3}}+\frac{\text { hot. in } R \rightarrow 0 \text { as } R \rightarrow 0}{R^{3}}
\end{aligned}
$$

so $K(\bar{p})=\lim _{R \rightarrow 0} \frac{3}{\pi}\left(\frac{2 \pi R-L(R)}{R^{3}}\right)$
exercise: compute the area of the disk C_{R} bounds and establish the other formula

Th $\frac{m}{} / 8:$
If (Σ, g) and $\left(\Sigma^{\prime}, g^{\prime}\right)$ are two surfaces with Riem. Metrics both having constant curvature K and $\vec{p} \in \Sigma$ and $\vec{q} \in \Sigma^{\prime}$
Then there are neighborhoods V of \vec{p} in Σ and V^{\prime} of \vec{p}^{\prime} in Σ^{\prime} and an isometry $\phi: V \rightarrow V^{\prime}$ taking \vec{p} to \vec{p}^{\prime}
(This says any two Riemannian surfaces with the same constant Gauss curvature are locally isometric)
Proof: recall in geodesic polar coordinates

$$
K=-\frac{1}{\sqrt{g_{22}}}\left(\sqrt{g_{22}}\right)_{r r}
$$

so $\left(\sqrt{g_{22}}\right)_{r r}+K \sqrt{g_{22}}=0$
Case 1: $K=0$
so $\left(\sqrt{g_{22}}\right)_{r r}=0$
so $\left(\sqrt{g_{22}}\right)_{r}=g(\theta)$ (doesn't depend on r)
by lemma 16 we know

$$
\lim _{r \rightarrow 0}\left(\sqrt{g_{22}}\right)_{r}=1
$$

so $g(\theta)=1$ for all θ and so $\left(\sqrt{g_{22}}\right)_{r}=1$
thus integrating we find $\sqrt{g_{22}}=r+f(\theta)$
but since $\lim _{r \rightarrow 0} \sqrt{g_{22}}=0$ lemmal6 we see $f(\theta)=0$
so the metric in geodesic normal coords is

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & r^{2}
\end{array}\right)
$$

now given $\vec{p} \in \Sigma$ and $\vec{p}^{\prime} \in \Sigma^{\prime}$
choose an orthonormal basis \vec{w}_{1}, \vec{w}_{2} for $T_{\vec{p}} \sum$
い $" \quad \vec{u}_{1}, \vec{u}_{2}$ for $\tau_{\vec{p}^{\prime}} \Sigma^{\prime}$

let ϕ be the linear map $T_{\vec{p}} \Sigma \rightarrow T_{\vec{p}^{\prime}} \Sigma^{\prime}$ sending $\vec{w}_{1} \mapsto \overrightarrow{u_{1}}$

$$
\vec{w}_{2} \longmapsto \dot{u}_{2}
$$

let $\vec{f}(r, \theta)=\exp _{\vec{p}}\left((r \cos \theta) \vec{w}_{1}+(r \sin \theta) \vec{w}_{2}\right)$ be geodesic polar words on Σ near \vec{p} on the set $U<T_{\vec{p}} \Sigma$ fo $V \subset \Sigma$
similarly for $\vec{f}^{\prime}\left(r_{1}^{\prime} \theta^{\prime}\right)=\exp _{\vec{p}}\left(\left(r^{\prime} \cos \theta^{\prime}\right) \vec{u}_{1}+\left(r^{\prime} \sin \theta^{\prime}\right) \vec{u}_{2}\right)$ are geodesic polar words on Σ^{\prime} near \vec{P}^{\prime} on the set $U^{\prime} \subset T_{\vec{p}^{\prime}} \Sigma^{\prime}$ to $V^{\prime} \subset \Sigma^{\prime}$
define $\psi: V \rightarrow V^{\prime}$ by

$$
\psi(\vec{q})=\vec{f}^{\prime} \circ \phi \circ \vec{f}^{-1}(\vec{q})
$$

exercise: this is an isometry taking

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 0 \\
0 & r^{2}
\end{array}\right) \text { in }(r, \theta) \text { words on } \Sigma \\
& \text { to }\left(\begin{array}{ll}
1 & 0 \\
0 & \left(r^{\prime}\right)^{2}
\end{array}\right) \text { in }\left(r^{\prime}, \theta^{\prime}\right) \text { words on } \Sigma^{\prime}
\end{aligned}
$$

Case 2: $K>0$
now $\left(\sqrt{g_{22}}\right)_{r r}+K \sqrt{g_{22}}=0$
has sol ${ }^{n} \quad \sqrt{g_{22}}=A(\theta) \cos \sqrt{k} r+B(\theta) \sin \sqrt{k} r$
since $\lim _{r \rightarrow 0} \sqrt{g_{22}}=0$ we see $A(\theta)=0$
and since $\left(\sqrt{g_{22}}\right)_{r}=B(\theta) \sqrt{k} \cos \sqrt{k} r$
and $\lim _{r \rightarrow 0}\left(\sqrt{g_{22}}\right)_{r}=1$ we see $B(\theta)=\frac{1}{\sqrt{K}}$
so

$$
g=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{k} \sin ^{2} \sqrt{k} r
\end{array}\right)
$$

argument now same as in lase 1
Case 3: $K<0$
we get $\sqrt{g_{22}}=A(\theta) \cosh \sqrt{-k} r+B(\theta) \sinh \sqrt{-k} r$ and arguing as above we get

$$
g=\left(\begin{array}{cc}
1 & 0 \\
0 & -\frac{1}{k} \sinh ^{2} \sqrt{-k} r
\end{array}\right)
$$

and now finish as in Case 1

